DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA731: Linear Algebra and Functional Analysis
Quiz II
Instructors: B. Bhattacharjya \& R. Srivastava
April 2, 2013
Time: 01:30 hours

1. Let $T:\left(C^{1}[0,1],\|.\|_{\infty}\right) \rightarrow\left(C[0,1],\|.\|_{\infty}\right)$ be a linear transformation defined by $T f(s)=f^{\prime}(s)$. Show that T is not continuous.

1 Mark
2. Let M be a closed subspace of a normed linear space X. Show that the projection map $\pi: X \rightarrow X / M$ defined by $\pi(x)=x+M$ is an open map by showing that $\pi(B(0,1))$ is an open subset of X / M.

1 Mark
3. Let X and Y be two Banach spaces and let $T: X \rightarrow Y$ be a linear map. Define the linear map $T^{*}: Y^{*} \rightarrow X^{*}$ by $T^{*}(f)=f \circ T$, for all $f \in Y^{*}$. Show that T is continuous. (Hint: Use closed graph theorem.)

2 Marks
4. Let $1 \leq p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. For $f \in L^{p}(\mathbb{R})$, prove that

$$
\|f\|_{p}=\sup \left\{\left|\int_{\mathbb{R}} f(x) g(x) d x\right|: g \in L^{q}(\mathbb{R}) \text { and }\|g\|_{q}=1\right\}
$$

2 Marks
5. Let $c_{o}=\left\{x=\left(x_{1}, x_{2}, \ldots\right): x_{j} \in \mathbb{C}\right.$ and $\left.\lim _{j \rightarrow \infty} x_{j}=0\right\}$. Define a family of linear maps $f_{n}: c_{o} \rightarrow \mathbb{C}$ by

$$
f_{n}(x)=\frac{1}{n} \sum_{j=1}^{n} x_{j} .
$$

Show that $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ and $\left\|f_{n}\right\|=1$.
2 Marks
6. Let $\left\{e_{1}, e_{2} \ldots, e_{n}\right\}$ be a linearly independent set in an infinite dimentional normed linear space X. For $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$, prove that there exists $f \in X^{*}$ such that $f\left(e_{j}\right)=a_{j}$ for $j=1,2, \ldots, n$. (Hint: Use Hahn-Banach theorem.)

2 Marks

