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1. The Real Numbers

1.1. Preliminary. Let Q be the set of rationals:

Q =

{
p

q
: p, q ∈ Z, gcd(p, q) = 1

}
where Z is the set of integers.

There are numbers other than rationals.
Consider (p/q)2 = 2, with gcd(p, q) = 1.

p2 = 2q2 =⇒ p = 2m for some m ∈ Z
=⇒ 2m2 = q2 =⇒ q = 2n =⇒ (p, q) ≥ 2

which is a contradiction. Thus,
√
2 is not a rational number.

Such numbers are called irrational. We denote:
Qc = R \Q

as the set of irrationals.

Remark 1.1. The set of rationals is not complete in the following sense.

1.2. Bounds.

Definition 1.2. Let A ⊂ R. A number x0 ∈ R is called an upper bound for A if a ≤ x0
for all a ∈ A. Similarly, y0 is called a lower bound for A if a ≥ y0 for all a ∈ A.

Definition 1.3. An upper bound x0 of A is called the least upper bound (l.u.b.) or
supremum (supA) of A if for any upper bound x of A, implies x0 ≤ x. Similarly, the
greatest lower bound (g.l.b.) or infimum (inf A) is defined.

Example 1.4.

A =

{
1− 1

n
: n ∈ N

}
Show that inf A = 0 and supA = 1.

Remark 1.5. Every non-empty subset of R having an upper bound has a l.u.b. (sup),
and every non-empty subset of R having a lower bound has a g.l.b. (inf).

1.3. Completeness Property of R. This is known as completeness property of R.
(For a proof, see Chapter 1, Rudin Principles of Mathematical Analysis.)

Example 1.6.

• If A(̸= ∅) ⊆ R is not bounded above, we write supA = +∞.
• If B(̸= ∅) ⊆ R is not bounded below, we write inf B = −∞.
• If A = ∅, then we write inf A = +∞ and supA = −∞.

(Hints: {a} ⊂ {a, b} =⇒ inf {a} =a ≥ inf {a, b}
∴ ϕ ⊂ {a} =⇒ inf ϕ ≥ a for all a ∈ R)
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Properties 1.7.

• If A ⊆ B ⊆ R, then inf A ≥ inf B and supA ≤ supB.
• Therefore, ∅ ⊂ Q ⊂ R =⇒ inf Q ≥ q, ∀q ∈ R.

1.4. Archimedean Property. Let x > 0 and y be any real number. Then there exists
a positive integer n such that nx > y.

(Implies any two real numbers can be compared.)

Proof. If there does not exist n ∈ N such that nx > y, then nx ≤ y for all n ∈ N. Thus,
y is an upper bound of the set {nx : n ∈ N}.

By completeness property of R, there exists l ∈ R such that
l = sup{nx : n ∈ N}

Note that x ≤ l.
Since l is the least upper bound, there exists n ∈ N such that l − x < nx < l.

This implies l < (n+ 1)x, which contradicts the fact that l is a supremum. □

Exercise 1.8. Let
A = {r ∈ Q : r2 < 2, r > 0}

Show that supA =
√
2 (which is not in Q).

Example 1.9. If x, y ∈ R, then x < y or x > y
If y−x > 0, by comparing y−x with 1 (using Archimedean property), we get n(y−x) > 1
=⇒ there exist integer m such that ny > m > nx
=⇒ x < m

n
< y

That is, between any two real numbers, there is a rational.
Similarly,

x√
2
<
m

n
<

y√
2

=⇒ x <
m

n

√
2 < y

i.e., between any two real numbers, there is an irrational.

Example 1.10. Find inf and sup of
{

m
m+n

: m,n ∈ N
}
.

Solution: Let A =
{

m
m+n

: m,n ∈ N
}
.

Clearly,{
1

1+n
: n ∈ N

}
⊂ A and 1

1+n
approaches to 0 for large n.

So, if α = inf A > 0, then by Archimedean Property, there exists n ∈ N such that
(n+ 1)α > 1 =⇒ α > 1

n+1
, which contradicts that α is inf A.

If β = supA < 1, then (m+1)(1− β) > 1 (by Archimedean Property), =⇒ β < m
m+1

,
which is a contradiction.

Example 1.11. If α = inf A and β = supA. Then for ϵ > 0, there exists x0, y0 ∈ A such
that x0 < α+ ϵ and y0 > β − ϵ.

Proof. Suppose for a given ϵ > 0, there does not exist x ∈ A such that x < α + ϵ. Then
x ≥ α+ ϵ for all x ∈ A
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=⇒ x ≥ α+ ϵ > α =⇒ α+ ϵ is a lower bound, which contradicts the fact that α is the
greatest lower bound.
Similar argument for β works. □

1.5. Sequence.

Definition 1.12. A function f : N → R (or C) is called a sequence, and we write
{f(1), f(2), . . . , f(n), . . .} or {fn}.

Definition 1.13. A sequence {an} ⊆ R is said to be convergent to l if for any ϵ > 0,
there exists n0 ∈ N such that

n ≥ n0 =⇒ |an − l| < ϵ
or an ∈ (l − ϵ, l + ϵ), for all n ≥ n0.

Example 1.14. an = 1
n
→ 0. For this, let ϵ > 0,

1

n
< ϵ =⇒ n >

1

ϵ
>

[
1

ϵ

]
Therefore, for all n >

[
1
ϵ

]
+ 1 = n0, |an − 0| < ϵ.

Theorem 1.15. Every convergent sequence is bounded.

Proof. Let an → a. Then for ϵ = 1 > 0, there exists n0 ∈ N such that |an − a| < 1 =⇒
an ∈ (a− 1, a+ 1) for all n ≥ n0.
Let m = inf[(a− 1, a+1)∪{a1, . . . , an0−1}] and M = sup[(a− 1, a+1)∪{a1, . . . , an0−1}].
Then m ≤ an ≤M , for all n ∈ N. □

Theorem 1.16. If an is increasing and bounded above, then an is convergent and lim an =
supn≥1 an.

Proof. Let α = sup an. Then for ϵ > 0, there exists an0 such that an0 > α − ϵ. =⇒
α + ϵ > an ≥ an0 ≥ α− ϵ, for all n ≥ n0. Thus, an → α = sup an.

Similarly, if an is decreasing and bounded below, then an is convergent and lim an =
inf an. □

1.6. Nested Interval Theorem. Statement: If In ⊃ In+1 ⊃ · · · and lim(ℓ(In)) =
bn − an = 0, where In = [an, bn], then

⋂∞
n=1 In = {x}.

Proof. It is clear that, an is increasing and < b1, and bn is decresing and > a1. Hence,
{an} and {bn} are convergent. Let an → a and bn → b.

If b− a = lim(bn − an) = 0 =⇒ a = b.
Notice that an ≤ a and bn ≥ a =⇒ an ≤ a ≤ bn =⇒ a ∈

⋂
In.

If x ∈ ∩In, then an ≤ x ≤ bn =⇒ x = a. □

Definition 1.17. If {xn} is a sequence and n1 < n2 < · · · < nk < · · · , where nk ∈ N,
then {xnk

} is called a subsequence of sequence {xn}.

Example 1.18. { 1
k2
}, { 1

2k
} are subsequences of { 1

n
} with nk = k2, nk = 2k respectively.
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Bolzano-Weierstrass Theorem: Every bounded sequence in R has a convergent sub-
sequence.

Proof. Let {xn} be a bounded sequence in R. Then there exist a, b ∈ R such that xn ∈
[a, b], for all n ∈ N.

Divide [a, b] into two parts, say [a, b1] and [b1, b] and Suppose I1 = [a, b1] contains
infinitely many terms of {xn}. Further, choose xn1 ∈ I1. Further, divide I1 = I2 ∪ I ′2 and
suppose I2 contains infinitely many terms of {xn}. Choose xn2 ∈ I2 such that n1 < n2.

Then xnk
∈ Ik and Ik ⊃ Ik+1 ⊃ . . .

