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ABSTRACT

Projective and Injective modules arise quite abundantly in nature. For
example, all free modules that we know of, are projective modules. Similarly,
the group of all rational numbers and any vector space over any field are ex-
amples of injective modules. In this thesis, we study the theory of projective
and injective modules.
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Chapter 1

Introduction

1.1 Some Basic Definitions

Modules over a ring are a generalization of abelian groups (which are mod-
ules over Z).

Definition 1. Let R be a ring. A (left) R-module is an additive abelian
group A together with a function µ : R × A −→ A (µ(r, a) being denoted by
ra) such that for all r, s ∈ R and a, b ∈ A:

(1) r(a+ b) = ra + rb.

(2) (r + s)a = ra + rb.

(3) r(sa) = (rs)a.

If R has an identity element 1R and

(4) 1Ra = a ∀a ∈ A,

then A is said to be a unitary R-module.

Example 1. Every additive abelian group G is a unitary Z-module, with na
(n ∈ Z, a ∈ G) defined by na = a+ a+ ...+ a (n times).
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1.1.1 R- Module Homomorphism

Definition 2. Let A and B be modules over a ring R. A function f : A −→
B is an R-module homomorphism provided that for all a, c ∈ A and
r ∈ R:

(1) f(a+ c) = f(a) + f(c) and

(2) f(ra) = rf(a).

Definition 3. Let {Mi}i∈I be a family of R-modules. Their direct sum
⊕i∈IMi is the set of all tuples (xi)i∈I such that xi ∈ Mi for all i ∈ I and
all but finitely many xi are 0. This set ⊕i∈IMi has a natural structure of an
R-module given by:

(xi)i∈I + (yi)i∈I = (xi + yi)i∈I

a(xi)i∈I = (axi)i∈I

for all a ∈ R and for all (xi)i∈I , (yi)i∈I ∈ ⊕i∈IMi.

Definition 4. Let {Mi}i∈I be a family of R-modules. Their direct product
Πi∈IMi is the set of all tuples (xi)i∈I such that xi ∈ Mi for all i ∈ I. This
set Πi∈IMi has a natural structure of an R-module given by:

(xi)i∈I + (yi)i∈I = (xi + yi)i∈I

a(xi)i∈I = (axi)i∈I

for all a ∈ R and for all (xi)i∈I , (yi)i∈I ∈ Πi∈IMi.

The following theorems follow easily from the definitions of direct sum
and direct product of modules. So, we omit their proofs.

Theorem 1. If R is a ring, {Ai|i ∈ I} a family of R- modules, C an R-
module, and {φi : C −→ Ai|i ∈ I} a family of R-module homomorphisms,

then there is a unique R-module homomorphism φ : C −→
∏
i∈I

Ai such that

πiφ = φi ∀i ∈ I.
∏
i∈I

Ai is uniquely determined up to isomorphism by this

property.
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Theorem 2. If R is a ring, {Ai|i ∈ I} a family of R- modules, D an R
module, and {ψi : Ai −→ D|i ∈ I} a family of R-module homomorphisms,

then there is a unique R-module homomorphism ψ :
∑
i∈I

Ai −→ D such that

ψιi = ψi ∀i ∈ I.
∑
i∈I

Ai is uniquely determined up to isomorphism by this

property.

1.1.2 Exact Sequences

Definition 5. A pair of module homomorphisms A
f−→ B

g−→ C, is said to be
exact at B provided Im f = Ker g.

Definition 6. A finite sequence of module homomorphisms, A0
f1−→ A1

f2−→
A2

f3−→ ...
fn−1−−→ An−1

fn−→ An is exact provided Im fi = Ker fi+1 for i =
1, 2, 3...n− 1.

Definition 7. An infinite sequence of module homomorphisms, ...
fi−1−−→ Ai−1

fi−→
Ai

fi+1−−→ Ai+1
fi+2−−→ ... is exact provided Im fi = Ker fi+1 for all i ∈ Z.

