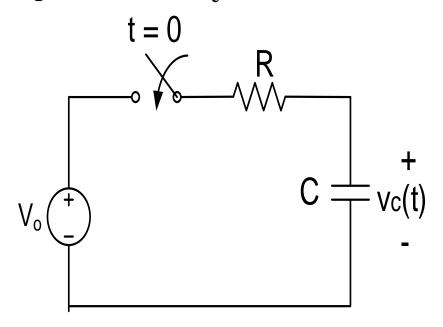
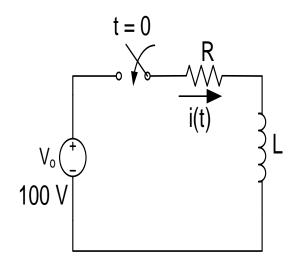

EE 101ME – Electric Circuits

Revision of RL/RC Circuits

RLC Circuits

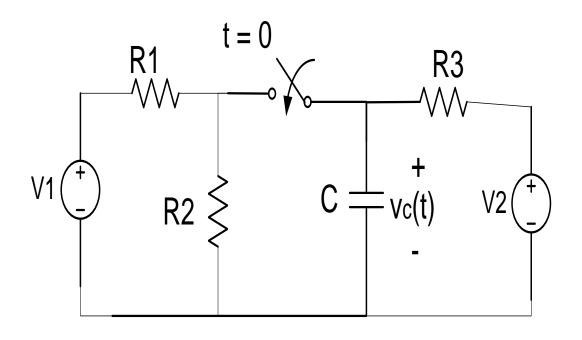

Response of RL Series Circuit

Using Source Transform DC voltage source V_0 and series R can be replaced by


DC current source (V_0/R) and parallel R

Draw an equivalent circuit of the given circuit using a DC current source I_0 and rewrite the expression for $v_c(t)$.

$$v_c(t) = [v_c(0) - I_0 R] e^{-t/(RC)} + I_0 R$$


Determine R and L of the following circuit

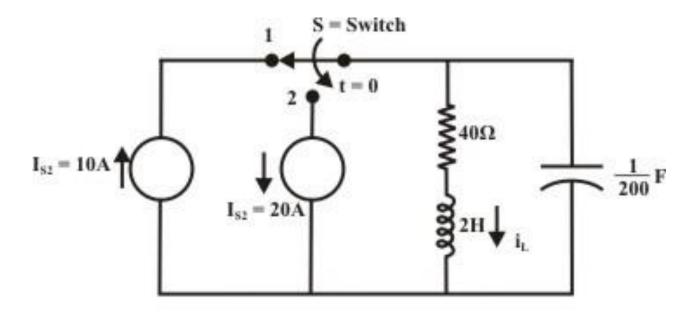
when
$$i(t)=i_L(t) = 12.5(1 - e^{-40t}) A$$
 and $v_L(t) = 100 e^{-40t} V$

R = 8 Ohm and L = 0.2 H

The switch in the following circuit is closed at time t = 0 sec. Find expression for Vc(t) for t > 0.

$$t = 0$$

$$V_0 + C + V_0(t)$$

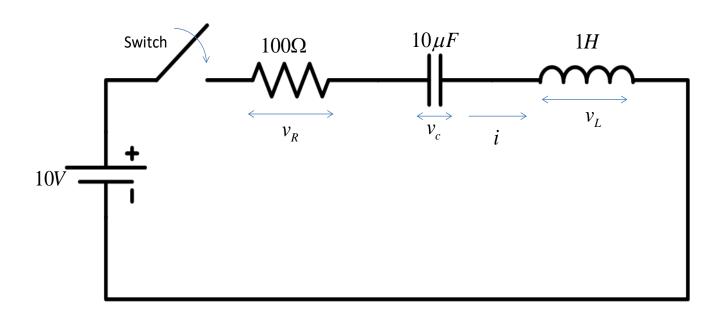

$$v_c(t) = [v_c(0) - V_0] e^{-t/(RC)} + V_0$$

Vc(0) = V2, R=Rth=R1||R2||R3, $V_0=Vth=R(V1/R1 + V2/R3)$

Initial Conditions and and RLC Circuits

Initial Conditions

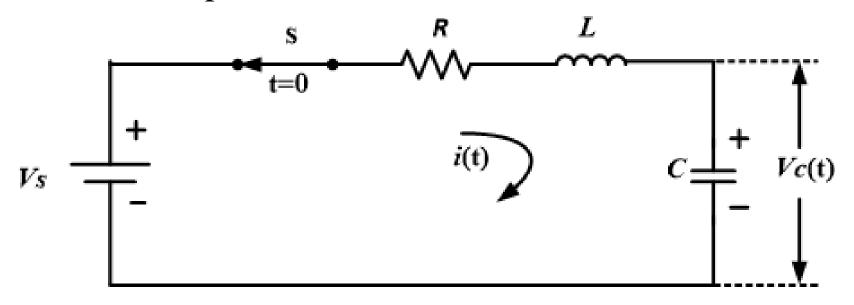
Switch S is connected to Node 1 for a long time before connecting to Node 2 at time t = 0 sec