Then ℓ(Ik) → 0. By Nested Interval Theorem, ∩Ik = {x}.
Thus for each ϵ > 0, ∃k0 ∈ N such that for all k ≥ k0 =⇒ Ik ⊂ (x− ϵ, x+ ϵ) (How??)
i.e. xnk

∈ (x− ϵ, x+ ϵ) for all k ≥ k0 =⇒ xnk
→ x. □

Remark 1.19. Suppose (xn) ⊂ [a, b], let xnk
= infn≥kxn = inf{xk, xk+1, . . . }

Then xnk
↑ and < b =⇒ xnk

→ supk≥1(infn≥k xn)
i.e. limk→∞ xnk

= limk→∞(infn≥k xn) = limxn (say)
Similarly, ynk

= supn≥k xn = sup{xk, xk+1, . . . }
Then ynk

↓ and > a =⇒ ynk
→ infk≥1(supn≥k xn)

i.e. limk→∞ ynk
= limk→∞(supn≥k xn) = limxn (say)

Notice that subsequences (xnk
) and (ynk

) need not be subsequences of (xn).
Also, infn≥1 xn ≤ xnk

≤ ynk
≤ supn≥1 xn.

Thus, limit of sequence (xnk
) can be thought as lower limit of (xn) and similarly limit

of (ynk
) can be as upper limit of (xn).

Since both (xnk
) and (ynk

) are convergent, it follows that
lim xnk

≤ lim ynk

That is, limxn ≤ limxn

Example 1.20. xn = (−1)n, then limxn = −1 < 1 = limxn.

Exercise 1.21. If xn → x, then show that limxn ≥ limxn.
Thus, deduce that a bounded sequence (xn) is convergent iff limxn = limxn.

Example 1.22. If Xn = (xn, yn) ∈ R2 is a bounded sequence, then√
x2n + y2n ≤M,∀n ≥ 1

=⇒ |xn| ≤M and |yn| ≤M,∀n ≥ 1
By Bolzano-Weierstrass theorem, there exists (xnk

) such that xnk
→ x ∈ R.

Now, (ynk
) is also a bounded sequence, hence by Bolzano-Weierstrass theorem, there exists

ynkl
→ y. Thus, (xnkl

, ynkl
) → (x, y) ∈ R2

Remark 1.23. Similar arguments can be produced for sequences in Rn.
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2. Open Sets and Closed Sets

2.1. Open Sets.

Definition 2.1. A set A ⊆ R is said to be open if every point x ∈ A encloses an open
interval in Ix ⊂ O.
i.e., for each x ∈ O, ∃ ϵ > 0 such that (x− ϵ, x+ ϵ) ⊂ O.

Thus, a countable union of open intervals is an open set.
On the other hand, any open set in R can be written as a countable union of

disjoint open intervals.

Theorem 2.2. Let O be an open set in R, then there exists a disjoint family of countably
many open intervals In such that

O =
∞⊔
n=1

In

Proof. Since O is open, for x ∈ O, there exists an open interval (a, b) such that x ∈
(a, b) ⊂ O.
Now, we extract the largest open interval containing x and contained in O.

Let ax = inf{a : (a, x] ⊂ O},
and bx = sup{b : [x, b) ⊂ O}.

Then Ix = (ax, bx) will be the largest open interval containing x and contained in O.
Note that Ix = (ax, by) ⊂ O. For this, let ax < y < by, then ax < y − ϵ for small ϵ > 0

=⇒ ax + ϵ < y.
But by definition of infimum, ∃ a < ax + ϵ and (a, x] ⊂ O
=⇒ (ax + ϵ, x] ⊂ O.

Similarly, [x, bx − ϵ) ⊂ O
=⇒ (ax + ϵ, bx − ϵ) ⊂ O for small ϵ > 0
=⇒ (ax, bx) ⊂ O.

Now, if x, y ∈ O and x ̸= y then either Ix ∩ Iy = ∅ or Ix = Iy.
If Ix ∩ Iy ̸= ∅, then Ix ∪ Iy is an open interval containing x and y.
Therefore, by maximality of Ix for x and Iy for y, it follows that

Ix ∪ Iy ⊆ Ix =⇒ Iy ⊆ Ix
Since y ∈ Iy =⇒ Iy = Ix (∵ Iy is maximal)

Now, O =
⊔

x∈O Ix. Since Ix and Iy are disjoint (if x ̸= y), we can assign a distinct
rational to each of them. That is, choose rx ∈ Ix and ry ∈ Iy. Then rx ̸= ry

Thus,

{Ix : x ∈ O} 1−1−→ Q (set of rationals) via Ix 7→ rx
Hence,

(1) O =
∞⊔
i=1

Iri

The representation (1) is unique.
Let O =

⊔∞
n=1 In =

⊔∞
m=1 Jm.

Then In = In ∩O =
⊔∞

m=1(In ∩ Jm).
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Since {In ∩ Jm : m ∈ N} is a disjoint family and In is an open interval, In ⊂ In ∩ Jm0

for some m0.
But then In ⊂ Jm0 , and given In is maximal, =⇒ In = Jm0 .
Thus, the representation (1) is unique upto change in order of union. □

2.2. Closed Sets.

Definition 2.3. A set A ⊆ R is said to be closed if for each sequence (xn) ∈ F with
xn → x, implies x ∈ F .

Theorem 2.4. A set F ⊆ R is closed if and only if F c is open.

Proof. Let F be a closed set. Suppose F c is not open. Then for some x ∈ F c, ∄ϵ > 0 such
that (x− ϵ, x+ ϵ) ⊂ F c.

Take ϵ = 1
n
, then xn ∈ (x − 1

n
, x + 1

n
) and xn ∈ F . Thus, xn → x and F is closed,

implies x ∈ F , which is a contradiction.
Hence, F c is open.

Conversely, suppose F c is open. Let xn ∈ F and xn → x.
Claim: x ∈ F .

If x ̸∈ F , then x ∈ F c, which is open. Then ∃ r > 0 such that (x− r, x+ r) ⊂ F c.
Since xn → x, ∃n0 ∈ N such that n ≥ n0 =⇒ xn ∈ (x − r, x + r) ⊂ F c, which is

absurd. Thus x ∈ F . □

Notice that we can define open and closed sets in Rn in a similar way.

Example 2.5. The set A = {(x, y) : y = sin 1
x
, x ̸= 0} is neither open nor closed in R2

(in the usual metric).

Let xn = 1
nπ
, n ∈ N, then (xn, yn) = ( 1

nπ
, 0) ∈ A.

But lim(xn, yn) = (0, 0) ̸∈ A.
B 1

n
( 1
π
, 0) ̸⊂ A

2.3. Interior of a set. Let A ⊆ R, then there exists open set O ⊆ R such that A ⊂ O =⊔∞
n=1 In, In = (an, bn).
Let us collect all open intervals which are contained in A.
Interior of A (or A◦) = union of all open intervals contained in A

i.e., the interior of A is the largest open set A◦ contained in A.
(That is, O is open and O ⊂ A =⇒ O ⊆ A◦.)

Example 2.6.
N◦ = ∅, Q◦ = (R−Q)◦ = ∅

and

{(x, y) : y = sin
1

x
, x ̸= 0}◦ = ∅

2.4. Closure of a set. Let A ⊆ R and xn ∈ A such that xn → x.
Closure of A ( or A) is the collection of x which is the limit of a sequence in xn ∈ A.
That is, closure of a set A is the smallest set A that contains A.

That is, if B is closed and A ⊆ B =⇒ A ⊆ B.



REAL ANALYSIS 9

Example 2.7. Show that the closure of A = {(x, sin 1
x
) : x ̸= 0} is the set A ∪ ({0} ×

[−1, 1]).

Notice that A∪({0}×[−1, 1]) is a closed set containing A. Hence A ⊆ A∪({0}×[−1, 1]).
Here, ( 1

nπ
, 0) → (0, 0) and ( 1

±(2n+1)π
2
),±1) → (0,±1).

Hence, (0, 0), (0,±1) ∈ A.
Need is to show for y ∈ (−1, 1) \ {0}. Find a sequence (xn) ∈ R \ {0} such that

(xn, sin
1
xn
) → (0, y).

Or xn → 0 and sin 1
xn

→ y etc.

Definition 2.8. A closed and bounded subset of Rn is called compact in Rn.

Exercise 2.9. The set
{
(x, y) : y = sin 1

x
, x ̸= 0

}
is closed but not bounded.

Note that if K ⊆ R there exist an open set O ⊂ R exists such that

K ⊂ O =
∞⊔
n=1

In (open cover)

Using the Bolzano-Weierstrass theorem, it can be deduced that the set K ⊂ R is
compact if and only if every open cover of K reduces to finite sub-cover, i.e.,

K ⊂
l⊔

n=1

In

Similar arguments hold for K compact subset of Rn.

