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ABSTRACT

Harmonic functions constitute a central object of study in analysis, with

profound applications across mathematics and physics. The proposed project

aims to undertake a systematic investigation of the theory of harmonic func-

tions, emphasizing their structural and analytical properties. In particular,

attention will be devoted to the development of the associated notions of sub-

harmonic and superharmonic functions, which play a pivotal role in potential

theory and related areas.
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Chapter 1

Introduction

Harmonic functions are infinitely differentiable functions that satisfy the

Laplace equation, a fundamental partial differential equation in mathemat-

ics and physics. Such functions naturally arise in the study of boundary

value problems, most notably the Dirichlet problem. They possess several

remarkable properties, including the mean value property and the maximum

principle, which provide deep insights into their behavior within a region. In

this chapter, we present an overview of harmonic functions and discuss their

fundamental properties.

1.1 Harmonic Functions and Their Basic Prop-

erties

We begin by introducing the notion of harmonic functions.

Definition 1.1.1. Let G ⊂ C be an open set. A function u : G → R is
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said to be harmonic if u has continuous second-order partial derivatives and

satisfies
∂2u

∂x2
+
∂2u

∂y2
= 0.

This equation is called the Laplace equation.

Theorem 1.1.2. A function f defined on a region G ⊂ C is analytic if and

only if its real and imaginary parts,

f = u+ iv, u = Re(f), v = Im(f),

are harmonic functions on G that satisfy the Cauchy–Riemann equations.

Theorem 1.1.3. A region G ⊂ C is simply connected if and only if for every

harmonic function u on G, there exists a harmonic function v on G such that

f = u+ iv

is analytic on G.

Definition 1.1.4. If f : G→ C is analytic with f = u+ iv, then u = Re(f)

and v = Im(f) are called harmonic conjugates.

Remark 1.1.5. With this terminology, Theorem 1.1.3 can be restated as:

every harmonic function on a simply connected region has a harmonic con-

jugate.

More generally, if u is a harmonic function on G and D ⊂ G is a disk,

then there exists a harmonic function v on D such that u+ iv is analytic on

D. In other words, every harmonic function admits a harmonic conjugate

locally.
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Proposition 1.1.6. If u : G→ R is harmonic, then u is infinitely differen-

tiable on G.

Proof. Fix z0 = x0 + iy0 ∈ G, and choose δ > 0 such that B(z0; δ) ⊂ G.

Then u admits a harmonic conjugate v on B(z0; δ), so that f = u + iv is

analytic there. Since analytic functions are smooth (in fact, real-analytic),

it follows that u is infinitely differentiable on B(z0; δ). As z0 was arbitrary,

the claim holds on G.

Theorem 1.1.7 (Mean Value Theorem). Let u : G → R be a harmonic

function, and let B(a; r) ⊂ G. If γ denotes the circle |z − a| = r, then

u(a) =
1

2π

∫ 2π

0

u
(
a+ reiθ

)
dθ.

Proof. Let D be a disk with B(a; r) ⊂ D ⊂ G, and let f be an analytic

function on D such that u = Re(f).

By the Cauchy integral formula,

f(a) =
1

2πi

∫
γ

f(z)

z − a
dz

=
1

2πi

∫ 2π

0

f(a+ reiθ)

(a+ reiθ)− a
· ireiθ dθ

=
1

2π

∫ 2π

0

f(a+ reiθ) dθ.

Taking real parts gives the desired formula.

Definition 1.1.8. A continuous function u : G → R is said to have the
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Mean Value Property (MVP) if for every closed disk B(a; r) ⊂ G,

u(a) =
1

2π

∫ 2π

0

u
(
a+ reiθ

)
dθ.

Maximum principle 1.1.9. (First Version). Let G be a region, and

suppose that u is a continuous real-valued function on G with the Mean

Value Property (MVP). If there exists a point a ∈ G such that u(a) ≥

u(z) for all z ∈ G, then u is a constant function.

Proof. Let the set A is defined by

A = {z ∈ G : u(z) = u(a)}.

Since u is continuous the set A is closed in G. Let z0 ∈ A and r be chosen

such that B(z0; r) ⊂ G. Again choose 0 < ρ < r, Then by MVP

u(z0) =
1

2π

∫ 2π

0

u(z0 + ρeiθ) dθ ⇒ 1

2π

∫ 2π

0

{u(z0)− u(z0 + ρeiθ)} dθ = 0

Since u(z0)− u(z0 + ρeiθ) ≥ 0 and u is continuous we have

u(z0) = u(z0 + ρeiθ) ∀θ ∈ [0, 2π]

But ρ is arbitrary in (0, r). So B(z0; r) ⊂ A and A is also open. By the

connectedness of G, A = G.