Remark 1. 0 −→ A
f−→ B is exact sequence of module homomorphism iff f

is module monomorphism.
Similarly, B

g−→ C −→ 0 is exact sequence of module homomorphism iff g is
module epimorphism.

If A
f−→ B

g−→ C is exact then gf = 0.

Definition 8. An exact sequence of the form 0 −→ A
f−→ B

g−→ C −→ 0 is
called a short exact sequence.

Note 1. In the above definition, f is monomorphism and g is epimorphism.

Lemma 1. The Short five lemma: Let R be a ring and
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a commutative diagram of R-modules and R-module homomorphisms, such
that each row is a exact sequence. Then

(1) α, γ monomorphisms ⇒ β is a monomorphism;

(2) α, γ epimorphisms ⇒ β is a epimorphism;

(3) α, γ isomorphisms ⇒ β is a isomorphism.

Proof. Commutativity gives : βf = f ′α and γg = g′β.

proof of (1): Let b ∈ B and suppose β(b) = 0; we must show that
b = 0. By commutativity we have

γg(b) = g′β(b) = g′(0) = 0.

⇒ g(b) = 0, since γ is monomorphism.
By exactness of the top row at B, we have b ∈ Ker g = Im f , say b = f(a),
a ∈ A. By commutativity,

f ′α(a) = βf(a) = β(b) = 0.

By exactness of the bottom row at A′, f ′ is a monomorphism. Hence α(a) =
0. But α is a monomorphism; therefore a = 0 and hence b = f(a) = f(0) = 0.
Thus β is a monomorphism.

proof of (2): Let b′ ∈ B′. Then g′(b′) ∈ C ′; since γ is an epimorphism
g′(b′) = γ(c) for some c ∈ C. By exactness of the top row at C, g is an
epimorphism; hence c = g(b) for some b ∈ B. By commutativity,

g′β(b) = γg(b) = γ(c) = g′(b′).

Thus g′[β(b) − b′] = 0 and β(b) − b′ ∈ Ker g′ = Im f ′ by exactness, say
f ′(a′) = β(b) − b′, a′ ∈ A′. Since α is an epimorphism, a′ = α(a) for some
a ∈ A. Consider b− f(a) ∈ B.

β[b− f(a)] = β(b)− β(f(a)).

By commutativity, βf(a) = f ′α(a) = f ′(a′) = β(b)− b′; hence

β[b− f(a)] = β(b)− βf(a) = β(b)− (β(b)− b′) = b′

and β is an epimorphism.

proof of (3): It is an immediate consequence of (1) and (2).
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1.1.3 Isomorphic Short Exact sequences

Definition 9. Two short exact sequences are said to be isomorphic if there
is a commutative diagram of module homomorphisms

such that f, g and h are isomorphisms. In this case it is easy to verify that
the diagram

(with the same horizontal maps) is also commutative.

Theorem 3. Let R be ring and 0 −→ A1
f−→ B

g−→ A2 −→ 0 be a short exact
sequence of R-module homomorphisms. Then the following conditions are
equivalent.

(1) There is an R-module homomorphism h : A2 −→ B with gh = IA2;

(2) There is an R-module homomorphism k : B −→ A1 with kf = IA1;

(3) The given sequence is isomorphic (with identity maps on A1 and A2) to
the direct sum short exact sequence 0 −→ A1

ι1−→ A1⊕A2
π2−→ A2 −→ 0;

in particular B ∼= A1 ⊕ A2.

Proof. •(1)⇒ (2)

By the Theorem 2, the homomorphisms f and h induce a unique module
homomorphism φ : A1 ⊕ A2 −→ B, given by (a1, a2) 7−→ f(a1) + h(a2).
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Here,

ψ1 = f : A1 −→ B and ι1 : A1 −→ A1 ⊕ A2 by a1 7−→ (a1, 0)
ψ2 = h : A2 −→ B and ι2 : A2 −→ A1 ⊕ A2 by a2 7−→ (0, a2).