Example 2.10. A subset F ⊆ R is closed if and only if ∀ε > 0, (x − ε, x + ε) ∩ F ̸=
∅ =⇒ x ∈ F

Proof. Suppose F is closed and for all ε > 0 , (x − ε, x + ε) ∩ F ̸= ∅. Then for ε = 1
n
,

∃xn ∈ (x− 1
n
, x+ 1

n
) ∩ F .

=⇒ |xn − x| < 1

n
, for all n ∈ N =⇒ xn → x and F is closed =⇒ x ∈ F

Conversely, let ∀ε > 0, (x− ε, x+ ε) ∩ F ̸= ∅ =⇒ x ∈ F .
Claim: F is closed.

Let xn ∈ F and xn → x. Then for ε > 0, ∃n0 ∈ N,
n ≥ n0 =⇒ xn ∈ (x− ε, x+ ε) ∩ F ̸= ∅ =⇒ x ∈ F

□

2.5. Dense Set.

Definition 2.11. Let A ⊆ R and xn ∈ A such that xn → x. Then,
Ā = {x ∈ R : ∃xn ∈ A with xn → x}

If Ā = R, then A is called dense in R.
Example 2.12. Let x ∈ R, then

x = x0 +
x1
10

+ · · ·+ xn
10n

+ · · · where xi ∈ {0, 1, . . . , 9}(*)

Let Sn = x1 + · · ·+ xn
10n

∈ Q
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Then Sn → x, thus Q̄ = R.
Also, xn = x+ 1

(1+n3)
1
3
∈ R \Q (??) and xn → x. Thus R \Q = R.

Note that representation (∗) is not unique, e.g. 0.5 = 0.4999 . . .

Theorem 2.13. Let p ∈ Z, p ≥ 2 and 0 ≤ x ≤ 1.
Then ∃ a sequence of integers (an) such that 0 ≤ an ≤ p− 1 such that

x =
∞∑
n=1

an
pn

Proof. Choose a1 to be the largest integer such that
a1
p
< x (by Archimedean property)

Since 0 < x ≤ 1 =⇒ a1 < p. Given a1 is an integer, a1 ≤ p− 1. Also, a1 is the largest,
we must have

a1
p
< x ≤ a1 + 1

p
Next, choose a2 such that

a1
p

+
a2
p2

< x

=⇒ 0 ≤ a2 ≤ p− 1 and [
a2
p
< p− a1 < 1, since a1 is largest ]

a1
p

+
a2
p2

< x ≤ a1
p

+
a2 + 1

p2

By induction,
a1
p

+ · · ·+ an
pn

< x ≤ a1
p

+ · · ·+ an + 1

pn

=⇒ x =
∞∑
n=1

an
pn

(p-adic) decimal expansion

□

Exercise 2.14. Show that
{

k
2n

: k = 0, 1, 2, . . . , 2n;n = 1, 2, . . .
}
is dense in [0, 1].

(Hint: Use binary expansion)
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3. Cantor Set

The Cantor set is an uncountable set in [0, 1] having zero length with many peculiar
properties, answering some of the difficult questions related to topology of real line.

Let C0 = [0, 1].

0
1
3

2
3 1

Delete middle one-third open interval J1 =
(
1
3
, 2
3

)
from C0. Then

C1 = [0,
1

3
] ∪ [

2

3
, 1]

0
1
3

2
3 1

Delete one-third open interval from each section of C1, and let

J2 =

(
1

9
,
2

9

)
∪
(
7

9
,
8

9

)
Then,

C2 = [0,
1

9
] ∪ [

2

9
,
1

3
] ∪ [

2

3
,
7

9
] ∪ [

8

9
, 1]

Thus,

• C0 = [0, 1], one closed interval of length 1.
• C1 = [0, 1

3
] ⊔ [2

3
, 1], two closed disjoint intervals each of length 1

3
.

• C2 = [0, 1
9
] ⊔ [2

9
, 1
3
] ⊔ [2

3
, 7
9
] ⊔ [8

9
, 1], four closed disjoint intervals each of length 1

9
.

By induction, we can construct Cn with 2n disjoint closed intervals each of length 3−n.

3.1. Properties of the Cantor Set.

(1) Cn is a sequence of closed and bounded intervals, hence, by nested intervals theo-
rem, ⋂

Cn ̸= ∅
(Hint: use nested intervals theorem for each chain in the construction of Cn).

(2) Let C =
⋂∞

n=0Cn, then C contains all the end points of the deleted open intervals.

(3) C = [0, 1] \ J1 ⊔ J2 . . . ⊔ Jn . . . = [0, 1] \
⊔∞

n=1 Jn

(4) Since C ⊂ Cn, ∀n ≥ 0,

l(C) ≤ l(Cn) = 2n · 1

3n
→ 0

Thus, the total length C = 0. This shows that the set C is “small”. On the other
hand, we shall see that C is uncountable.

(5) The Cantor ternary set C (later we just say Cantor set) is nowhere dense.
i.e. (C̄)◦ = C◦ = ∅. If not, then for x ∈ C◦ =⇒ ∃ϵ > 0 such that (x− ϵ, x+ ϵ) ⊂
C◦ ⊂ C =⇒ l((x − ϵ, x + ϵ)) ≤ l(C) = 0 =⇒ 2ϵ ≤ 0, which is a contradiction.
Hence C is nowhere dense.

(6) C is totally disconnected (i.e. connected sets in C are singletons only).
(We shall prove it later!)
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(7) Every point of C is a limit point of C itself (i.e., C is a perfect set).
Let x ∈ C =

⋂
Cn =⇒ x ∈ Cn, ∀n ≥ 0. Then x must belong to one of the

closed intervals that constitute to Cn. That is, x ∈ [xn, yn] with yn − xn = 1
3n
.

=⇒ |xn − x| ≤ |yn − xn| =
1

3n
→ 0

Note that xn and yn are end points of the deleted open intervals Jn’s. Hence, xn, yn ∈ C.
Thus, if E denotes the set of all end points, then Ē = C. Since E is countable (being
subset of rationals), C is separable (we define later).

3.2. Representation of Cantor’s set. Consider the end pt 1
3
∈ C. We can write

1

3
=

0

3
+

2

3
+

2

32
+ · · · = (0.022 . . .)3

Similarly,
2

3
= (0.2)3

Inductively, it can be shown that any end point x ∈ E can be expressed as

x =
a1
3

+
a2
32

+ · · · , ai ∈ {0, 2}
Since each x ∈ [0, 1] has ternary representation, consider the set

F =

{
x ∈ [0, 1] : x =

∞∑
i=1

ai
3i
, ai ∈ {0, 1, 2}

}
If x ∈ F , then x is not an end point, and

x =
a1
3

+
a2
32

+ · · · , ai ∈ {0, 1, 2}
Notice that a1 = 1 iff x ∈

(
1
3
, 2
3

)
iff x /∈ C1.

Next, a1 ̸= 1, a2 = 1 iff x ∈
(
1
9
, 2
9

)
∪
(
7
9
, 8
9

)
iff x /∈ C2.

Thus, ai0 = 1 for some i0 iff x /∈ Ci0 .
Now, let x ∈ C = ∩Cn and x =

∑∞
i=1

ai
3i
. Suppose some of ai = 1, then x /∈ Ci =⇒

x /∈ C =⇒ all the ai ∈ {0, 2}.
That is,

(*) C ⊆

{
x ∈ [0, 1] : x =

∞∑
i=1

ai
3i
, ai ∈ {0, 2}

}
On the other hand, let x /∈ C, then x /∈ Ci0 for some i0. This completes ai0 = 1.

That means, x /∈ RHS of (*)
Thus,

C =

{
x ∈ [0, 1] : x =

∞∑
i=1

ai
3i
, ai = 0, 2

}
This implies Cantor set loses only one decimal index taken from {0, 1, 2}. Can it thought

some light about uncountability of Cantor set?
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3.3. Representation is Unique. For every x ∈ C, there exist unique sequence (an)
from {0, 2} such that

(1) x =
∞∑
i=1

ai
3i

Suppose

(2) x =
∞∑
i=1

bi
3i
, bi ∈ {0, 2}

Then claim ai = bi, ∀i.
If not, let i0 be the smallest integer such that ai0 ̸= bi0 . Then ai = bi for i = 1, 2, . . . , i0−

1.
Now, without loss of generality, we can take i0 = 1. That is, a1 ̸= b1 =⇒ a1 = 0 and

b1 = 2 (or otherwise).
From (1), x ∈ [0, 1

3
] and from (2), x ∈ [2

3
, 1], which is absurd.

