Indian Institute of Technology Guwahati
 MA 102 Mathematics-II
 Tutorial Sheet-2

Directional Derivatives and Tangent Plane

Section-I: Tutorial Problems

1. Let $f(x, y)=\frac{1}{2}(| | x|-|y||-|x|-|y|)$. Is f continuous at $(0,0)$? Which directional derivatives of f exist at $(0,0)$? Is f differentiable at $(0,0)$?
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a map defined by $f(x, y)=\left\{\begin{array}{cl}(x+y) \log \left(x^{2}+y^{2}\right) & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$ Show that f is continuous at $(0,0)$. Find all possible directions \mathbf{v} in which the directional derivative $D_{\mathbf{v}} f(0,0)$ exist. Is f differentiable at $(0,0)$?
3. Find the point on the surface $f(x, y, z)=3 x^{2}-y^{2}-z=0$ at which the tangent plane is parallel to the plane $6 x+4 y-z=5$.
4. Find the equation of the surface generated by the normals to the surface $f(x, y, z)=x+2 y z+x y z^{2}=0$ at all points on the z-axis.

Section-II: Practice Problems

1. Find all $\mathbf{v} \in \mathbb{R}^{2}$ for which the directional derivative $f_{\mathbf{v}}^{\prime}(0,0)$ exists, where for all $(x, y) \in \mathbb{R}^{2}$,
(a) $f(x, y)=\sqrt{\left|x^{2}-y^{2}\right|}$.
(b) $f(x, y)=\left\{\begin{array}{cl}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$
(c) $f(x, y)= \begin{cases}\frac{x}{y} & \text { if } y \neq 0, \\ 0 & \text { if } y=0 .\end{cases}$
2. Let $f(x, y)=x^{2} e^{y}+\cos (x y)$. Find the directional derivative of f at $(1,2)$ in the direction of vector $(3,4)$.
3. The directional derivatives of a differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ at $(0,0)$ in the directions of $(1,2)$ and $(2,1)$ are 1 and 2 respectively. Find $f^{\prime}(0,0)$.
4. Let $u=(1,0,0), v=\frac{1}{\sqrt{2}}(1,1,0)$ and $w=\frac{1}{\sqrt{3}}(1,1,1)$. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be differentiable at $\mathbf{0}$. If $D_{u}(\mathbf{0})=1, D_{v}(\mathbf{0})=2$ and $D_{w}(\mathbf{0})=-1$. Then find $f^{\prime}(\mathbf{0})$.
5. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function given by

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Let $\mathbf{v}=\left(\frac{3}{5}, \frac{4}{5}\right)$. Find $D_{\mathbf{v}} f(0,0)$ of f and show that $D_{\mathbf{v}} f(0,0) \neq(\nabla f . \mathbf{v})(0,0)$.
(b) Show that the function f is not differentiable at $(0,0)$.
6. Let $f(x, y)=\sqrt{|x y|}$ for all $(x, y) \in \mathbb{R}^{2}$ and $(u, v) \in \mathbb{R}^{2}$ be a unit vector. Show that directional derivative of f at $(0,0)$ in the direction of (u, v) exists if and only if $(u, v)=(1,0)$ or $(0,1)$.
7. For $X \in \mathbb{R}^{3}$, define $f(X)=\|X\|$. Let $X_{o}=\left(x_{o}, y_{0}, z_{o}\right) \in \mathbb{R}^{3}$ and $\left\|X_{o}\right\|=1$,
(a) Show that $\nabla f\left(X_{o}\right)=X_{o}$.
(b) Find a unit normal to the sphere $f(x, y, z)=1$ at X_{o}.
(c) Find the equation of the tangent plane of the sphere $f(x, y, z)=1$ at X_{o}.
8. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be differentiable and $g(t)=(x(t), y(t), z(t)), t \in \mathbb{R}$, be a differentiable curve. Suppose that $f(g(t))$ attains its minimum at some point t_{o}. Show that $\nabla f\left(g\left(t_{o}\right)\right)$ is perpendicular to $g^{\prime}\left(t_{o}\right)$.
9. Let $f(x, y)=6-x^{2}-4 y^{2}$. Find a vector which is perpendicular to
(a) the curve $f(x, y)=1$ at the point $(1,1)$.
(b) the surface $z=f(x, y)$ at the point $(1,1,1)$.
10. Consider the cone $z^{2}=x^{2}+y^{2}$.
(a) Find the equation of the tangent plane to the cone at $(1,1, \sqrt{2})$.
(b) Find an equation for the normal line to the cone at this point.
11. Consider the surface $z=f(x, y)=x^{2}-2 x y+2 y$. Find a point on the surface at which the surface has a horizontal tangent plane.

