EE 101H – Electric Circuits

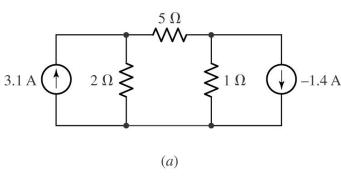

Lect-2

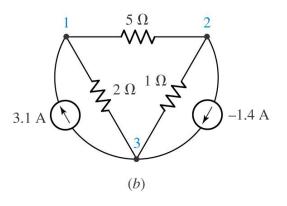
Kirchoff's Voltage Law (KVL)

KVL: The algebraic sum of the voltages around any closed path in a circuit is zero

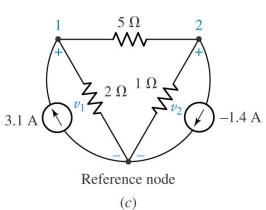
Convention: The voltage across a circuit element is considered

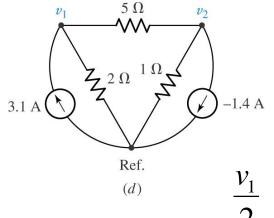
+ve if we travel from lower potential to higher potential -ve if we travel from higher potential to lower potential


KVL gives the equation


$$v - v_1 - v_2 = 0$$

Or,

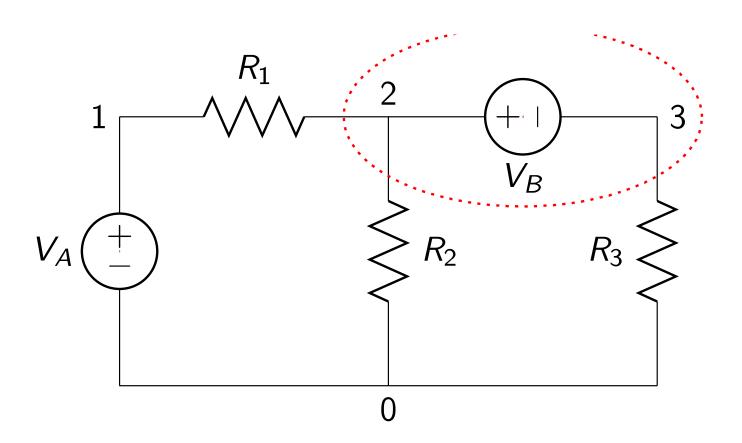

$$v - iR_1 - iR_2 = 0$$


Nodal Analysis

Reference Node: The node to which the greatest number of branches is connected. Ground node is generally selected as reference node

At node 1

$$+ \frac{v_1 - v_2}{5} = 3.1$$


Find v₁ and v₂ by Nodal Analysis method

At node 2
$$\longrightarrow \frac{v_2}{1} + \frac{v_2 - v_1}{5} + (-1.4) = 0$$

Find v_1 and v_2 using KCL

Ans: $v_1 = 5 \ V \ and \ v_2 = 2 \ V$

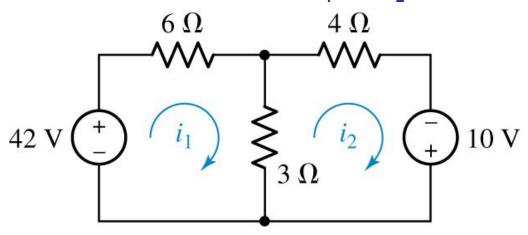
Super Node

Voltage scource between nodes yield $V_2-V_3=V_B$ (1)

Whenever there is a voltage source (dependent or independent) between two non reference nodes, form a super node by combining them and apply KCL for the super node.

Node 2 and 3 overlap and form one node BUT super node has no voltage of its own.

Applying KCL for super node,


$$\frac{V_2 - V_A}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} = 0 \qquad \dots (2)$$

$$V_2(\frac{1}{R_1} + \frac{1}{R_2}) + V_3 \frac{1}{R_3} = \frac{V_A}{R_1}$$

Mesh Analysis

A mesh is a loop which does not contain any other loops within it

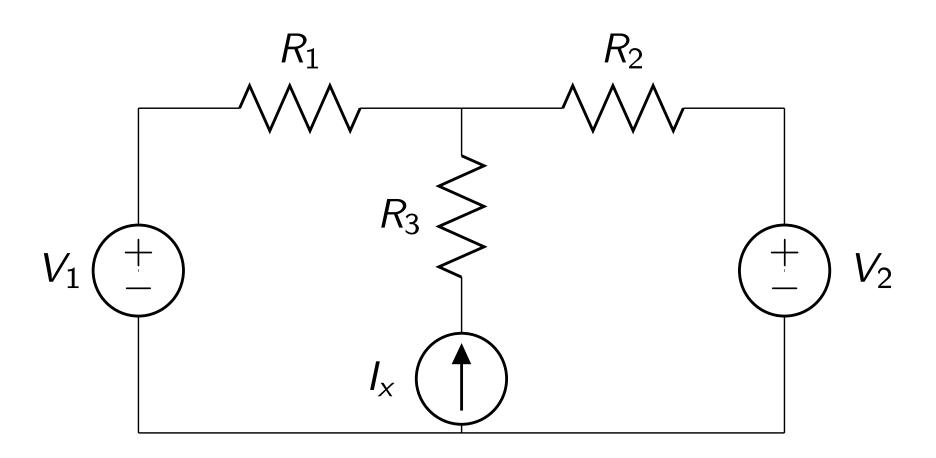
Ex. Determine the two mesh currents, i_1 and i_2 , in the circuit below.