Exercise 3.1. Conclude without assuming i0 = 1.

Cantor set is uncountable:
Define f : C → [0, 1] =

{
x =

∑∞
i=1

bi
2i
: bi ∈ {0, 1}

}
by

f(x) = f

(
∞∑
i=1

ai
3i

)
=

∞∑
i=1

ai
2

2i

then bi =
ai
2
∈ {0, 1} an df(x) ∈ [0, 1].

Since each x ∈ C has unique representation, the map f is well defined.
f is not one-one:

f

(
1

3

)
= f ((0.022 . . .)3) = (0.011 . . .)2 = (0.1)2 =

1

2
and

f

(
2

3

)
= f ((0.2)3) = (0.1)2 =

1

2

⇒ f

(
1

3

)
= f

(
2

3

)
Exercise 3.2. Show that f(x) = f(y) iff x, y are end points of one of the deleted open
interval.

f is an onto map:
Here f : C → [0, 1] and let y ∈ [0, 1] such that

f(x) = y =
∞∑
i=1

ai
1

2i

Let

x =
∑ 2ai

3i
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then f(x) = y holds.
Hence C is an uncountable set.

f is monotone increasing:
Let x, y ∈ C and x < y. Since ternary representation of C is unique, ∃ the least positive

integer n ∈ N such that an < bn. Hence ai = bi, i = 1, 2, . . . , n−1. Thus, while comparing
f(x) and f(y), we can ignore the first n − 1 terms. Therefore, WLOG, we can assume
n = 1.

That is, a1 < b1 =⇒ a1 = 0, b1 = 2.

∴ f(x) ≤ 0

2
+

1

22
+

1

23
+ · · · = 1

2
and

f(y) =
1

2
+

b2
2

22
+

b3
2

23
+ · · · ≥ 1

2
⇒ f(x) ≤ f(y)

Notice that f(1
3
) = f(2

3
) = 1

2
. Hence, we can extend f to [0, 1] by keeping it constant

on the deleted intervals.
Thus, f̃ : [0, 1] → [0, 1] is defined by

f̃ |C = f and f̃([0, 1] \ C) = {αi}
where αi is the common value of f at the end point of deleted interval.

Thus, f̃ : [0, 1] → [0, 1] is a monotone increasing onto function. Hence f̃ continuous
(Why?) (We will see later.)

Now, define g : [0, 1] → [0, 2] by

g(x) = f̃(x) + x
Then g is strictly monotone increasing and onto function.

If x < y then g(x) = f̃(x) + x ≤ f̃(y) + x < f̃(y) + y = g(y) =⇒ g(x) < g(y)
Hence,

g(0) = 0 and g(1) = 2
( ∵ g(1) = f(1) + 1 = f

(∑
2
3i

)
+ 1 = 2)

Since g is continuous on [0, 1], by Intermediate Value Theorem,
g([0, 1]) = [0, 2]

Exercise 3.3. Show that g−1 is monotone and continuous.
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4. Limit and Continuity

Let f be a real valued function, which is defined in an open neighbourhood (nbd) of a
point a, and may not be necessarily at a.

A number L is called left limit of f at a if for each ε > 0, ∃δ > 0 such that

for x ∈ (a− δ, a) =⇒ |f(x)− L| < ε
or simply, we write

L = lim
x→a−

f(x) = f(x−)

Similarly, right limit if for ε > 0, ∃δ > 0 such that
for x ∈ (a, a+ δ) =⇒ |f(x)−M | < ε

or
M = lim

x→a+
f(x) = f(x+)

Moreover, if f is defined in nbd of a and a, then f is said to be continuous at a if for
any ε > 0, there exist δ > 0 such that

x ∈ (a− δ, a+ δ) =⇒ |f(x)− f(a)| < ϵ
or f(x−) = f(x) = f(x+).

In case, when f(x−) and f(x+) exists and are unequal, we say f has jump discontinuity
at a.

4.1. Monotone Function. We shall see that a monotone function is continuous except
on a countable set and it is also known that such functions are very close to differentiable
function. We skip here the later one property.

Theorem 4.1. Let f : (a, b) → R be a monotone function, then for c ∈ (a, b), f(c+) and
f(c−) both exist.

Proof. Let f be an increasing function.

f(c−) = sup{f(x) : a < x < c} = L ≤ f(c)
f(c+) = inf{f(x) : c < x < b} =M ≥ f(c)

[*]
For ϵ > 0, there exists x0 ∈ (a, c) such that f(x0) > L − ϵ. Let δ = c − x0, then for

x ∈ (c− δ, c),
L+ ϵ > f(x) ≥ f(x0) > L− ϵ (since f is increasing)

i.e., for x ∈ (c− δ, c) =⇒ |f(x)− L| < ϵ. Hence,
f(c−) = sup{f(x) : a < x < c} = L

Similarly,
f(c+) = inf{f(x) : c < x < b} =M

Notice from [*] that if c, d ∈ (a, b) and c < d, then f(c+) ≤ f(d−).

Hence either (f(c−), f(c+)) and (f(d−), f(d+)) both coincide or disjoint.
Choose rational rc and rd from the above intervals. Then these intervals have one-one

correspondence with the set of rationals. Hence, the set of discontinuities of a monotone
function is atmost countable. □
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Example 4.2. If f : [a, b] → [c, d] is monotone and onto, then f is continuous.

Proof. Let f be an increasing function. Then f(a) = c and f(b) = d.
If f(a) > c, then for y ∈ [c, f(a)), there is no x ∈ [a, b] such that f(x) = y. If so, then

f(x) = y < f(a) =⇒ x < a (since f is increasing).

Further, if possible, let f(c−) < f(c).
Then y ∈ (f(c−), f(c)) has no pre-image.
On contrary, if there exist x0 ∈ (a, c) such that f(x0) = y. Then

L = sup{f(x) : a < x < c} = f(c−) < y = f(x0) < f(c)
which contradicts the fact that L is supremum on (a, c).

Thus, f(c−) = f(c) = f(c+). Hence, f is continuous. □

Example 4.3. If f : (a, b) → (c, d) is monotone and onto, then f is continuous.

(Proof is similar to the above case).
Observe that if f is monotone onto, then f need not be one-one.
(For example, Cantor function.)

f̃ : [0, 1] → [0, 1] is monotone and onto but not one-one.
However, if f : (a, b) → (c, d) is strictly monotone and onto, then

f−1 : (c, d) → (a, b)
is continuous, because, in this case, f−1 is also strictly monotone.

For this, if f is increasing function, then for y1 < y2
=⇒ f−1(y1) < f−1(y2).

If not, then for y1 = f(x1) and y2 = f(x2), it follows that x1 ≥ x2 (since f−1(y1) ≥
f−1(y2)), but then f(x1) = y1 < y2 = f(x2) is a contradiction to the fact that f is strictly
increasing.

Notice that f : C([a, b])
onto−→ C([c, d])need not be continuous if f is monotone, else f([a, b])

is compact.
Finally, if f : R → R is one-one and onto, then f and f−1 both are continuous.

Example 4.4. If I be an interval in R and f : I → R be a monotone function, then
Eα = {x ∈ I : f(x) > α} = I ′ or ∅,

where I ′ is an interval.

Let f be an increasing function. If x′ ∈ Eα, then for x < x′ ≤ b, =⇒ f(b) ≥ f(x) ≥
f(x′) > α =⇒ [x′, b] ⊂ Eα.

Let x0 = inf{x ∈ I : f(x) > α} = inf Eα.

(i) If x0 = a, then for x ∈ I, there exists x1 ∈ Eα such that x1 ≤ x and f(x) ≤
f(x1) > α =⇒ x ∈ Eα. So I = Eα.

(ii) If a < x0 ≤ b, then for x > x0, there exists x1 ∈ Eα such that x0 < x1 < x and
f(x) ≥ f(x1) > α =⇒ (x0, b] ⊂ Eα.

(ii) If x < x0, then f(x) ≤ α =⇒ x /∈ Eα =⇒ (x0, b] ⊂ Eα ⊂ [x0, b].

