Indian Institute of Technology Guwahati
 MA 102 Mathematics-II
 Tutorial Sheet-1

Limit, Continuity and Differentiability

Section-I: Tutorial Problems

1. Identify the points, if any, where the following functions fail to be continuous:
(a) $f(x, y)= \begin{cases}x y, & \text { if } x y \geq 0 ; \\ -x y, & \text { if } x y<0 .\end{cases}$
(b) $f(x, y)= \begin{cases}x y, & \text { if } x y \text { is rational; } \\ -x y, & \text { if } x y \text { is irrational. }\end{cases}$
2. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y) 2}, & \text { if }(x, y) \neq(0,0) ; \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that the function satisfies the following:
(a) The iterated limits $\lim _{x \rightarrow 0}\left[\lim _{y \rightarrow 0} f(x, y)\right]$ and $\lim _{y \rightarrow 0}\left[\lim _{x \rightarrow 0} f(x, y)\right]$ exist and equals 0 ;
(b) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist;
(c) $f(x, y)$ is not continuous at $(0,0)$;
(d) the partial derivatives exist at $(0,0)$.
3. Let $f(x, y)=\left(x^{2}+y^{2}\right) \sin \frac{1}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and 0 , otherwise. Show that f is differentiable at every point of \mathbb{R}^{2} but the partial derivatives are not continuous at $(0,0)$.
4. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function with $f_{x}(x, y)=f_{y}(x, y)=0$ for all (x, y). Then show that $f(x, y)=c$, a constant.

Section-II: Practice Problems

1. Examine whether the following limits exist and find their values if they exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{4}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}-y^{3}}{x^{2}+y^{2}}$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2} y^{2}+\left(x^{2}-y^{2}\right)^{2}}$
(d) $\lim _{(x, y) \rightarrow(0,0)} \frac{|x|}{y^{2}} e^{-|x| / y^{2}}$
(e) $\lim _{(x, y) \rightarrow(0,0)} \frac{1-\cos \left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}$
(f) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt{x^{2} y^{2}+1}-1}{x^{2}+y^{2}}$
2. Examine the continuity of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ at $(0,0)$, where for all $(x, y) \in \mathbb{R}^{2}$,
(a) $f(x, y)= \begin{cases}1 & \text { if } x>0 \text { and } 0<y<x^{2}, \\ 0 & \text { otherwise } .\end{cases}$
(b) $f(x, y)=\left\{\begin{array}{cl}\frac{x^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$
3. Determine all the points of \mathbb{R}^{2} where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous, if for all $(x, y) \in \mathbb{R}^{2}$,
(a) $f(x, y)=\left\{\begin{array}{cl}\frac{x y}{x-y} & \text { if } x \neq y, \\ 0 & \text { if } x=y .\end{array}\right.$
(b) $f(x, y)=\left\{\begin{array}{cl}\frac{x y}{x^{2}-y^{2}} & \text { if } x^{2} \neq y^{2}, \\ 0 & \text { if } x^{2}=y^{2} .\end{array}\right.$
4. Let $f(x, y)=\frac{x^{m} y^{n}}{\left(x^{2}+y^{2}\right)^{p}}$; if $x^{2}+y^{2} \neq 0$ and $f(0,0)=0$. Find condition on (m, n, p) for which f is continuous at $(0,0)$. Further, find condition for the function f to be bounded on \mathbb{R}^{2}.
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that $f(X+Y)=f(X)+f(Y)$ and $f(\alpha X)=\alpha f(X)$, for all $X, Y \in \mathbb{R}^{2}$ and $\alpha \in \mathbb{R}$. Show that f is continuous on \mathbb{R}^{2}.
6. Examine the differentiability of f at $(0,0)$, where
(a) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $f(x, y)=\sqrt{|x y|}$ for all $(x, y) \in \mathbb{R}^{2}$.
(b) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $f(x, y)=||x|-|y||-|x|-|y|$ for all $(x, y) \in \mathbb{R}^{2}$.
(c) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $f(x, y)=\left\{\begin{array}{cl}\frac{y}{|y|} \sqrt{x^{2}+y^{2}} & \text { if } y \neq 0, \\ 0 & \text { if } y=0 .\end{array}\right.$
(d) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $f(x, y)=\left\{\begin{array}{cl}\frac{x^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$
(e) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $f(x, y)=\left\{\begin{array}{cl}\frac{\sin \left(x^{2} y^{2}\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$
(f) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by $f(x, y)=\left\{\begin{array}{cl}\left(\sin ^{2} x+x^{2} \sin \frac{1}{x}, y^{2}\right) & \text { if } x \neq 0, \\ \left(0, y^{2}\right) & \text { if } x=0 .\end{array}\right.$
7. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be map $f(x, y)=\left\{\begin{array}{cl}\sqrt{x^{2}+y^{2}} \sin \left(\frac{y^{2}}{x-y}\right) & \text { if } x \neq y, \\ 0 & \text { if } x=y .\end{array}\right.$ Show that f is continuous at $(0,0)$. Does f differentiable at $(0,0)$?
8. Determine all the points of \mathbb{R}^{2} where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable, if for all $(x, y) \in \mathbb{R}^{2}$,
(a) $f(x, y)=\left\{\begin{array}{cl}x^{2}+y^{2} & \text { if both } x, y \in \mathbb{Q}, \\ 0 & \text { otherwise. }\end{array}\right.$
(b) $f(x, y)=\left\{\begin{array}{cl}x^{4 / 3} \sin \left(\frac{y}{x}\right) & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$
9. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at \mathbf{x}_{0} and $f\left(\mathbf{x}_{0}\right)=0$. Suppose $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous at \mathbf{x}_{0}. Show that $f g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, defined by $(f g)(\mathbf{x})=f(\mathbf{x}) g(\mathbf{x})$ is differentiable at \mathbf{x}_{0}.
10. Let $\varphi, \psi: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. Show that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, defined by $f(x, y)=$ $\varphi(x)+\psi(y)$ for all $(x, y) \in \mathbb{R}^{2}$, is differentiable.
