EE 1102H – Electric Circuits

Instantaneous Power, Average Power Complex Power, Apparent Power and Power Factor

Instantaneous Power

Let
$$v = V_m \sin(\omega t + \theta)$$

Then
$$i = I_m \sin(\omega t + \phi)$$

$$I_m = rac{V_m}{\sqrt{R^2 + (\omega L)^2}} ext{ and } \phi = - an^{-1}rac{\omega L}{R} + heta$$

$$p(t) = v(t)i(t)$$

$$p(t) = V_m \sin(\omega t + \theta)I_m \sin(\omega t + \phi)$$

$$p(t) = \frac{V_m I_m}{2} (\cos(\theta - \phi) - \cos(2\omega t + \theta + \phi))$$

$$p(t) = \frac{V_m I_m}{2} \cos(\theta - \phi) - \frac{V_m I_m}{2} \cos(2\omega t + \theta + \phi)$$

Average Power =
$$\frac{1}{T} \int_0^T p(t) dt = P$$

$$P = \frac{1}{2} V_m I_m \cos(\theta - \phi)$$

SERIES R-L CIRCUIT

$$v = V_R + jV_L$$

$$P = \frac{1}{2} V_m I_m \cos(\theta - \phi)$$

Power in Pure Inductor

Average Power

Resistor: V_m and I_m are in phase.

$$P = \frac{1}{2} V_m I_m \cos(0) = \frac{1}{2} V_m I_m$$

Ideal Inductor : V_m leads I_m by 90°.

$$P=\frac{1}{2}V_mI_m\cos(90^\circ)=0$$

Find power delivered by the current source

Given Is =
$$5 \angle 0^0$$
 A; Vs= $55 \angle 30^0$ V; R = 5 Ohm $X_L = 10$ Ohm and $X_c = 5$ Ohm

Solution

$$5 \angle 0^0 + \frac{55 \angle 30^0 - V_2}{-j5} = \frac{V_2}{j10}$$

$$\Rightarrow j50 - 2(55 \angle 30^0 - V_2) = V_2$$

$$\Rightarrow V_2 = 95.263 + j5$$

But,

$$V_1 = 5X5 + V_2 = 120.263 + j5$$

= 120.367 \(\neq 2.381^0\)

Therefore, power delivered by the Current source =

$$V_1 I_s Cos (\angle V_1 - \angle I_s)$$

$$= \frac{1}{2} V_{\rm m} I_{\rm m} \cos (2.381^{\circ} - 0)$$

$$= (\frac{1}{2}) \times 120.367 \times 5 \times \cos(2.381^{\circ}) = 300.66 \text{ W}$$

Average or Real Power

$$P = \frac{1}{2} V_m I_m \cos(\theta - \phi) = VI \cos(\theta - \phi)$$

where

$$V = \frac{V_m}{\sqrt{2}}, \quad I = \frac{I_m}{\sqrt{2}}$$

Impedance and Power Triangle

Impedance
$$Z = R + j X_1$$

$$P = I^2 R \text{ in } W,$$

 $Q = I^2 X_L \text{ in } VAR$
 $S = VI \text{ in } VA$

Power Triangle

$$\mathbf{S} = VI\cos(\theta - \phi) + \jmath VI\sin(\theta - \phi)$$

P = Real power in W, Q = Reactive power in VAR

Complex Power

$$\mathbf{S} = VI \cos(\theta - \phi) + \jmath VI \sin(\theta - \phi)$$
$$= VI \angle (\theta - \phi) = V\angle \theta \ I\angle - \phi$$

Phasor voltage and current in RMS are

$$\mathbf{V} = V \angle \theta, \quad \mathbf{I} = I \angle \phi$$

Then the complex power is

$$S = VI^*$$

Apparent Power

Magnitude of complex power is called the apparent power

$$|S| = VI$$

Test

 Draw the power triangle of a RC load connected to a sinusoidal source

END