This proves the claim that Eα is an interval.
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4.2. Construction of Monotone Function. Let D be a countable set in R, then we
can construct a monotone increasing function which is discontinuous only on D.

Let D = {x1, x2, . . .} and 0 < ϵn < 1 be a sequence such that
∑∞

n=1 ϵn < ∞. Let us
define

f(x) =
∑
xn≤x

ϵn,

where the sum is on the set {n : xn ≤ x} = Ax(say) and f(x) = 0 if the set Ax = ∅.
If x < y, then

f(y) =
∑
xn≤y

ϵn =
∑
xn≤x

ϵn +
∑

x<xn≤y

ϵn ≥ f(x).

Note that for x = xk < y, we get

f(y) = f(xk) +
∑

xk<xn≤y

ϵn

Then
f(x+k ) = f(xk) + lim

y→x+
k

∑
xk<xn≤y

ϵn = f(xk)

Since
∑∞

n=N ϵn → 0 as N → ∞.
And when x < xk = y ⇒

f(xk) = f(x) +
∑

x<xn≤xk

ϵn ≥ f(x) + ϵk

Then
lim

x→x−
k

f(x) = f(xk)− lim
x→x−

k

∑
x<xn≤xk

ϵn = f(xk)− ϵk

So
f(x−k ) = f(xk)− ϵk

Thus,
f(x+k )− f(x−k ) = ϵk.

The proof of f is continuous at each point of R \D is similar to the above.
Let x ∈ R \D. Then x ̸= xn for any n.
For x < y,

f(y) = f(x) +
∑

x<xn≤y

ϵn.

When y → x+, then ∑
x<xn≤y

ϵn → 0 (∵ {n : x < xn ≤ y} → ∅)

If y < x, then

f(x) = f(y) +
∑

y<xn<x

ϵn.

Hence,

f(x) = lim
y→x−

f(y) + lim
y→x−

∑
y<xn<x

ϵn = f(x−) + 0 (∵ {n : y < xn < x} → ∅)
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Example 4.5. Let D = Z, then
f(x) =

∑
n≤x

ϵn

For x ∈ (0, 1),

f(x) =
∑
n≤0

ϵn = C.

⇒ Constant on each open interval (n, n+ 1)

Example 4.6. Let D be the of end points of deleted open intervals in the construction
of Cantor set. Find appropriate sequence 0 < ϵn < 1 define Cantor function via

f(x) =
∑
xn≤x

ϵn, xn ∈ D.

Example 4.7. Let f : [0, 1] → R be defined by

f(x) = x+
nx∑
n=0

2−n, nx =

⌊
1

1− x

⌋
if x < 1

and f(1) = 3.
Show that f is strictly increasing and discontinuous on

{
1− 1

k
: k ∈ N

}
.
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5. Metrics and Norms

Let X be a non-empty set. A map d : X ×X → R+ = [0,∞) such that

(i) d(x, y) = 0 iff x = y, x, y ∈ X
(ii) d(x, y) = d(y, x) (symmetric)
(iii) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

is called a metric on X, and the pair (X, d) is called a metric space.

Example 5.1. If X = Rn, then for x, y ∈ Rn, 1 ≤ p <∞,

(1) dp(x, y) = (
∑n

i=1 |xi − yi|p)1/p , x = (x1, . . . , xn)
is a metric on Rn (we prove it later).

(2) d∞(x, y) = max1≤i≤n |xi − yi| is a metric on Rn. (It follows easily.)

Example 5.2. Let (X, d) be a metric space. Show that d′(x, y) = min{1, d(x, y)} defines
a metric.

Example 5.3. If X = C[0, 1], the space of continuous functions on [0, 1], then for f, g ∈
X,

d∞(f, g) = sup
0≤t≤1

|f(t)− g(t)|

defines a metric on R.

(Hint: f is continuous on [0, 1], so f is bounded and |f(t) − h(t)| ≤ |f(t) − g(t)| +
|g(t)− h(t)|)

Example 5.4. For f, g ∈ C[0, 1], define

ρ(f, g) =

∫ 1

0

min{|f(t)− g(t)|, 1} dt

Then ρ is a metric on C[0, 1].

Example 5.5. If X ̸= ∅, then for x, y ∈ X,

d0(x, y) =

{
1, x ̸= y

0, x = y

defines a metric on X and called the discrete metric. Thus, every non-empty set has a
metric.

Note that for d(x, z) ≤ d(x, y) + d(y, z) to hold, we need to verify three cases:

(1) x = y, y ̸= z
(2) x ̸= y, y = z
(3) all of x, y, z are distinct

Question 5.6. If (X, d) is a metric space and f : [0,∞) → [0,∞) is a map, does it imply
that f ◦ d is a metric on X?

Example 5.7. Let f(t) = t
1+t

, then f ′(t) = (1 − 1
1+t

)′ =⇒ f ′(t) = 1
(1+t)2

> 0 for all

t ∈ [0,∞). Hence f is strictly increasing.
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And f ′′(t) = − 2
(1+t)3

< 0, hence concave.

Also, f(t) = 0 iff t = 0.
Note that

t+ s

1 + t+ s
≤ t

1 + t
+

s

1 + s
Let s = d(x, y), t = d(x, z), r = d(y, z), then r ≤ s+ t,

f(r) ≤ f(s+ t) ≤ f(s) + f(t)
=⇒ (f ◦ d)(x, z) ≤ (f ◦ d)(x, y) + (f ◦ d)(y, z)

Thus, f ◦ d is a metric on X.
This result is true for a large class of concave function.

Example 5.8. Let f : [0,∞) → [0,∞) be concave and f(0) ≥ 0. Then
f(x+ y) ≤ f(x) + f(y) (sub-additive)

Hence,
y

x+ y
f(0)+

x

x+ y
f(x+y) ≤ f

(
y

x+ y
· 0 + x

x+ y
(x+ y)

)
=⇒ x

x+ y
f(x+y) ≤ f(x) (∵ f is concave)

Replacing x→ y, we get y
x+y

f(x+ y) ≤ f(y) =⇒ f(x+ y) ≤ f(x) + f(y).

Result: Let (X, d) be a metric space and f : [0,∞) → [0,∞) be a monotone increasing
function with f(t) = 0 iff t = 0. If f is concave, then f ◦ d is a metric on X.

(Hint: Conclude from the example and the previous result.

Example 5.9. LetH∞ (Hilbert cube) be the space of sequences x = (xn) = (x1, x2, . . . , xn, . . .)
such that |xn| ≤ 1. Then

d(x, y) =
∞∑
n=1

|xn − yn|
2n

defines a metric on H∞.

(i) d(x, y) ≤
∑

2
2n
<∞

(ii) |xn − zn| ≤ |xn − yn|+ |yn − zn|

⇒
k∑

n=1

|xn − zn|
2n

≤
k∑

n=1

|xn − yn|
2n

+
k∑

n=1

|yn − zn|
2n

≤ d(x, y) + d(y, z) <∞
Since LHS is an increasing sequence which is bounded above, it follows that

lim
k→∞

k∑
n=1

|xn − zn|
2n

≤ d(x, y) + d(y, z)

=⇒ d(x, z) ≤ d(x, y) + d(y, z).

Exercise 5.10. Show that d(x, y) =
∣∣∣ 1x − 1

y

∣∣∣ defines a metric on (0,∞).

(Hint: | 1
x
− 1

z
| = | 1

x
− 1

y
+ 1

y
− 1

z
| ≤ | 1

x
− 1

y
|+ | 1

y
− 1

z
|)

Definition 5.11. Br(x) = {y ∈ X : d(y, x) < r} is called an open ball in the metric
space (X, d).
Br[x] = {y ∈ X : d(y, x) ≤ r} is called closed ball in (X, d).
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Definition 5.12. A set O in a metric space (X, d) is called open if for each x ∈ O, ∃ r > 0
such that Br(x) ⊆ O.

Let J be the collection of all open sets in X with respect to d. Then

(i) ∅, X ∈ J (why?)
(ii)

⋃
i∈I Oi ∈ J , for Oi ∈ J and for any index set I

(iii)
⋂n

i=1Oi ∈ J , for Oi ∈ J

(Hint: Follows from definition of open set.)