By the Theorem 2, ∃ a unique R-module homomorphism φ : A1 +A2 −→ B
such that φι1 = f and φι2 = h.
φι1 : A1 −→ B, φι1(a1) = f(a1)
φι2 : A2 −→ B, φι2(a2) = f(a2)
and,
φ : A1 + A2 −→ B, therefore

φ(a1, a2) = φ(a1, 0) + φ(0, a2)

= φ(ι1(a1)) + φ(ι2(a2))

= φ(ι1(a1)) + φ(ι2(a2))

= f(a1) + h(a2).

Now the diagram

is commutative.
To show that the diagram is commutative: Here, gf = 0 and gh = IA2 .
Now, to show that:

φι1 = fIA1

and gφ = IA2π2.

Now, let a1 ∈ A1, a2 ∈ A2 and (a1, a2) ∈ A1 ⊕ A2.
Therefore, φι1(a1) = φ(a1, 0) = f(a1).
and fIA1(a1) = f(a1).
so, φι1 = f .
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Now,

gφ(a1, a2) = g(f(a1) + h(a2))

= (gf)(a1) + (gh)(a2)

= 0 + IA2(a2)

= a2.

So, the diagram is commutative.

Therefore, by the Short Five Lemma φ is an isomorphism.

•(2)⇒ (3)

This diagram is commutative.
Where ψ is the module homomorphism given by ψ(b) = (k(b), g(b)).
Hence the Short Five Lemma implies ψ is an isomorphism.

•(3)⇒ (1), (2)

Given a commutative diagram with exact rows and φ an isomorphism:

define h : A2 −→ B to be φι2 and k : B −→ A1 to be π1φ
−1. Use the

commutativity of the diagram and the facts πiιi = IAi
and φ−1φ = IA1⊕A2 to

show that kf = IA1 and gh = IA2 .
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Note 2. A short exact sequence that satisfies the equivalent conditions of the
Theorem 3 is said to be split or split exact sequence.

1.1.4 Free Module

Theorem 4. Let R be a ring with identity. The following conditions on a
unitary R-module are equivalent :

(a) F has a non empty basis;

(b) F is isomorphic to direct sum of a family of cyclic R-module to R;

(c) F is R module isomorphic to a direct sum of copies of the left R module
R;

(d) there exists a nonempty set X and a function ι : X −→ F with the
following property: given any unitary R-module A and function f :
X −→ A, there exist a unique R-module homomorphism f̄ : F −→ A
such that f̄ ι = f .

Proof. Omitted.

Definition 10. A unitary module F over a ring R with identity, which sat-
isfies the equivalent conditions of Theorem 4 is called a free R-module on
the set X.

Example 2. Let R any ring and I be an indexing set. Then ⊕i∈IRi where
each Ri is isomorphic to R is an example of free module.

Corollary 4.1. Every (unitary) module A over a ring R (with identity) is
the homomorphic image of a free R-module F .

Proof. Let X be a set of generators of A and F be the free R-module on the
set X. Then the inclusion map X −→ A induces an R-module homomor-
phism f̄ : F −→ A such that X ⊂ Im f̄ (By Theorem 4). Since X generates
A, we must have Im f̄ = A.
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Chapter 2

Projective Modules

2.1 Projective modules : Definition

Definition 11. A module P over a ring R is said to be projective if given
any diagram of R-module homomorphisms

with bottom row exact (that is, g an epimorphism), ∃ an R-module homo-
morphism h : P −→ A such that the diagram

is commutative (that is, gh = f).

Theorem 5. Every free module F over a ring R with identity is projective.

Proof. Assume that we are given a diagram of homomorphisms of unitary
R-modules:
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with g an epimorphism and F a free R-module on the set X (ι : X −→ F ).
For each x ∈ X, f(ι(x)) ∈ B. Since g is an epimorphism, there exists ax ∈ A
with g(ax) = f(ι(x)). Since F is free, the map X −→ A given by x 7→ ax
induces an R-module homomorphism h : F −→ A such that h(ι(x)) = ax
for all x ∈ X. Consequently, ghι(x) = g(ax) = fι(x) for all x ∈ X so that
ghι = fι : X −→ B. By the uniqueness part of the Theorem 4 we have
gh = f . Therefore F is projective.