Maximum principle 1.1.10. (Second Version). Let G be a region and

let u and v be two continuous real valued function on G that have the MVP.
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If for each point a in the extended boundary ∂∞G,

lim
z→a

supu(z) ≤ lim
z→a

inf u(z)

then either u(z) < v(z) for all z ∈ G or u = v.

Proof. Fix a in ∂∞G and for each δ > 0 let Gδ = G∩B(a; δ). Then according

to the hypothesis,

0 ≥ lim
δ→0

[sup{u(z) : z ∈ Gδ} − inf{v(z) : z ∈ Gδ}]

= lim
δ→0

[sup{u(z) : z ∈ Gδ}+ sup{−v(z) : z ∈ Gδ}]

≥ lim
δ→0

sup{u(z)− v(z) : z ∈ Gδ}.

So lim sup[u(z)− v(z)] ≤ 0 for each a ∈ ∂∞G. So it is sufficient to prove

the theorem under the assumption that v(z) = 0 for all z ∈ G. That is,

assume

lim sup
z→a

u(z) ≤ 0 (1.1.1)

for all a ∈ ∂∞G and show that either u(z) < 0 for all z ∈ G or u ≡ 0. In

virtue of the first version of the Maximum Principle, it suffices to show that

u(z) ≤ 0 for all z ∈ G.

Suppose that u satisfies 1.1.1 and there is a point b ∈ G with u(b) > 0.

Let ϵ > 0 be chosen so that u(b) > ϵ and let B = {z ∈ G : u(z) ≥ ϵ}. If

a ∈ ∂∞G then 1.1.1 implies there is a δ = δ(a) such that u(z) < ϵ for all

z ∈ G ∩ B(a; δ). Using the Lebesgue Covering Lemma, a δ can be found

which is independent of a. That is, there is a δ > 0 such that if z ∈ G and
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d(z, ∂∞G) < δ then u(z) < ϵ. Thus,

B ⊂ {z ∈ G : d(z, ∂∞G) ≥ δ}.

This gives that B is bounded in the plane; since B is clearly closed, it is

compact. So if B ̸= ∅, there is a point z0 ∈ B such that u(z0) ≥ u(z) for all

z ∈ B. Since u(z) < ϵ for z ∈ G− B, this gives that u assumes a maximum

value at a point in G. So u must be constant. But this constant must be

u(z0) which is positive and this contradicts 1.1.1.

Corollary 1.1.11. Let G be a bounded region and suppose that w : G− → R

is a continuous function that satisfies the MVP on G. If w(z) = 0 for all

z ∈ ∂G, then w(z) = 0 for all z ∈ G.

Proof. First we take w = u and v = 0 in Theorem 1.1.10 so w(z) < 0 for all

z or w(z) ≡ 0. Now take w = v and u = 0 in 1.1.10; So either w(z) > 0 for

all z or w(z) ≡ 0. Since both of these hold, w ≡ 0.

Remark 1.1.12. Even though Theorem 1.1.9 is called the Maximum Principle,

it is also a Minimum Principle For the sake of completeness, a Minimum

Principle corresponding to Theorem 1.1.9 is stated below. It can be proved

by considering the function −u and appealing to 1.1.9.

Minimum principle 1.1.13. Let G be a region, and suppose that u is a

continuous real-valued function on G with the Mean Value Property (MVP).

If there exists a point a ∈ G such that u(a) ≥ u(z) for all z ∈ G, then u is

a constant function.
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1.2 Harmonic Functions on a Disk

The Poisson kernel plays a fundamental role in the study of harmonic

functions. In this section, we study the Poisson kernel and the behavior of

harmonic functions on the open unit disk

D = {z : |z| < 1},

and subsequently extend these results to arbitrary disks. We also introduce

a framework for convergence of continuous and harmonic functions.

1.2.1 The Poisson Kernel

Definition 1.2.1. The function

Pr(θ) =
∞∑

n=−∞

r|n|einθ, 0 ≤ r ≤ 1, −∞ < θ <∞,

is called the Poisson kernel.

Let z = reiθ with 0 ≤ r < 1. Then

1 + reiθ

1− reiθ
= (1 + z)(1 + z + z2 + · · · )

= 1 + 2
∞∑
n=1

zn

= 1 + 2
∞∑
n=1

rneinθ.
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Hence,

Re

(
1 + reiθ

1− reiθ

)
= Pr(θ).

Equivalently, we can write

Pr(θ) =
1− r2

1− 2r cos θ + r2
. (1.2.1)

Proposition 1.2.2. The Poisson kernel satisfies:

(a) 1
2π

∫ π

−π
Pr(θ) dθ = 1;

(b) Pr(θ) > 0 for all θ, Pr(−θ) = Pr(θ), and Pr is 2π-periodic;

(c) If 0 < δ < |θ| ≤ π, then Pr(θ) < Pr(δ);

(d) For each δ > 0, limr→1− Pr(θ) = 0 uniformly for δ ≤ |θ| ≤ π.

