EE 101ME – Electric Circuits

First order Differential Equation: dx(t)/dt+ax(t)=b

Can also be written as: dx(p)/dp + ax(p) = b

Multiplying both sides by eap gives:

$$e^{ap} dx(p)/dp + e^{ap} ax(p) = e^{ap} b$$

$$\Rightarrow$$
 $d(e^{ap} x(p))/dp = e^{ap} b$

$$\Rightarrow$$
 $d(e^{ap} x(p)) = e^{ap} b dp$

$$=> \int_0^t d(e^{ap} x(p)) = \int_0^t e^{ap} b dp$$

$$=> e^{ap} x(p) |_{o}^{t} = (b/a) e^{ap} |_{o}^{t}$$

Substitution of limits of integral $=> e^{at} x(t) - x(0) = (b/a) (e^{at} - 1)$

$$=> e^{at} x(t) = x(0) + (b/a) (e^{at} - 1)$$

Multiplying both sides of above equation by e-at

$$\Rightarrow$$
 x(t) = e^{-at} x(0) + (b/a) (1- e^{-at})
= (x(0) - b/a) e^{-at} + b/a

So, for a 1st order Differential Equation: $\frac{dx(t)}{dt} + a x(t) = b$

Its solution can be written as: $x(t) = (x(0) - b/a) e^{-at} + b/a$

RC Series Circuit: Switch is closed at time t = 0

Find expression for the capacitor voltage v(t) for t > 0

Solution: Voltage at the Node N is v.

Applying KCL at a Node N: (current through the capacitor is equal to current entering the Node N)

$$=> C dv(t)/dt = (V_0 - v)/R$$

Applying KCL at a Node N:

$$C dv(t)/dt = (V_o - v)/R$$

$$=> dv/dt + (1/RC) v = (V_0/RC)$$

We know, given dx(t)/dt + a x(t) = b

its solution is
$$x(t) = [x(0) - (b/a)] e^{-at} + (b/a)$$

For series RC circuit : After closing the switch $v(0)=v(0^-)=0$ Again, x(t) = v(t), a = 1/(RC) and $b = V_0/(RC)$ Then, $v(t) = v_c(t) = V_0$ (1 - $e^{-t/(RC)}$)

Plot for the capacitor voltage after closing the switch:

Initial Conditions and RC Circuit

The switch is connected for a long time before opening at time t = 0 sec

Given: R_1 = 4 Ohm, R_2 = 8 Ohm, C=20 microFarad and V_0 = 18 V.

Write the expression for $v_c(t)$ across the capacitor C for t>0.

The circuit at $t = 0^-$ before the switch is opened

The capacitor is fully charged to $v_c(0^-) = V_0 = 18V$ since the capacitor current $i_c = C \ dv/dt = 0$ for DC V_0

The switch opens at t = 0. The circuit is shown for $t > 0^+$.

For series RC circuit : After opening the switch $v_c(0)=v(0)=18 \text{ V}$

Note that there is no DC source in the above circuit, so $V_0 = 0 \text{ V}$

Again,
$$x(t) = v_c(t)$$
, $a = 1/(RC)$, $R = R_1 + R_2$ and $b = V_0/(RC) = 0$

We know:
$$x(t) = (x(0) - b/a) e^{-at} + b/a$$

Then,
$$v_c(t) = v_c(0) e^{-t/(RC)} = 18 e^{-4166.67 t} V$$

END