Corollary 5.1. Every module A over a ring R is the homomorphic image
of a projective R-module.

Proof. It directly follows from the Corollary 4.1 and Theorem 5.

Theorem 6. Let R be a ring. The following conditions on an R-module P
are equivalent.

(1) P is projective;

(2) every short exact sequence 0 −→ A
f−→ B

g−→ P −→ 0 is split exact
(hence B ∼= A⊕ P );

(3) there is a free module F and an R-module K such that F ∼= K ⊕ P .

Proof. • (1) ⇒ (2)

Consider the diagram
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with bottom row exact by the hypothesis. Since P is projective there is an
R-module homomorphism h : P −→ B such that gh = 1p. Therefore, the

short exact sequence 0 −→ A
f−→ B �g

h P −→ 0 is split exact by Theorem 3

and B ∼= A⊕ P .

• (2) ⇒ (3)

By Corollary 4.1 there is free R-module F and an epimorphism g :

F −→ P . If K = Ker g, then 0 −→ K
⊂−→
ι
F

g−→ P −→ 0 is exact. By

hypothesis the sequence splits so that F ∼= K ⊕ P by Theorem 3.

• (3) ⇒ (1)

Let π be the composition F ∼= K⊕P −→ P where the second map is the
canonical projection. Similarly let ι be the composition P −→ K ⊕ P ∼= F
with the first map the canonical injection. Given a diagram of R-module
homomorphisms

with exact bottom row, consider the diagram

Since F is projective by Theorem 5, there is an R-module homomorphism
h1 : F −→ A such that gh1 = fπ.
Let h = h1ι : P −→ A. Then gh = gh1ι = (fπ)ι = f(πι) = f1P = f .
Therefore, P is projective.
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Example 3. Projective but not free: If R = Z6, then Z3 and Z2 are
Z6-modules and there is Z6-module isomorphism Z6

∼= Z2 ⊕ Z3. Hence both
Z2 and Z3 are projective Z6-modules that are not free Z6-modules.

Proposition 1. Let R be a ring. A direct sum of R-modules
∑
i∈I

Pi is pro-

jective iff each Pi is projective.

Proof. Suppose
∑
Pi is projective. Since the proof of (3)⇒ (1) in Theorem-6

uses only the fact that F is projective, it remains valid with
∑
i∈I

Pi,
∑
i 6=j

Pi

and Pj in place of F , K and P respectively. The converse is proved by similar
techniques using the diagram

If each Pj is projective, then for each j there exists hj : Pj −→ A such that
ghj = fιj. By Theorem 2 there is a unique homomorphism h :

∑
Pi −→ A

with hιj = hj for every j and we also have gh = f.
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Chapter 3

Injective Modules

3.1 Injective modules : Definition

Definition 12. A module J over a ring is said to be injective if given any
diagram of R-module homomorphisms

with top row exact (that is, g is a monomorphism), there exists an R-module
homomorphism h : B −→ J such that the diagram

is commutative (that is hg = f).

Proposition 2. A direct product of R-modules
∏
i∈I

Ji is injective iff Ji is

injective for every i ∈ I.
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Proof. Suppose that Ji is injective ∀i ∈ I.
Now in this diagram

we have to find h. Since Ji is injective ∃ hi : B −→ Ji such that hig = πif .

Define h : B −→
∏
i∈I

Ji to be h(b) := (hi(b))i∈I = (h1(b), h2(b), ...).

Now it is very easy to check that, hg = f .

Conversely, suppose that
∏
i∈I

Ji is injective. To show that, Ji is injective

for each i ∈ I. Now in this diagram

we have hg = ιif .
We have to find hi. Define hi : B −→ Ji to be hi = πih.
Now it is very easy to check that, hig = f ∀i ∈ I.
Here, hig = πihg = πiιif = IJif = f ∀i ∈ I.