1.2.2 The Dirichlet Problem on the Unit Disk

Theorem 1.2.3. Let D = {z : |z| < 1} and let f : ∂D → R be continuous.

Then there exists a unique continuous function u : D → R such that

(a) u|∂D = f ,

(b) u is harmonic in D,

given by

u(reiθ) =
1

2π

∫ π

−π

Pr(θ − t)f(eit) dt, 0 ≤ r < 1.

Corollary 1.2.4. If u : D → R is continuous and harmonic in D, then

u(reiθ) =
1

2π

∫ π

−π

Pr(θ − t)u(eit) dt,
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and u = Re(f) where

f(z) =
1

2π

∫ π

−π

eit + z

eit − z
u(eit) dt.

Corollary 1.2.5. Let B(a; ρ) = {z : |z − a| < ρ} and h be continuous on

∂B(a; ρ). Then there exists a unique continuous w : B(a; ρ) → R harmonic

in B(a; ρ) with w|∂B(a;ρ) = h.

1.2.3 Poisson Kernel for an Arbitrary Disk

For a disk of radius R > 0, the Poisson kernel is obtained by scaling:

PR(r, θ) =
R2 − r2

R2 − 2rR cos θ + r2
, 0 ≤ r < R. (1.2.2)

Then for u continuous on B(a;R) and harmonic in B(a;R):

u(a+ reiθ) =
1

2π

∫ π

−π

PR(r, θ − t)u(a+Reit) dt.

Theorem 1.2.6 (Harnack’s Inequality). Let u ≥ 0 be continuous on B(a;R)

and harmonic in B(a;R). Then for 0 ≤ r < R,

R− r

R + r
u(a) ≤ u(a+ reiθ) ≤ R + r

R− r
u(a), ∀θ.

1.2.4 The Space of Continuous Functions

Definition 1.2.7. Let G ⊂ C be open. Denote by C(G,R) the set of all

continuous functions f : G→ R.
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Definition 1.2.8. Define a metric ρ on C(G,R) by

ρ(f, g) =
∞∑
n=1

1

2n
· ρn(f, g)

1 + ρn(f, g)
,

where

ρn(f, g) = sup{|f(z)− g(z)| : z ∈ Kn},

and {Kn} is a sequence of compact subsets of G satisfying:

(a) Kn ⊂ int(Kn+1),

(b) Every compact K ⊂ G is contained in some Kn,

(c) Every component of C∞ \Kn contains a component of C∞ \G.

Proposition 1.2.9. A sequence {fn} in C(G,R, ρ) converges to f if and

only if {fn} converges to f uniformly on every compact subset of G.

Proposition 1.2.10. The space C(G,R) equipped with the metric ρ is com-

plete.

Proposition 1.2.11. Let {un} be a sequence of harmonic functions on a

region G ⊂ C, i.e., un ∈ Har(G) for all n. If un → u uniformly on every

compact subset of G, then the limit function u satisfies the Mean Value

Property.

Definition 1.2.12. Let G ⊂ C be an open set. Denote by Har(G) the space

of harmonic functions on G. Since Har(G) ⊂ C(G,R), it is equipped with

the metric inherited from C(G,R).
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1.3 Harnack’s Theorem

We are now ready to state an important result regarding harmonic functions.

Theorem 1.3.1 (Harnack’s Theorem). Let G be a region.

(a) The metric space Har(G) is complete.

(b) If {un} is a sequence in Har(G) such that u1 ≤ u2 ≤ · · ·, then either

un(z) → ∞ uniformly on compact subsets of G, or {un} converges in

Har(G) to a harmonic function.

Proof. (a) To show completeness, it suffices to prove that Har(G) is a closed

subspace of C(G,R). Let {un} ⊂ Har(G) and un → u in C(G,R). By

Lemma IV.2.7, u satisfies the Mean Value Property, and hence, by Theorem

2.11, u is harmonic.

(b) Assume u1 ≥ 0 (otherwise consider {un − u1}). Define

u(z) = sup
n≥1

un(z), z ∈ G.

Set

A = {z ∈ G : u(z) = ∞}, B = {z ∈ G : u(z) <∞}.

Then G = A ∪B and A ∩B = ∅. We show both A and B are open.

Let a ∈ G and choose R > 0 such that B(a;R) ⊂ G. By Harnack’s

inequality:

R− |z − a|
R + |z − a|

un(a) ≤ un(z) ≤
R + |z − a|
R− |z − a|

un(a), z ∈ B(a;R), n ≥ 1.
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If a ∈ A, then un(a) → ∞, and the left-hand inequality shows un(z) → ∞

in B(a;R), so A is open. Similarly, B is open.