Definition 5.13. A function f : (X, d) → R is said to be continuous at x ∈ X, if for any
ϵ > 0, there exist δ > 0 such that
(*) d(x, y) < δ =⇒ |f(x)− f(y)| < ϵ
If it happen for each x ∈ X, we say that f is continuous on X.
From (*), it follows that

y ∈ Bδ(x) =⇒ f(y) ∈ (f(x)− ϵ, f(x) + ϵ)
i.e. Bδ(x) ⊆ f−1((f(x)− ϵ, f(x) + ϵ)).
Since x ∈ RHS, it follows that RHS is open around x.

Result: A function f : (X, d) → R is continuous iff f−1(O) ∈ J for each open set O
in R.

Proof. Suppose f is continuous. Let O ⊂ R be open.
Claim: f−1(O) is open in X. Let x ∈ f−1(O), then f(x) ⊂ O.

Hence, ∃ some ϵ0 > 0 such that
(f(x)− ϵ0, f(x) + ϵ0) ⊆ O

Given f is continuous at x. For ϵ0 > 0, ∃ δ > 0 such that
Bδ(x) ⊆ f−1((f(x)− ϵ0, f(x) + ϵ0)) ⊆ f−1(O)

=⇒ f−1(O) is open in X.
Conversely, let f−1(O) ∈ J for each open set O in R.

For ϵ > 0, it follows that x ∈ f−1((f(x)− ϵ, f(x) + ϵ)) ∈ J .
Since f−1((f(x)− ϵ, f(x) + ϵ)) is open in X, it follows that ∃ δ > 0 such that

y ∈ Bδ(x) ⊂ f−1((f(x)− ϵ, f(x) + ϵ))
i.e. d(x, y) < δ =⇒ f(y) ∈ f(Bδ(x)) ⊂ (f(x)− ϵ, f(x) + ϵ) =⇒ |f(x)− f(y)| < ϵ

For a metric space (X, d), we call (X,J ) the topology of X generated by d. □

5.1. Normed Linear Space. A normed linear space is eventually mixing of linear
structure of a space with its some topological structure.

Let (X,+, ·) be a linear space over the field F (= R or C). Let (X, J) be the topological
structure given by some metric d on X. Now, the question is: how to mix linear structure
with topological structure?
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x

x

αx

0

Note that a linear space is mainly concerned about two maps:
(i) (x, y) 7→ x+ y (X ×X → X)

(ii) (α, x) 7→ αx (F ×X → X)
Therefore, a linear space X can be thought of made by these two maps.

Topology is all about continuity of maps. Thus, we can think of continuity of ”+”
and ” · ” on X × X and F × X respectively, in their respective product topology J × J
and U × J , where U is the usual topology on R or C.

A linear space with such property is called a topological vector (linear) space.
Note that an open set in J×J is a union of sets of the form O1×O2, where O1, O2 ∈ J .

And open set in U × J is a union of sets O1 ×O2, with O1 ∈ U , O2 ∈ J .

Now, because of linearity and homogeneity of the space X, we can opt for a sense of
distance that should satisfy the following set of rules:

(i) dist(0, αx) = |α| dist(0, x)
(ii) dist(0, x+ y) ≤ dist(0, x) + dist(0, y)

(iii) when α = 0, dist(0, 0) = 0
Let p := dist : X → [0,∞) be defined by p(x) = dist(0, x). Then

(i) p(x) = 0 for x = 0

(ii) p(αx) = |α| p(x) (absolute homogeneity)

(iii) p(x+ y) ≤ p(x) + p(y) (triangle inequality)
Here, p is known as a semi-norm, because it is little away from the natural sense of

usual distance.

Example 5.14.
p : R2 → [0,∞), p(x1, x2) = |x1|.

Then p is a semi-norm and p(0, 1) = 0.

x

y

(0, 1)

0
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That is, points on the y-axis are at zero distance from the origin. This is not convincing
as long as usual distance is concerned.

Let ∥ · ∥ : X → [0,∞) be a map such that

(i) ∥x∥ ≥ 0 for each x ∈ X, and ∥x∥ = 0 iff x = 0,
(ii) ∥αx∥ = |α| ∥x∥ for each (α, x) ∈ F ×X (absolute homogeneity)
(iii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for each x, y ∈ X (triangle inequality).

The map ∥ · ∥ is called a norm on X.

Note that the norm ∥ · ∥ induces a metric on X by d(x, y) = ∥x− y∥, that produces a
topology on X. For r > 0, x ∈ X, the open ball

Br(x) = {y ∈ X : ∥x− y∥ < r}
Hence,open sets can be defined accordingly.

Note that every metric on a linear space need not produce a norm.
For example, the discrete metric on any linear space is not normable, because it fails

to satisfy the absolute homogeneity property.
For x, y ∈ X, define

d0(x, y) =

{
1 if x ̸= y

0 if x = y

If we write ∥x∥ = d(0, x), then for α ∈ F, ∥αx∥ ̸= |α|∥x∥ (x ̸= 0) unless |α| = 1.
However, if d is a metric on a linear space X such that d(x, y) = d(x − y, 0) and

d(αx, αy) = |α|d(x, y), then d(x, 0) = ∥x∥ defines a norm on X.

(1) ∥x∥ = 0 ⇐⇒ d(x, 0) = 0 ⇐⇒ x = 0
(2) ∥αx∥ = d(αx, 0) = |α|d(x, 0) = |α|∥x∥
(3) ∥x+ y∥ = d(x+ y, 0) = d(x,−y) ≤ d(x, 0) + d(−y, 0) = ∥x∥+ ∥y∥

A function f : Rn → R is said to be convex if
f(t1x1 + · · ·+ tnxn) ≤ t1f(x1) + · · ·+ tnf(xn)

where 0 ≤ ti ≤ 1 and xi ∈ Rn.

Example 5.15. Let f : Rn → R be a convex function satisfying f(αx) = αf(x) for all
α ∈ R, for all x ∈ Rn. Prove that

(i) f(x+ y) ≤ f(x) + f(y)
(ii) f(0) = 0
(iii) f(−x) ≥ −f(x)
(iv) f(t1x1 + · · ·+ tnxn) ≤ t1f(x1) + · · ·+ tnf(xn)

Further, what requires to make f a norm on Rn?

5.2. Convergence of Sequence in Metric Space. A sequence (xn) in a metric space
(X, d) is said to be converging to x ∈ X, if for any ϵ > 0, ∃N0 ∈ N such that n ≥ N0

=⇒ d(xn, x) < ϵ.
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Example 5.16. Let X = (0,∞) and d(x, y) =
∣∣∣ 1x − 1

y

∣∣∣. Then xn = n does not converge

to any point of X.
However, this sequence is not so bad as xn = n→ 0, which is not in X. Such sequences

can be classified as Cauchy sequences.

5.3. Cauchy Sequences.

Definition 5.17. A sequence (xn) in (X, d) is said to be a Cauchy sequence if for any
ϵ > 0, there exist N0 ∈ N such that ∀m,n ≥ N0, d(xn, xm) < ϵ.

Example 5.18. Show that every Cauchy sequence in a metric space is bounded.

Proof. A set A ⊂ X is said to be bounded if A ⊆ Br(x) for some fixed x and r > 0.)
xn ∈ Bϵ(xn0) for n ≥ n0.
Let r = max{ϵ, d(xn0 , xi) : i = 1, 2, . . . , n0 − 1}. Then xn ∈ Br(xn0), for all n ≥ 1.

xn0

x1

xi

xn

We need certain inequalities to deal with sequence spaces. □

5.4. Young’s Inequality. Let 1 < p <∞ and a, b > 0. Then for 1
p
+ 1

q
= 1,

(*) ab ≤ ap

p
+
bq

q
Proof: Let y = xp−1 ,then x = yq−1 (∵ p− 1 = 1

q−1
by 1

p
+ 1

q
= 1).

a

b

a

b
x = yq−1

y = xp−1

Now, from the figure, it is clear that

ab ≤
∫ a

0

xp−1 dx+

∫ b

0

yq−1 dy =
ap

p
+
bq

q
Note that equality in (∗) holds iff ap = bq (or a = bq−1).
For this, consider

ab =
ap

p
+
bq

q
,

1

p
+

1

q
= 1.
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Replace a→ a
1
p , b→ b

1
q and 1

p
= α.

Then, we get
aαb1−α = αa+ (1− α)b

or
tα − αt− (1− α) = 0 if t = a/b.

Let
f(t) = tα − αt− (1− α), t ∈ (0,∞).

Then f(1) = 0 and
f ′(t) = αtα−1 − α = α(tα−1 − 1) = 0 ⇐⇒ t = 1.