Lemma 2. Baer’s Criterion: Let R be a ring with identity. A unitary R-
module J is injective if and only if for every left ideal L of R, any R-module
homomorphism L −→ J may be extended to an R-module homomorphism
R −→ J.
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Proof. To say that f : L −→ J may be extended to R means there is a
homomorphism h : R −→ J such that the diagram

is commutative. Clearly, such an h always exists if J is injective. Conversely,
suppose J has the stated extension property and suppose we are given a
diagram of module homomorphisms

with top row exact. To show that J is injective we must find a homomorphism
h : B −→ J with hg = f. Let S be the set of all R-module homomorphisms
h : C −→ J , where Im g ⊂ C ⊂ B. S is non empty since fg−1 : Im g −→ J
is an element of S (g is a monomorphism). Partially order S by extension :
h1 ≤ h2 iff Dom h1 ⊂ Dom h2 and h2 | Dom h1 = h1. We can verify that
the hypotheses of Zorn’s Lemma are satisfied and conclude that S contains
a maximal element h : H −→ J with hg = f . We shall complete the proof
by showing H = B.

If H 6= B and b ∈ B − H, then L = {r ∈ R | rb ∈ H} is left ideal
of R. The map L −→ J given by r 7→ h(rb) is a well- defined R-module
homomorphism. By the hypothesis there is a R-module homomorphism k :
R −→ J such that k(r) = h(rb) for all r ∈ L. Let c ∈ k(1R) and define a map
h̄ : H + Rb −→ J by a + rb 7→ h(a) + rc. We claim that h̄ is well-defined.
For if a1 + r1b = a2 + r2b ∈ H + Rb, then a1 − a2 = (r2 − r1)b ∈ H

⋂
Rb.

Hence r2 − r1 ∈ L and h(a1) − h(a2) = h(a1 − a2) = h((r2 − r1)b) =
k(r2 − r1) = (r2 − r1)k(1R) = (r2 − r1)c. Therefore, h̄ : R + Rb −→ J is an
R-module homomorphism that is an element of the set S. This contradicts
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the maximality of h since b /∈ H and hence H $ H +Rb. Therefore, H = B
and J is injective.

3.1.1 Divisible Group

Definition 13. An abelian group D is said to be divisible if given any y ∈ D
and 0 6= n ∈ Z, there exists x ∈ D such that nx = y.

For example, the additive group Q is divisible, but Z is not. The factor
group Q/Z is also divisible group.

Lemma 3. An abelian group D is divisible iff D is an injective (unitary)
Z-module.

Proof. If D is injective, y ∈ D and 0 6= n ∈ Z, let f : 〈n〉 −→ D be the
unique homomorphism determined by n 7→ y; (〈n〉 is a free Z − module).
Since D is injective, there is a homomorphism h : Z −→ D such that the
diagram

is commutative. If x = h(1), then nx = nh(1) = h(n) = f(n) = y. Therefore,
D is divisible. To prove the converse note that the only left ideals of Z
are the cyclic groups 〈n〉, n ∈ Z. If D is divisible and f : 〈n〉 −→ D is a
homomorphism, then there exists x ∈ D with nx = f(n). Define h : Z −→ D
by 1 7→ x and verify that h is a homomorphism that extends f . Therefore,
D is injective by Lemma 2.

Remark 2. The rationals Q (with addition) form an injective abelian group
(i.e. an injective Z-module). The factor group Q/Z is also injective Z-
module.

Lemma 4. Every abelian group A may be embedded in a divisible abelian
group.
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Proof. There is a free Z-module F and an epimorphism F −→ A with kernel
K so that F/K ∼= A. Since F is a direct sum of copies of Z and Z ⊂
Q, F may be embedded in a direct sum D of copies of the rationals Q.
But D is a divisible group by Proposition 2, Lemma 3. If f : F −→ D
is the embedding monomorphism, then f induces an isomorphism F/K ∼=
f(F )/f(K). Thus the composition A ∼= F/K ∼= f(F )/f(K) ⊂ D/f(K) is a
monomorphism. But D/f(K) is divisible since it is the homomorphic image
of a divisible group.

