Quiz-1, Even Semester, 2014-15

Time: 50 Minutes	MA 102 Mathematics-II	Marks: 10
1. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be the f	function defined by $f(x,y) = \begin{cases} \frac{x}{y} - \frac{y}{x} \\ 0 \end{cases}$	if $xy \neq 0$; otherwise.
(a) Prove or disprove: f	is continuous at $(0,0)$.	[1]
(b) Find all possible dire	ections along which directional derivativ	ves of f at $(0,0)$ exist. [1]
2. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be the fu (Here, log is the natural log	unction defined by $f(x, y) = \begin{cases} xy \log(x^2) \\ 0 \end{cases}$ garithm to the base <i>e</i> .)	$(+y^2)$ if $x^2 + y^2 \neq 0$; otherwise.
(a) Show that $f_x(0,0) =$	$f_y(0,0) = 0.$	[1]
(b) Check the differentiability of f at $(0,0)$.		
(c) Prove that $(0,0)$ is a saddle point of f .		[1]
(Hint: It is recommer	nded to avoid second derivative test for Par	$\operatorname{rt}(c))$
3. Consider the surface $z = 3x^2 - y^2$. Write the equation of the tangent plane, if exists, to the surface at $(0, 0, 0)$. (Do not write your calculations here.)		gent plane, if exists, to [1]
4. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a function. Suppose $f \circ g$ is differentiable at $t = 0$ for all functions $g : \mathbb{R} \longrightarrow \mathbb{R}^2$ with $g(0) = (0, 0)$. Show that directional derivatives of f at $(0, 0)$ exist in all directions.		

5. Let D be a closed subset of \mathbb{R}^2 . Show that the complement of D in \mathbb{R}^2 , i.e. $\mathbb{R}^2 \setminus D$, is [2]an open subset of \mathbb{R}^2 .