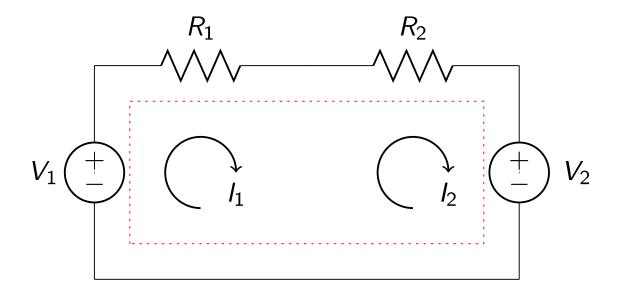
Using KVL for the left-hand mesh,

$$42 - 6i_1 - 3(i_1 - i_2) = 0$$

Using KVL for the right-hand mesh,

$$-4 i_2 +10 -3 (i_2 - i_1) = 0$$


Find (i) i_1 and i_2

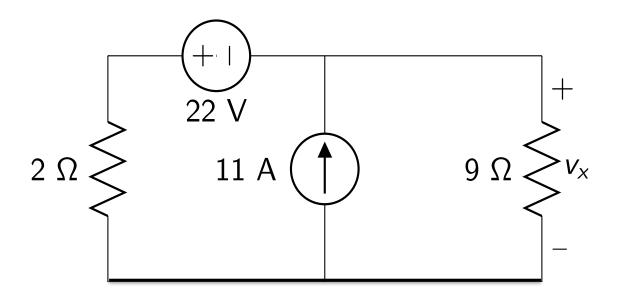

Ans: (i) $i_1 = 6A$ and $i_2 = 4A$

(ii) The current flowing downward through the 3 Ω resistor

(ii) The current flowing downward through the 3 Ω resistor = $i_1 - i_2 = 6A - 4A = 2A$

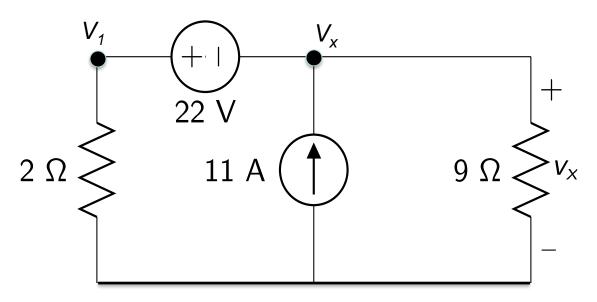
Super Mesh

By applying KVL for super mesh,


$$-V_1 + I_1R_1 + I_2R_2 + V_2 = 0$$
$$I_1R_1 + I_2R_2 = V_1 - V_2$$

Again,
$$I_2 - I_1 = I_x$$

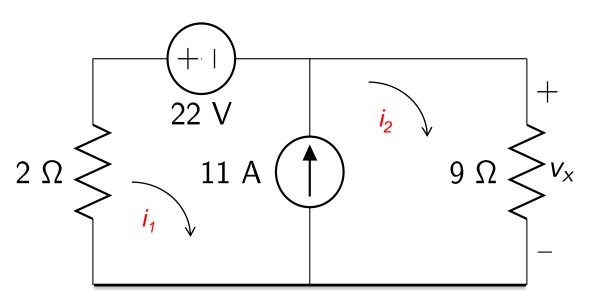
Whenever there is a current source (dependent or independent) between two meshes, form a super mesh by excluding the current source and any elements connected in series.


Super mesh requires the application of both KVL and KCL Super mesh has no current of its own.

Estimate V_x

- (a) By Nodal Analysis and Supernode
- (b) By Mesh Analysis and Supermesh

(a) By Nodal Analysis and Supernode


Forming ONE supernode made up of nodes having voltages V_1 and V_x and then following the steps given in Slide 5, we get the nodal equations

$$V_1 - V_X = 22 (1)$$

$$\frac{-V_1}{2} + 11 - \frac{V_X}{9} = 0 \tag{2}$$

Solving (1) and (2) we get $V_x = 0 \text{ V}$

(b) By Mesh Analysis and Supermesh

Forming ONE supermesh made up of meshes having currents i_1 and i_2 and then following the steps given in Slide 8, we get the mesh equation

$$2i_1 + 22 + 9i_2 = 0 \tag{1}$$

$$i_2 - i_1 = 11$$
 (2)

Solving (1) and (2) we get $i_2 = 0$ and therefore $9i_2 = V_x = 0$ V