EE101ME – **Electric Circuits**

RL and RC Circuits

The Inductor

If current i is constant, voltage v is 0

So, inductor behaves as a short circuit to dc input current

Again, current through an inductor cannot change instantaneously (immediately)

The Capacitor

If voltage v is constant, then i is 0

So, capacitor behaves as an open circuit to dc input voltage

Again, voltage across a capacitor cannot change instantaneously (immediately)

Initial Conditions of RLC Circuit

Initial Conditions

Switch S is connected to Node 1 for a long time before connecting to Node 2 at time t = 0 sec

Values for: (a) $i_L(0^-)$; (b) $v_c(0^+)$; (c) $v_R(0^+)$; (d) $i_L(\infty)$

Values are 10 A, 400 V, 400 V, -20 A

Response of RL Series Circuit

Find i(t) for t > 0

After switching:

$$Ri + L\frac{di}{dt} = V_0 \quad \text{for } t > 0$$

Solution -

Complimentary Function

+ Particular Integral

Solution -

Natural Response
$$(i_n)$$
 from

$$Ri + L\frac{di}{dt} = 0$$

Forced Response
$$(i_f)$$
 from

$$Ri + L\frac{di}{dt} = V_0$$

Complete Solution is

$$i = i_n + i_f$$

For Natural Response

Ri + L
$$\frac{di}{dt}$$
 = 0
or, $\frac{di}{dt}$ + $\frac{R}{L}$ i = 0
or, $i_n = Ae^{-\frac{R}{L}t}$

For Forced Response

$$Ri + L \frac{di}{dt} = V_0$$

$$But L \frac{di}{dt} = 0$$

$$So, i_f = \frac{V_0}{R}$$

Overall Response

$$i(t) = Ae^{-\left(\frac{R}{L}\right)t} + \frac{V_0}{R} \quad t > 0$$

For Finding A: Apply the condition

$$i(t = 0) = i(t = 0^{-}) = i(t = 0^{+})$$

$$0 = A + \frac{V_0}{R}$$

$$A = -\frac{V_0}{R}$$

$$i(t) = \left(\frac{V_0}{R} - \frac{V_0}{R}e^{-\frac{R}{L}t}\right) \quad t > 0$$

or,
$$i(t) = \frac{V_0}{R} \left(1 - e^{-\frac{t}{\tau}} \right)$$
 $t > 0$ $\tau = \frac{L}{R}$ Time Constant

Response of R-L Circuit or plot of the inductor current:

Find expression for the inductor current after switching and then plot $i_L(t)$ for $t \le 0.1$ sec.

$$Vo = 100 \text{ V}, R = 8\Omega, L = 0.2 \text{ H}$$

$$i_L(t) = [0 - 12.5] e^{-40t} + 12.5 = 12.5(1 - e^{-40t})$$

Response of R-L Circuit or plot of the inductor current:

- (i) Find expression for the inductor current after switching.
- (ii) At which time the inductor current becomes 50% of its initial value.

$$Vo = 100 \text{ V}, R = 8\Omega, L = 0.2 \text{ H}$$

(i)
$$i_L(t) = 12.5 e^{-40t}$$

(ii)
$$t = 0.01733 \text{ sec}$$

Find expression for the inductor current after closing the switch at time t = 0.

$$i_L(t) = 0.333(1 - e^{-1.5t})$$

Vo = 1 V, R1= R2=R3=1
$$\Omega$$
, L=1H

RL Circuit

Given $R_1 = 7.8204$ Ohm and $R_2 = 13.8629$ ohm, find $v_R(0^+)$ and $v_R(1 \text{ ms})$. The switch closes at time t = 0.

$$v_R(0^+) = 10 \text{ V and } v_R(1 \text{ ms}) = 5 \text{ V}$$

Before closing the switch, the energy storage elements did not have any stored energy in them. If switch is closed at t=0, find

a)
$$i(0^+)$$
 b) $\frac{di}{dt}(0^+)$ c) $\frac{d^2i}{dt^2}(0^+)$ d) $V_L(0^+)$ and e) $V_c(0^+)$.

