Indian Institute of Technology Guwahati
 MA 102 Mathematics-II
 Tutorial Sheet-5

Line, surface integrals and Stoke's, divergence theorems

Section-I: Tutorial Problems

1. What is the integral of the function $x^{2} z$ taken over the entire surface of a right circular cylinder of height h which stands on the circle $x^{2}+y^{2}=a^{2}$. What is the integral of the given function taken throughout the volume of the cylinder.
2. Find the line integral of the vector field $F(x, y, z)=y \vec{i}-x \vec{j}+\vec{k}$ along the path $c(t)=$ $\left(\cos t, \sin t, \frac{t}{2 \pi}\right), 0 \leq t \leq 2 \pi$ joining $(1,0,0)$ to $(1,0,1)$.
3. Evaluate $\int_{C} T \cdot d R$, where C is the circle $x^{2}+y^{2}=1$ and T is the unit tangent vector.
4. Show that the integral $\int_{C} y z d x+(x z+1) d y+x y d z$ is independent of the path C joining $(1,0,0)$ and $(2,1,4)$.
5. Use Green's Theorem to compute $\int_{C}\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$ where C is the boundary of the region $\left\{(x, y): x, y \geq 0 \& x^{2}+y^{2} \leq 1\right\}$.
6. Use Stokes' Theorem to evaluate the line integral $\int_{C}-y^{3} d x+x^{3} d y-z^{3} d z$, where C is the intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $x+y+z=1$ and the orientation of C corresponds to counterclockwise motion in the $x y$-plane.
7. Let $\vec{F}=\frac{\vec{r}}{|\vec{r}|^{2}}$, where $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$ and let S be any surface that surrounds the origin. Prove that $\iint_{S} \vec{F} \cdot n d \sigma=4 \pi$.
8. Let D be the domain inside the cylinder $x^{2}+y^{2}=1$ cut off by the planes $z=0$ and $z=x+2$. If $\vec{F}=\left(x^{2}+y e^{z}, y^{2}+z e^{x}, z+x e^{y}\right)$, use the divergence theorem to evaluate $\iint_{\partial D} F \cdot \mathbf{n} d \sigma$.

Section-II: Practice Problems

1. Consider the surface $z=x^{2}+y^{2}+1$.
(a) Show that $\gamma(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2}+1\right), r \geq 0,0 \leq \theta \leq 2 \pi$ is a parametrization of the surface.
(b) Parametrize the surface in the variables z and θ using cylindrical coordinates.
2. Let S be the part of sphere $x^{2}+y^{2}+z^{2}=4$ that lies inside the cone $z=\sqrt{x^{2}+y^{2}}$. Parametrize S by considering it as graph and again by using spherical coordinates.
3. Let S be the hemisphere $\left\{(x, y, z): x^{2}+y^{2}+z^{2}=4, z \geq 0\right\}$.
(a) Evaluate $\iint_{S} z^{2} d \sigma$ by considering S as a graph $z=f(x, y)$.
(b) Evaluate $\iint_{S} z d \sigma$ by considering S as a parametric surface (but not as a graph).
4. Let S be the part of the cylinder $y^{2}+z^{2}=1$ that lies between the planes $x=0$ and $x=3$ in the first octant. Evaluate $\iint_{S}(z+2 x y) d \sigma$
5. Let S denote the part of the plane $2 x+5 y+z=10$ that lies inside the cylinder $x^{2}+y^{2}=9$. Find the area of S.
(a) By considering S a part of the graph $z=f(x, y)$, where $f(x, y)=10-2 x-5 y$.
(b) By considering S as a parametric surface $\gamma(u, v)=(u \cos v, u \sin v, 10-u(2 \cos v+5 \sin v))$, where $0 \leq u \leq 2 \pi$.
6. Find the area of the surface $x=u v, y=u+v, z=u-v$ where $(u, v) \in D=\left\{(s, t) \in \mathbb{R}^{2}: s^{2}+t^{2} \leq 1\right\}$.
7. Let \vec{N} the unit outward normal vector on the ellipse $x^{2}+2 y^{2}=1$. Evaluate the line integral $\int_{C} \vec{N} \cdot \overrightarrow{d R}$ along the circle $C=\left\{(x, y): x^{2}+y^{2}=1\right\}$.
8. Use fundamental theorem of calculus for line integral to show that $\int_{C} y d x+(x+z) d y+$ $y d z$ is independent of any path C joining the points $(2,1,4)$ and $(8,3,-1)$.
9. Find the surface integral $\iint_{S} z d S$, where S it the part of the paraboloid $2 z=x^{2}+y^{2}$ which lies in the cylinder $x^{2}+y^{2}=1$.
10. Let C be the boundary of the cone $z=x^{2}+y^{2}$ and $0 \leq z \leq 1$. Use Stoke's theorem to evaluate the line integral $\int_{C} \vec{F} \cdot \overrightarrow{d g}$ where $\vec{F}=(y, x z, 1)$.
11. Let $\vec{F}=(x y, y z, z x)$ and S be the surface $z=4-x^{2}-y^{2}$ with $2 \leq z \leq 4$. Use divergence theorem to find the surface integral $\iint_{S} \vec{F} \cdot \vec{n} d S$.