Values for: (a) $i_L(0^-)$; (b) $v_c(0^+)$; (c) $v_R(0^+)$; (d) $i_L(\infty)$

Values are 10 A, 400 V, 400 V, -20 A

Before closing the switch, the energy storage elements did not have any stored energy in them. If switch is closed at t=0, find


a)
$$i(0^+)$$
 b) $\frac{di}{dt}(0^+)$ c) $\frac{d^2i}{dt^2}(0^+)$ d) $V_L(0^+)$ and e) $V_c(0^+)$.

a) 0 A b) 10 A/s c) -1000 A/s^2 d) 10 V e) 0 V

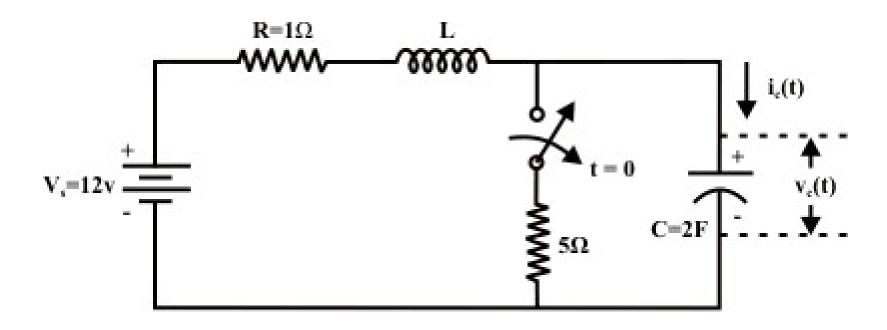
RLC Circuits

Derive an expression for Vc(t) for t > 0.

KVL =>
$$L \frac{di(t)}{dt} + Ri(t) + v_c(t) = V_s$$
 and $i(t) = C \frac{dv_c(t)}{dt}$

Substitution yields

$$LC\frac{d^{2}v_{c}(t)}{dt^{2}} + RC\frac{dv_{c}(t)}{dt} + v_{c}(t) = V_{s}$$


Complete solution

$$v_c(t) = = \left(A_1 e^{\alpha_1 t} + A_2 e^{\alpha_2 t}\right) + A$$

Three types of Responses

Example

Switch is closed for a sufficiently long time before opening at t=0. Find the expression for $v_c(t)$ and $i_c(t)$. Take L=0.2 H.

Solution

Initial conditions for the capacitor voltage and inductor current:

$$v_c(0^+) = v_c(0^-) = 10 \text{ V}$$

$$i_L(0^+) = i_L(0^-) = \frac{12}{1+5} = 2 \text{ A}$$

Roots are:

$$\alpha_1 = -0.563; \ \alpha_2 = -4.436$$

General expression for the capacitor voltage for t > 0 is

$$v_c(t) = A_1 e^{\alpha_1 t} + A_2 e^{\alpha_2 t} + A = A_1 e^{-0.563t} + A_2 e^{-4.436t} + A$$
and

$$\frac{dv_{c(t)}}{dt} = \alpha_1 A_1 e^{\alpha_1 t} + \alpha_2 A_2 e^{\alpha_2 t} = -0.563 A_1 e^{\alpha_1 t} - 4.436 A_2 e^{\alpha_2 t}$$

Using initial conditions

$$A_1 = -2.032$$
, $A_2 = 0.032$ and $A = 12$

$$v_c(t) = -2.032 e^{-0.563t} + 0.032 e^{-4.436t} + 12,V$$

$$i_c(t) = C \frac{dv_{c(t)}}{dt} = 2(1.144e^{-0.563t} - 0.144e^{-4.436t}),A$$

Draw the plots for capacitor voltage for 20 sec

Case 1:

L = 0.5 H

Case 2:

L = 0.2 H

Case 3:

L = 0.8 H