Indian Institute of Technology Guwahati

MA 102 Mathematics-II Tutorial Sheet-4

Double, triple integrals and change of variables

SECTION-I: TUTORIAL PROBLEMS

1. Evaluate the following integrals.

(a)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \sqrt{1-y^2} dy dx$$

(b)
$$\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} dy dx$$

(c)
$$\int_{0}^{1} \int_{y}^{1} x^{2} \exp^{xy} dx dy$$

- 2. Evaluate $\iint_R x dx dy$ where R is the region $1 \le x(1-y) \le 2$ and $1 \le xy \le 2$.
- 3. Using double integral, find the area enclosed by the curve $r = \sin 3\theta$ given in polar coordinates.
- 4. Compute $\lim_{a\to\infty} \iint_{D(a)} \exp^{-(x^2+y^2)} dxdy$, where

(a)
$$D(a) = \{(x,y) : x^2 + y^2 \le a^2\}$$
 and

(b)
$$D(a) = \{(x, y) : 0 \le x \le a, 0 \le y \le a\}.$$

Hence prove that $\int_{0}^{\infty} \exp^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

- 5. Evaluate the integral $\iiint\limits_{W} \frac{dzdydx}{\sqrt{1+x^2+y^2+z^2}}$, where W is the ball $x^2+y^2+z^2\leq 1$.
- 6. Let D denote the solid bounded by the surfaces $y=x,\ y=x^2,\ z=x$ and z=0. Evaluate $\iiint\limits_D y dx dy dz.$

SECTION-II: PRACTICE PROBLEMS

- 1. Consider the transformation $T:[0,2\pi]\times[0,1]\to\mathbb{R}^2$ given by $T(u,v)=(2v\cos u,v\sin u)$.
 - (a) For a fixed $v_o \in [0, 1]$, describe the set $\{T(u, v_o) : u \in [0, 2\pi]\}$.
 - (b) Describe the set $\{T(u,v): [0,2\pi] \times [0,1]\}$.
- 2. Let R be the region in \mathbb{R}^2 bounded by the straight lines y = x, y = 3x and x + y = 4. Consider the transformation T(u, v) = (u v, u + v). Find the set S satisfying T(S) = R.

1

- 3. Evaluate the following iterated integrals by interchanging the order of integration.
 - (a) $\int_{0}^{1} \int_{x=y}^{1} \cos(x^2) dx dy$.
 - (b) $\int_{0}^{1} \int_{y=\sqrt{x}}^{1} e^{y^3} dy dx.$
 - (c) $\int_{0}^{1} \int_{y=x^2}^{1} x^3 e^{y^3} dy dx$.
 - (d) $\int_{0}^{1} \int_{x=y}^{1} \frac{1}{1+x^4} dx dy$.
- 4. Let $R = [a, b] \times [c, d]$ and $f : R \to \mathbb{R}$ be defined by f(x, y) = p(x)q(y), where $p : [a, b] \to \mathbb{R}$ and $q : [c, d] \to \mathbb{R}$ are continuous. Show that $\iint_R f(x, y) dx dy = \left(\int_a^b p(x) dx\right) \left(\int_c^d q(x) dx\right)$.
- 5. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that $\int_{y=0}^{x} \int_{t=0}^{y} f(t)dtdy = \int_{t=0}^{x} (x-t)f(t)dt$.
- 6. Let R be the region lying below the curve $y = \cos x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$ and above the X-axis. Evaluate $\iint_R \sin x dx dy$.
- 7. Let R be the region in \mathbb{R}^2 bounded by the curves $y = 2x^2$ and $y = 1 + x^2$. Evaluate the double integral $\iint_{\mathbb{R}} (2x^2 + y) dx dy$.
- 8. Evaluate $\iint\limits_R x \cos\left(y \frac{y^3}{3}\right) dx dy$, where $R = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, \ x \ge 0, \ y \ge 0\}$.
- 9. Evaluate the double integral $\iint_D \sqrt{x+y} \ (y-2x)^2 dy dx$ over the domain D bounded by the lines $x=0,\ y=0$ and x+y=1.
- 10. Find the volume of the solid enclosed by the surfaces $z = 6 x^2 y^2$, $z = 2x^2 + y^2 1$, x = -1, x = 1, y = -1 and y = 1.
- 11. Let D be the solid bounded by the surfaces $y = x^2$, y = 3x, z = 0 and $z = x^2 + y^2$. Find the volume of the solid.
- 12. Let D be the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes y + z = 1 and z = 0. Find the volume of the solid.
- 13. Using change of variables u = x + y and v = x y, show that

$$\int_{0}^{1} \int_{y=0}^{y=x} (x-y) dy dx = \int_{0}^{1} \int_{u=v}^{2-v} \frac{v}{2} du dv.$$

2

14. Evaluate

(a)
$$\int_{0}^{\frac{1}{\sqrt{2}}} \int_{x=y}^{\sqrt{1-y^2}} (x+y) dx dy$$
.

(b)
$$\int_{0}^{1} \int_{x=0}^{1-y} \sqrt{x+y}(y-2x)^2 dx dy$$
.

(c)
$$\int_{1}^{2} \int_{x=0}^{y} \frac{1}{(x^2+y^2)^{\frac{3}{2}}} dx dy$$
.

(d)
$$\int_{0}^{2} \int_{y=0}^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} dy dx$$
.

- 15. Find the volume of the solid in the first octant bounded below by the surface $z = \sqrt{x^2 + y^2}$ above by $x^2 + y^2 + z^2 = 8$ as well as the planes y = 0 and y = x.
- 16. Let D denote the solid bounded below by the plane z + y = 2, above by the cylinder $z + y^2 = 4$ and on the sides x = 0 and x = 2. Evaluate $\iiint_D x dx dy dz$.
- 17. Let $D = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} \le 1\}$ and $E = \{(u, v, w) \in \mathbb{R}^3 : u^2 + v^2 + w^2 \le 1\}$. Show that $\iiint\limits_D dxdydz = \iiint\limits_E 24dudvdw$.
- 18. Let D be the solid that lies inside the cylinder $x^2 + y^2 = 1$, below the cone $z = \sqrt{4(x^2 + y^2)}$ and above the plane z = 0. Evaluate $\iiint_D x^2 dx dy dz$.
- 19. Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} x dz dy dx$.
- 20. Let D denote the solid bounded above by the plane z=4 and below by the cone $z=\sqrt{x^2+y^2}$. Evaluate $\iiint\limits_D \sqrt{x^2+y^2+z^2} dx dy dz$.
- 21. Let D denote the solid enclosed by the spheres $x^2 + y^2 + (z-1)^2 = 1$ and $x^2 + y^2 + z^2 = 3$. Using the spherical coordinates, set up iterated integral that gives the volume of D.