Since G is connected, either A = G or B = G. If A = G, Harnack’s

inequality implies un → ∞ uniformly on compact subsets. If B = G, a

similar argument using Harnack’s inequality shows {un} is Cauchy uniformly

on compact subsets, hence convergent to a harmonic function by part (a).

1.4 Subharmonic and Superharmonic Func-

tions

Definition 1.4.1. Let G be a region and φ : G→ R continuous. Then φ is

subharmonic if, for every closed disk B(a; r) ⊂ G,

φ(a) ≤ 1

2π

∫ 2π

0

φ(a+ reiθ) dθ.

Definition 1.4.2. Let G be a region and φ : G→ R continuous. Then φ is

superharmonic if, for every closed disk B(a; r) ⊂ G,

φ(a) ≥ 1

2π

∫ 2π

0

φ(a+ reiθ) dθ.

Remark 1.4.3. � φ is superharmonic iff −φ is subharmonic.

� Every harmonic function is both subharmonic and superharmonic.

� u is harmonic iff it is both subharmonic and superharmonic.

� Nonnegative linear combinations of subharmonic functions are subhar-
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monic.

Theorem 1.4.4 (Maximum Principle for Subharmonic Functions). Let G be

a region and φ : G→ R subharmonic. If φ attains a maximum in G, then φ

is constant.

Theorem 1.4.5 (Comparison Principle). Let φ be subharmonic and ψ su-

perharmonic on G. If

lim sup
z→a

φ(z) ≤ lim inf
z→a

ψ(z), a ∈ ∂∞G,

then either φ < ψ in G, or φ = ψ and is harmonic.

Theorem 1.4.6. A continuous function φ : G → R is subharmonic iff for

every subregion G1 ⊂ G and every harmonic function u1 on G1, the function

φ− u1 satisfies the Maximum Principle on G1.

Corollary 1.4.7. The maximum of finitely many subharmonic functions is

subharmonic.

Corollary 1.4.8. If φ is subharmonic on G and B(a; r) ⊂ G, the function

φ′ defined by

φ′(z) =

φ(z), z ∈ G−B(a; r),

harmonic extension of φ in B(a; r), z ∈ B(a; r)

is subharmonic.
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1.4.1 Perron Function

Definition 1.4.9. Let G be a region and f : ∂∞G → R continuous. The

Perron family P(f,G) consists of all subharmonic functions φ : G→ R such

that

lim sup
z→a

φ(z) ≤ f(a), a ∈ ∂∞G.

Definition 1.4.10. The Perron function associated with f is

u(z) = sup{φ(z) : φ ∈ P(f,G)}, z ∈ G.

Theorem 1.4.11. Let G be a region and f : ∂∞G → R continuous. Then

the Perron function u is harmonic on G.

Proof. Let G ⊂ C be a region and let f : ∂∞G → R be bounded. Consider

the Perron family

P(f,G) = {φ : G→ R | φ is subharmonic in G, lim sup
z→a

φ(z) ≤ f(a) for all a ∈ ∂∞G},

and define the Perron function

u(z) = sup{φ(z) : φ ∈ P(f,G)}, z ∈ G.

For each z ∈ G, we can choose a sequence {φn} ⊂ P(f,G) such that

φn(z) ↗ u(z) as n→ ∞. Define

Φn(z) := max{φ1(z), . . . , φn(z)}.

Since the maximum of finitely many subharmonic functions is subharmonic,
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each Φn ∈ P(f,G), and Φn ↗ u pointwise.

Fix any point z0 ∈ G and choose a closed disk B(z0; r) ⊂ G. Let Φ′
n

denote the harmonic function in B(z0; r) which agrees with Φn on ∂B(z0; r).

By the Maximum Principle, Φn(z) ≤ Φ′
n(z) for all z ∈ B(z0; r). The sequence

{Φ′
n} is monotone increasing and bounded above, so by Harnack’s theorem,

{Φ′
n} converges uniformly on compact subsets of B(z0; r) to a harmonic func-

tion v in B(z0; r):

v(z) := lim
n→∞

Φ′
n(z), z ∈ B(z0; r).

Since Φn ≤ Φ′
n and Φn ↗ u, we have u(z) ≤ v(z) in B(z0; r). Conversely,

for any φ ∈ P(f,G), φ ≤ Φ′
n for sufficiently large n, which implies u(z) ≥

v(z). Therefore, u(z) = v(z) for all z ∈ B(z0; r).

Because z0 ∈ G was arbitrary, u coincides locally with a harmonic func-

tion in a neighborhood of every point in G, so u is harmonic on all of G.

Moreover, the uniform convergence of Φ′
n on compact subsets implies that u

is continuous in G.

Hence, the Perron function u is harmonic in G, completing the proof.

x
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