Since f ′(t) < 0 if t > 1 and f ′(t) > 0 for 0 < t < 1,
Hence, f is strictly increasing in (0, 1) and strictly decreasing in (1,∞). Thus, t = 1 is
the point of absolute maximum of f .
Therefore, f(t) ≤ f(1) = 0, which is another proof of the inequality. On the other hand,
f(t) = 0 iff t = 1. This completes the proof.

Example 5.19. Let x = (x1, x2, . . . , xn) ∈ Rn. Write

∥x∥1 =
n∑

i=1

|xi|.

Then (Rn, ∥ · ∥1) is a normed linear space (n.l.s.).
If

∥x∥2 =

(
n∑

i=1

|xi|2
)1/2

then by Cauchy-Schwarz inequality, (Rn, ∥ · ∥2) is a n.l.s.
For

∥x∥∞ = sup
i

|xi|,

(Rn, ∥ · ∥∞) is a normed linear space.
For 1 ≤ p <∞, write

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

.

Then lpn:=(Rn, ∥ · ∥p) will be a normed linear space.

5.5. Space of Sequences. Let 1 ≤ p < ∞ and let lp denote the space of all sequences
that satisfy

∞∑
i=1

|xi|p <∞; x = (x1, x2, . . . , xn, . . .)

Then (lp, ∥ · ∥p) or simply lp, will be a normed linear space.

If p = ∞,
∥x∥∞ = sup

1≤i<∞
|xi| <∞,

then (l∞, ∥ · ∥∞) is a normed linear space (follows from definition of supremum).
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For 1 ≤ p <∞, showing lp is a normed linear space required the following inequalities.

5.6. Hölder’s Inequality. Let 1 ≤ p ≤ ∞ and 1
p
+ 1

q
= 1. Then for x ∈ lp and y ∈ lq, it

follows that

x · y(= x1y1 + . . .+ xnyn + . . .) ∈ l1,
and

∥x · y∥1 ≤ ∥x∥p∥y∥q · · · (∗)
(where 1

∞ = 0 adopted.)
When p = 1, q = ∞. In this case (∗),

∥x · y∥1 =
∞∑
i=1

|xiyi| ≤
∑

|xi| · sup |yi| = ∥x∥1∥y∥∞

Now, let 1 < p <∞, then 1 < q <∞.

Substitute a = aj =
|xj |
∥x∥p and b = bj =

|yj |
∥y∥q in the Young’s Inequality. Then

n∑
i=1

|xjyj|
∥x∥p∥y∥q

≤
n∑

i=1

(
|xj|p

p∥x∥pp
+

|yj|q

q∥y∥qq

)
≤
( ∥x∥pp
p∥x∥pp

+
∥y∥pp
q∥y∥qq

)
=

1

p
+

1

q
= 1

That is,
n∑

j=1

|xjyj| ≤ ∥x∥p∥y∥q, for all n ≥ 1

Since LHS is an increasing sequence which is bounded above, hence
∥x · y∥1 ≤ ∥x∥p∥y∥q

Notice that if ∥x∥p = 1 = ∥y∥q, then ∥x · y∥1 ≤ 1,
and equality holds iff |yj|p = |xj|q, ∀j.

This follows from Young’s equality. For

ab =
ap

p
+
bq

q
,

we must have ap = bq.

5.7. Minkowski’s Inequality. Let 1 ≤ p ≤ ∞. Then for x, y ∈ lp, x+ y ∈ lp, and
∥x+ y∥p ≤ ∥x∥p + ∥y∥p

Proof. For b = 1 or ∞, the proof is trivial.
Let 1 < p <∞ .Then

∥x+ y∥p =

(
∞∑
i=1

|xi + yi|p
)1/p

≤

(
∞∑
i=1

(|xi|+ |yi|)p
)1/p

(1)

Since
(|xi|+ |yi|)p = (|xi|+ |yi|)(|xi|+ |yi|)p−1
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By Hölder’s inequality,∑
(|xi|+ |yi|)p−1|xi| ≤

(∑
(|xi|+ |yi|)(p−1)q

)1/q (∑
|xi|p

)1/p
Thus, ∑

(|xi|+ |yi|)p ≤
(∑

(|xi|+ |yi|)p
)1/q

(∥x∥p + ∥y∥p)
That is (∑

(|xi|+ |yi|)p
)1− 1

q ≤ ∥x∥p + ∥y∥p
From (1), we get

∥x+ y∥p ≤
(∑

(|xi|+ |yi|)p
)1/p

≤ ∥x∥p + ∥y∥p
□

Remark 5.20. Equality in ∥x+ y∥p ≤ ∥x∥p + ∥y∥p holds iff x = ∥x∥p
∥y∥p y .

(Hint: Consider ∥x∥p = 1 = ∥y∥p etc.)

Example 5.21. Since we know that any convergent sequence is bounded, it follows that
the space c of all convergent sequences is a normed linear space under the norm

∥x∥ = sup |xi| <∞;
where x = (x1, x2, . . . , xn, . . .).

Further, the space c0 of all sequences converging to ”zero” is also a normed linear space.
That is, x = (x1, x2, . . . , xn, . . .),

lim
n→∞

|xn| = 0.

Thus, (c0, ∥ · ∥∞) is a linear subspace of (c, ∥ · ∥∞).

Exercise 5.22. Show that the following strict inclusions hold:
ℓ1 ⊊ ℓ2 ⊊ c0 ⊊ c ⊊ ℓ∞

(Hint: x = (xn) ∈ ℓ1, then lim xn = 0 =⇒ x ∈ ℓ∞,
∑

|xn|2 ≤
∑

∥x∥∞|xn| =⇒
∥x∥22 ≤ ∥x∥∞∥x∥1.)

Exercise 5.23. For x = (x1, ..., xn) ∈ Rn (or Cn), show that:
∥x∥∞ ≤ ∥x∥1 ≤

√
n∥x∥2 ≤ n∥x∥∞

5.8. Geometry of Spheres in (Rn, ∥ · ∥p). For 0 ≤ p ≤ ∞ and x ∈ Rn, write

∥x∥p =
(∑

|xi|p
)1/p

Then ∥ · ∥p is a norm for 1 ≤ p < ∞, and for 0 < p < 1, ∥x∥pp = dp(0, x) with dp(x, y) =
∥x− y∥pp is a metric. (We see later)

Let Sp
1(0) = {x : dp(0, x) = 1}.

Then the following figure can be plotted for different values of p; 0 < p <∞; p = ∞
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y

x

p > 1

p = 2

p = 1 p = ∞

Shapes for 0 < p < 1 would look like star-shaped curves (not shown).

5.9. Closed sets in (X, d).

Definition 5.24. A set F ⊂ (X, d) is said to be closed if F c is open.
i.e., for all x ∈ F c = X \ F , ∃ ϵ > 0 such that Bϵ(x) ⊆ F c.

On the other hand, if for each ϵ > 0,
Bϵ(x) ∩ F ̸= ∅ =⇒ x ∈ F.

x

F

Theorem 5.25. Let (X, d) be a metric space and F ⊂ X. Then the following are equiv-
alent (F.A.E):

(1) F is a closed set (F c open).
(2) ∀ϵ > 0, Bϵ(x) ∩ F ̸= ∅ =⇒ x ∈ F .
(3) ∀ sequence (xn) ∈ F such that xn → x =⇒ x ∈ F .

Proof. (1) =⇒ (2): Suppose F is closed.
Claim: Bϵ(x) ∩ F ̸= ∅, ∀ϵ > 0 =⇒ x ∈ F .
Notice that if x /∈ F =⇒ x ∈ F c and F c is open =⇒ ∃ϵ0 > 0 s.t.

Bϵ0(x) ⊂ F c =⇒ Bϵ0(x) ∩ F = ∅,
which is a contradiction.

(2) =⇒ (3): Let (xn) ⊂ F and xn → x. Then for each ϵ > 0, xn ∈ Bϵ(x) for all
n ≥ n0.

=⇒ xn ∈ Bϵ(x) ∩ F ̸= ∅, ∀ϵ > 0 =⇒ x ∈ F

(3) =⇒ (1):
Claim: F c is open. Let x ∈ F c.
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Then x /∈ F . By (3), ∃ϵ0 > 0 such that
Bϵ0(x) ∩ F = ∅ =⇒ Bϵ0(x) ⊂ F c.