Lemma 5. If J is a divisible abelian group and R is a ring with identity,
then HomZ(R, J) is an injective left R-module.

Proof. By Lemma 2 it suffices to show that for each left ideal L of R, every
R-module homomorphism f : L −→ HomZ(R, J) may be extended to an
R-module homomorphism h : R −→ HomZ(R, J). The map g : L −→ J
given by g(a) = [f(a)](1R) is a group homomorphism. Since J is an injective
Z-module by Lemma 3 and we have the diagram

there is group homomorphism ḡ : R −→ J such that ḡ | L = g. Define
h : R −→ HomZ(R, J) by r 7→ J , where h(r) : R −→ J is the map given
by [h(r)](x) = ḡ(xr) (x ∈ R). h is well-defined function (that is, each
h(r) is a group homomorphism R −→ J) and h is group homomorphism
R −→ HomZ(R, J). If s, r, x ∈ R, then

h(sr)(x) = ḡ(x(sr)) = ḡ((xs)r) = h(r)(xs).

By the definition of the R-module structure of HomZ(R, J), h(r)(xs) =
[sh(r)](x), whence h(sr) = sh(r) and h is an R-module homomorphism.
Finally suppose r ∈ L and x ∈ R. Then xr ∈ L and

h(r)(x) = ḡ(xr) = g(xr) = [f(xr)](1R).

Since f is an R-module homomorphism and HomZ(R, J) an R-module,

[f(xr)](1R) = [xf(r)](1R) = f(r)(1Rx) = f(r)(x).
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Therefore, h(r) = f(r) for r ∈ L and h is an extension of f .

Proposition 3. Every unitary module A over a ring R with identtity may
be embedded in an injective R-module.

Proof. Since A is an abelian group, there is a divisible group J and a group
monomorphism f : A −→ J by Lemma 4. The map f̄ : HomZ(R,A) −→
HomZ(R, J) given on g ∈ HomZ(R,A) by f̄(g) = fg ∈ HomZ(R, J) is easily
seen to be an R-module monomorphism. Since every R-module homomor-
phism is a Z−module homomorphism, we have HomR(R,A) ⊂ HomZ(R,A).
In fact, it is easy to see that HomR(R,A) is an R-submodule of HomZ(R,A).
Finally, the map A −→ HomR(R,A) given by a 7→ fa, where fa(r) = ra,
is an R-module monomorphism (in fact it is an isomorphism). Composing
these maps yeilds an R-module monomorphism

A −→ HomR(R,A)
⊂−→ HomZ(R,A)

f̄−→ HomZ(R, J).

Since HomZ(R, J) is an injective R-module by Lemma 5, we have embedded
A in an injective.

Proposition 4. Let R be a ring with identity. The following conditions on
a unitary R-module J are equivalent.

(1) J is injective ;

(2) every short exact sequence 0 −→ J
f−→ B

g−→ C −→ 0 is split exact
(hence B ∼= J ⊕ C);

(3) J is a direct summand of any module B of which it is a submodule.

Proof. (1)⇒ (2): Dualize the proof (1)⇒ (2) of Theorem 6.

(2)⇒ (3): Since the sequence 0 −→ J
⊂−→ B

π−→ B/J −→ 0 is split exact,
there is a homomorphism g : B/J −→ B such that πg = 1B/J . By Theorem

3, (1)⇒ (3) there is an isomorphism J⊕B/J ∼= B given by (x, y) 7→ x+g(y).
It folows easily that B is the internal direct sum J and g(B/J).

(3) ⇒ (1): It follows from Proposition 3 that J is a submodule of an
injective module Q. Proposition 2 and (3) imply that J is injective.
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Example 4. Injective module: Given a field K, every K vector space W
is an injective K-module. Reason: if W is a subspace of V , we can find a
basis of W and extend it to a basis of V . The new extended basis vectors
span a subspace S of V and V is the internal direct sum of W and S. The
proof follows from the equivalence (1)⇔ (3) of Proposition 4.
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