Indian Institute of Technology Guwahati
 MA 102 Mathematics-II
 Tutorial Sheet-4

Double, triple integrals and change of variables

Section-I: Tutorial Problems

1. Evaluate the following integrals.
(a) $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \sqrt{1-y^{2}} d y d x$
(b) $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} d y d x$
(c) $\int_{0}^{1} \int_{y}^{1} x^{2} \exp ^{x y} d x d y$
2. Evaluate $\iint_{R} x d x d y$ where R is the region $1 \leq x(1-y) \leq 2$ and $1 \leq x y \leq 2$.
3. Using double integral, find the area enclosed by the curve $r=\sin 3 \theta$ given in polar coordinates.
4. Compute $\lim _{a \rightarrow \infty_{D(a)}} \iint_{(a)} \exp ^{-\left(x^{2}+y^{2}\right)} d x d y$, where
(a) $D(a)=\left\{(x, y): x^{2}+y^{2} \leq a^{2}\right\}$ and
(b) $D(a)=\{(x, y): 0 \leq x \leq a, 0 \leq y \leq a\}$.

Hence prove that $\int_{0}^{\infty} \exp ^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$.
5. Evaluate the integral $\iint_{W} \frac{d z d y d x}{\sqrt{1+x^{2}+y^{2}+z^{2}}}$, where W is the ball $x^{2}+y^{2}+z^{2} \leq 1$.
6. Let D denote the solid bounded by the surfaces $y=x, y=x^{2}, z=x$ and $z=0$. Evaluate $\iiint_{D} y d x d y d z$.

Section-II: Practice Problems

1. Consider the transformation $T:[0,2 \pi] \times[0,1] \rightarrow \mathbb{R}^{2}$ given by $T(u, v)=(2 v \cos u, v \sin u)$.
(a) For a fixed $v_{o} \in[0,1]$, describe the set $\left\{T\left(u, v_{o}\right): u \in[0,2 \pi]\right\}$.
(b) Describe the set $\{T(u, v):[0,2 \pi] \times[0,1]\}$.
2. Let R be the region in \mathbb{R}^{2} bounded by the straight lines $y=x, y=3 x$ and $x+y=4$. Consider the transformation $T(u, v)=(u-v, u+v)$. Find the set S satisfying $T(S)=R$.
3. Evaluate the following iterated integrals by interchanging the order of integration.
(a) $\int_{0}^{1} \int_{x=y}^{1} \cos \left(x^{2}\right) d x d y$.
(b) $\int_{0}^{1} \int_{y=\sqrt{x}}^{1} e^{y^{3}} d y d x$.
(c) $\int_{0}^{1} \int_{y=x^{2}}^{1} x^{3} e^{y^{3}} d y d x$.
(d) $\int_{0}^{1} \int_{x=y}^{1} \frac{1}{1+x^{4}} d x d y$.
4. Let $R=[a, b] \times[c, d]$ and $f: R \rightarrow \mathbb{R}$ be defined by $f(x, y)=p(x) q(y)$, where $p:[a, b] \rightarrow \mathbb{R}$ and $q:[c, d] \rightarrow \mathbb{R}$ are continuous. Show that $\iint_{R} f(x, y) d x d y=\left(\int_{a}^{b} p(x) d x\right)\left(\int_{c}^{d} q(x) d x\right)$.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Show that $\int_{y=0}^{x} \int_{t=0}^{y} f(t) d t d y=\int_{t=0}^{x}(x-t) f(t) d t$.
6. Let R be the region lying below the curve $y=\cos x,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ and above the X-axis. Evaluate $\iint_{R} \sin x d x d y$.
7. Let R be the region in \mathbb{R}^{2} bounded by the curves $y=2 x^{2}$ and $y=1+x^{2}$. Evaluate the double integral $\iint_{R}\left(2 x^{2}+y\right) d x d y$.
8. Evaluate $\iint_{R} x \cos \left(y-\frac{y^{3}}{3}\right) d x d y$, where $R=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0\right\}$.
9. Evaluate the double integral $\iint_{D} \sqrt{x+y}(y-2 x)^{2} d y d x$ over the domain D bounded by the lines $x=0, y=0$ and $x+y=1$.
10. Find the volume of the solid enclosed by the surfaces $z=6-x^{2}-y^{2}, z=2 x^{2}+y^{2}-1, x=$ $-1, x=1, y=-1$ and $y=1$.
11. Let D be the solid bounded by the surfaces $y=x^{2}, y=3 x, z=0$ and $z=x^{2}+y^{2}$. Find the volume of the solid.
12. Let D be the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $y+z=1$ and $z=0$. Find the volume of the solid.
13. Using change of variables $u=x+y$ and $v=x-y$, show that

$$
\int_{0}^{1} \int_{y=0}^{y=x}(x-y) d y d x=\int_{0}^{1} \int_{u=v}^{2-v} \frac{v}{2} d u d v
$$

14. Evaluate
(a) $\int_{0}^{\frac{1}{\sqrt{2}}} \int_{x=y}^{\sqrt{1-y^{2}}}(x+y) d x d y$.
(b) $\int_{0}^{1} \int_{x=0}^{1-y} \sqrt{x+y}(y-2 x)^{2} d x d y$.
(c) $\int_{1}^{2} \int_{x=0}^{y} \frac{1}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} d x d y$.
(d) $\int_{0}^{2} \int_{y=0}^{\sqrt{2 x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$.
15. Find the volume of the solid in the first octant bounded below by the surface $z=\sqrt{x^{2}+y^{2}}$ above by $x^{2}+y^{2}+z^{2}=8$ as well as the planes $y=0$ and $y=x$.
16. Let D denote the solid bounded below by the plane $z+y=2$, above by the cylinder $z+y^{2}=4$ and on the sides $x=0$ and $x=2$. Evaluate $\iiint_{D} x d x d y d z$.
17. Let $D=\left\{(x, y, z) \in \mathbb{R}^{3}: \frac{x^{2}}{4}+\frac{y^{2}}{16}+\frac{z^{2}}{9} \leq 1\right\}$ and $E=\left\{(u, v, w) \in \mathbb{R}^{3}: u^{2}+v^{2}+w^{2} \leq 1\right\}$. Show that $\iiint_{D} d x d y d z=\iiint_{E} 24 d u d v d w$.
18. Let D be the solid that lies inside the cylinder $x^{2}+y^{2}=1$, below the cone $z=\sqrt{4\left(x^{2}+y^{2}\right)}$ and above the plane $z=0$. Evaluate $\iiint_{D} x^{2} d x d y d z$.
19. Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{x^{2}+y^{2}}^{4} x d z d y d x$.
20. Let D denote the solid bounded above by the plane $z=4$ and below by the cone $z=\sqrt{x^{2}+y^{2}}$. Evaluate $\iiint_{D} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z$.
21. Let D denote the solid enclosed by the spheres $x^{2}+y^{2}+(z-1)^{2}=1$ and $x^{2}+y^{2}+z^{2}=3$. Using the spherical coordinates, set up iterated integral that gives the volume of D.
