EE 1102H – Electric Circuits

Reviews of Instantaneous Power, Average Power Apparent Power

Power Factor (PF)
PF improvement

Instantaneous Power

Let
$$v = V_m \sin(\omega t + \theta)$$

Then
$$i = I_m \sin(\omega t + \phi)$$

$$I_m = rac{V_m}{\sqrt{R^2 + (\omega L)^2}}$$
 and $\phi = - an^{-1}rac{\omega L}{R}$ + $m{ heta}$

$$\Rightarrow \theta - \emptyset = tan^{-1} \frac{\omega L}{R}$$

$$p(t) = v(t)i(t)$$

$$p(t) = V_m \sin(\omega t + \theta)I_m \sin(\omega t + \phi)$$

$$p(t) = \frac{V_m I_m}{2} (\cos(\theta - \phi) - \cos(2\omega t + \theta + \phi))$$

$$p(t) = \frac{V_m I_m}{2} \cos(\theta - \phi) - \frac{V_m I_m}{2} \cos(2\omega t + \theta + \phi)$$

Average Power =
$$\frac{1}{T} \int_0^T p(t) dt = P$$

$$P = \frac{1}{2} V_m I_m \cos(\theta - \phi)$$

SERIES R-L CIRCUIT

$$v = V_R + jV_L$$

$$P = \frac{1}{2} V_m I_m \cos(\theta - \phi)$$

Power in Pure Inductor

Average Power

Resistor: V_m and I_m are in phase.

$$P = \frac{1}{2} V_m I_m \cos(0) = \frac{1}{2} V_m I_m$$

Ideal Inductor : V_m leads I_m by 90°.

$$P=\frac{1}{2}V_mI_m\cos(90^\circ)=0$$

Find power delivered by the current source

Given Is =
$$5 \angle 0^0$$
 A; Vs= $55 \angle 30^0$ V; R = 5 Ohm $X_L = 10$ Ohm and $X_c = 5$ Ohm

Solution

$$5 \angle 0^0 + \frac{55 \angle 30^0 - V_2}{-j5} = \frac{V_2}{j10}$$

$$\Rightarrow j50 - 2(55 \angle 30^0 - V_2) = V_2$$

$$\Rightarrow V_2 = 95.263 + j5$$

But,

$$V_1 = 5X5 + V_2 = 120.263 + j5$$

= 120.367 \(\neq 2.381^0\)

Therefore, power delivered by the Current source =

$$V_1 I_s Cos (\angle V_1 - \angle I_s)$$

$$= \frac{1}{2} V_{\rm m} I_{\rm m} \cos (2.381^{\circ} - 0)$$

$$= (\frac{1}{2}) \times 120.367 \times 5 \times \cos(2.381^{\circ}) = 300.66 \text{ W}$$

Average or Real Power

$$P = \frac{1}{2} V_m I_m \cos(\theta - \phi) = VI \cos(\theta - \phi)$$

where

$$V = \frac{V_m}{\sqrt{2}}, \quad I = \frac{I_m}{\sqrt{2}}$$

Impedance and Power Triangle

Impedance
$$Z = R + j X_1$$

$$P = I^2 R \text{ in } W,$$

 $Q = I^2 X_L \text{ in } VAR$
 $S = VI \text{ in } VA$

Power Triangle

$$\mathbf{S} = VI\cos(\theta - \phi) + \jmath VI\sin(\theta - \phi)$$

P = Real power in W, Q = Reactive power in VAR

Complex Power

$$\mathbf{S} = VI \cos(\theta - \phi) + \jmath VI \sin(\theta - \phi)$$
$$= VI \angle (\theta - \phi) = V\angle \theta \ I\angle - \phi$$

Phasor voltage and current in RMS are

$$\mathbf{V} = V \angle \theta, \quad \mathbf{I} = I \angle \phi$$

Then the complex power is

$$S = VI^*$$

Apparent Power

Magnitude of complex power is called the apparent power

$$|S| = VI$$

Test

 Draw the power triangle of a RC load connected to a sinusoidal source

Power factor

pf is the ratio of real power to the apparent power

$$pf = \frac{VI\cos(\theta - \phi)}{VI} = \cos(\theta - \phi)$$

Maximum value of pf is 1

$$(\theta - \phi) < 0$$
 pf is leading

Example 1

Estimate average, reactive powers and pf

Given, $v(t) = 240\sqrt{2}\sin(1000t) \text{ V}$, R = 4Ω and L = 3mH

Answers:

Real/Active Power: 9216 W,

Reactive Power: 6912 VAR,

Power Factor: 0.8 (lagging)

Example 2:

Consider the following circuit which has a voltage source of $v = 240\sqrt{2} \cos(100\pi t) \text{ V}$.

Find its real power, reactive power and power factor.

Given, $\mathbf{V} = 240\sqrt{2} \angle 0^0 = V_m \angle \theta$ and $\mathbf{Z} = (75 \parallel j32\pi) = 48 + j 36 = 60 \angle 36.87^0$ (approx.)

Then, $\mathbf{I} = \mathbf{V}/\mathbf{Z} = 4\sqrt{2} \angle -36.87^0 = I_m \angle \phi$ and $(\theta - \phi) = 36.87^0$. The power factor is $\cos(\theta - \phi) = \cos(36.87^0) = \mathbf{0.8}$ lagging (as the pf angle is +ve)

(1) Real power = P = (½) $V_m I_m \cos(\theta - \phi) = (½) 240\sqrt{2} \times 4\sqrt{2} \times \cos(36.87^0) = 768 \text{ W}$

Also, using RMS values of voltage and current, $P = V_{rms} \times I_{rms} \times I_{$

Also, $P = V_{rms}^2/R = 240^2/75 = 768 \text{ W}$

(2) Reactive power = Q

$$= V_{rms}^{2} / X_{L}$$

$$= V_{rms} \times I_{rms} \times \sin(36.87^{0}) = 576 \text{ VAR}$$

(Note:
$$X_L = 100 \Omega$$
)

Also, reactive power = $P \tan(\theta - \phi) = 576 \text{ VAR}$

Example 3:

Consider the circuit of Example 2, which has a voltage source of $240\sqrt{2} \cos(100\pi t)$ V.

Find its power factor if a capacitor of $C = 11.3 \mu F$ is connected in parallel with the voltage source.

Reactive power of the capacitor, $Qc = -V_{rms}^2/Xc = -204.04 \text{ VAR}$

Net reactive power experienced by the source = 576 - 204.04 = 371.96 VAR

Net real power experienced by the source = 768 W

Using the power triangle,

$$\tan (\theta - \phi) = 371.96/768$$

=> $(\theta - \phi) = 25.842^0$ (pf angle is positive)

Therefore, power factor = $cos(25.842^{\circ}) = 0.9$ lagging

Power Factor Improvement by adding Real power load (R_I)

P +P"= Real power in W, Q = Reactive power in VAR

S"= Apparent power in VA

Improved Power factor

pf is the ratio of real power to the apparent power

$$=\frac{P+P''}{|S''|}$$

Previous power triangle angle is $(\theta - \emptyset)$.

New power triangle has angle $(\theta'' - \emptyset'')$ which is lesser than the previous one

=> improvement in the power factor

END

27