Indian Institute of Technology Guwahati
 MA 102 Mathematics-II
 Supplementary Tutorial Sheet

Differentiability

1. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a function. Then f is differentiable at $X_{0} \in \mathbb{R}^{n}$ if and only if each component function f_{i} is differentiable.
2. Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. Then show that $T^{\prime}\left(X_{0}\right)=[T]$, where $[T]$ is the matrix of the linear transformation T with respect to the standard basis.
3. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a differentiable function and let $T: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{k}$ be a linear transformation. Show that $(T \circ f)^{\prime}\left(X_{0}\right)=[T] f^{\prime}\left(X_{0}\right)$.
4. If $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a differentiable function, then show that f is continuous.
5. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a differentiable function and $k \in \mathbb{R}$. Suppose that $f(r X)=$ $r^{k} f(X)$ for all $r>0$ and $X \in \mathbb{R}^{n}$, then show that $f^{\prime}(X) X=k f(X)$.
6. Let D be a nonempty open subset of \mathbb{R}^{n} and $g: D \longrightarrow \mathbb{R}^{n}$ be a cotinuous function. If $f: D \longrightarrow \mathbb{R}$ is such that $f(X)-f\left(X_{0}\right)=g(X) \cdot\left(X-X_{0}\right)$ for all $X \in D$, then show that f is differentiable at X_{0}.