□

Example 5.26. Let f : (X, d) → R be a function. Then f is continuous at x ∈ X iff for
every sequence xn ∈ X with xn → x =⇒ f(xn) → f(x).

Proof. Suppose f is continuous at x (ϵ-δ definition).
Let x ∈ X and xn ∈ X such that xn → x.
Since f is continuous at x, for each ϵ > 0, ∃δ > 0 such that

d(y, x) < δ =⇒ |f(x)− f(y)| < ϵ.
Given xn → x. For δ > 0, ∃n0 ∈ N such that n ≥ n0, d(xn, x) < δ =⇒ |f(xn)−f(x)| <

ϵ.

[That is, for each ϵ > 0, ∃n0 ∈ N such that n ≥ n0 =⇒ |f(xn)− f(x)| < ϵ =⇒ f(xn) → f(x).]
Conversely, suppose for each sequence xn ∈ X with xn → x =⇒ f(xn) → f(x).
d(xn, x) → 0 =⇒ |f(xn)− f(x)| → 0.

[That is, for each ϵ > 0,∃n0 ∈ N and δ > 0 such that
n ≥ n0 =⇒ d(xn, x) < δ =⇒ |f(xn)− f(x)| < ϵ]

If f is not continuous at x, then ∃ϵ0 > 0 such that for each δ > 0, there exist y such
that

d(x, y) < δ but |f(x)− f(y)| ≥ ϵ0.
Let δ = 1/n, then ∃yn ∈ X such that

d(x, yn) <
1

n
but |f(x)− f(yn)| ≥ ϵ0

i.e., yn → x but f(yn) ̸→ f(x), is a contradiction. □

Exercise 5.27. If f : (X, d) → R is continuous and f(x0) ̸= 0 for some x0 ∈ X, then
∃δ > 0 such that

f(x) ̸= 0 ∀x ∈ Bδ(x).
(Hint: take ϵ0 =

1
2
|f(x0)| > 0, ∃δ > 0 etc.)

Example 5.28. Show that if f : (X, d) → R is continuous, then A = {x : f(x) > 0} is
open (without using the complement should be closed).

(Hint: Let x ∈ A, then for ϵ = 1
2
f(x) > 0, ∃δ > 0 such that d(x, y) < δ =⇒

|f(x)− f(y)| < ϵ)

5.10. Interior in (X, d). Let A ⊂ X. Then interior(A) or Int(A) or A◦ is the largest
open set contained in A.

i.e.A◦ =
⋃

{O ⊂ X : O open, O ⊆ A}
=
⋃

{Bϵ(x) ⊂ A : for x ∈ A and some ϵ > 0}
= union of all open balls contained in A.
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5.11. Closure in (X, d). The closure of set A ⊂ X is the smallest closed set containing
A.

i.e.A =
⋂

{F ⊂ X : F closed and A ⊂ F}
= {x ∈ X : ∃xn ∈ A with xn → x}

= collection of limits of all convergent sequences in A (limit need not be in the set A).

Example 5.29. A =
{
(n, 1

n
) : n ∈ N

}
. Then closure of A in (R, u) is A = A and A◦ = ∅

(Why?).

Result: Let A ⊂ (X, d). Then x ∈ A ⇐⇒ Bϵ(x) ∩ A ̸= ∅, ∀ϵ > 0.

Proof. Let x ∈ A. Suppose ∃ ϵ0 > 0 such that Bϵ0(x) ∩ A = ∅. Then A ⊂ (Bϵ0(x))
c, a

closed set. By definition of A, A is the smallest closed set containing A. Hence,
A ⊂ (Bϵ0(x))

c.
Since x ∈ A, but x /∈ (Bϵ0(x))

c, this is a contradiction.
Conversely, suppose Bϵ(x) ∩ A ̸= ∅ for all ϵ > 0. By the previous result, x ∈ A (∵ A

is closed). □

Result: x ∈ A if and only if there exists a sequence (xn) with xn ∈ A such that xn → x.

Proof. If x ∈ A, then for all n ∈ N, B1/n(x) ∩ A ̸= ∅. So, ∃ xn ∈ B1/n(x) ∩ A. Thus,

d(xn, x) <
1

n
, ∀n ∈ N =⇒ xn → x.

Conversely, if there exists xn ∈ A with xn → x. Then for ϵ > 0, ∃n0 ∈ N such that
d(xn, x) < ϵ for all n ≥ n0, =⇒ xn ∈ Bϵ(x) ∩ A ̸= ∅ for all ϵ > 0. Thus x ∈ A (by
previous result). □

Definition 5.30. A set A ⊂ (X, d) is said to be dense in X if A = X.

5.12. Space of Finite Sequences. Space of finite sequences play a vital role similar to
the space of all polynomials.

P (x) = a0 + a1x+ . . .+ anx
n

⇒ (a0, a1, . . . , an) ∼ (a0, a1, . . . , an, 0, 0, 0, . . .)
Let

c00 = {x = (x1, x2, . . . , xn, 0, 0, . . .) : xi ∈ F} .
Then obviously, x is a bounded sequence, and

∥x∥∞ = max
1≤i≤n

|xi| <∞
defines a norm on c00.

Notice that the space of all finite sequences c00 is dense in all ℓp; 1 ≤ p < ∞ (which
will see later). However, the closure of c00 is c0, which is a closed proper subspace of ℓ∞.
For

xn =

(
1,

1

2
, . . . ,

1

n
, 0, 0, ...

)
∈ c00,
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and

x =

(
1,

1

2
, ...,

1

n
,

1

n+ 1
, ...

)
,

then

∥x− xn∥∞ = sup
k≥n

1

k + 1
=

1

n+ 1
→ 0,

but x /∈ c00. Hence c00 is not a closed subspace of ℓ∞.
In addition c00 is not open in ℓ∞.

For this, let ϵ > 0,be arbitrarily small. Then for Bϵ(0) ⊂ ℓ∞, (ϵ/2, ϵ/2, ...) ∈ Bϵ(0) but
(ϵ/2, ϵ/2, ...) /∈ c00. Hence, Bϵ(0) ̸⊆ c00 for any ϵ > 0.

For 1 ≤ p <∞, c00 ⊊ ℓp and c00 is neither closed nor open in ℓp. For this, let

xn =

(
ϵp

2n+1

)1/p

, 1 ≤ p <∞,

and consider x = (x1, x2, ...). Then x ∈ Bϵ(0) ⊂ ℓp, but x /∈ c00. Now write xn =
(x1, ..., xn, 0, ...) ∈ c00. Then

∥x− xn∥pp =
∞∑

k=n+1

ϵp

2k+1
→ 0,

but x /∈ c00.

Example 5.31. LetM be a non-open subspace of a normed linear space (n.l.s.) X. Show
that M = X.

(Hint: O ∈ M =⇒ Bϵ(0) ⊂ M ⊂ X. Since M is linear, αBϵ(0) ⊂ M ⊂ X for all
ϵ > 0 =⇒ Bϵ1(0) ⊂ M for some ϵ1 > 0. If y ∈ X, then y ∈ Bϵ1(0) ⊂ M ⊂ X for some
ϵ1 > 0.)

Notice that for x = (x1, x2, ..., xn, ...) ∈ ℓp; 1 ≤ p <∞, xn = (x1, ..., xn, 0, ...) ∈ c00.
And

∥x− xn∥pp =
∞∑

k=n+1

|xk|p → 0 (∵ x ∈ ℓp).

Hence xn → x in ℓp. Thus, c00 = ℓp.
However, c00 is not dense in ℓ∞, but c00 = c0. For this, let

X = (x1, x2, . . . ) ∈ c0.
Then

lim
n→∞

xn = 0.

For ϵ > 0, there exists n0 ∈ N such that n ≥ n0 implies |xn| < ϵ/2. Now, write
Xn = (x1, . . . , xn, 0, 0, . . . ).

Then Xn ∈ c00 and for n ≥ n0,
∥X −Xn∥∞ = sup

i≥n+1
|xi| < ϵ/2.

Therefore, Xn → X.

Remark 5.32. c00 = c0 ⊊ ℓ∞. That is, c00 is not dense in ℓ∞.
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Example 5.33. Let f : R → R (or C) be a continuous function. Suppose lim|x|→∞ f(x) =
0. Then for ϵ > 0, there exists δ > 0 such that |f(x)| < ϵ for |x| > 1

δ
.

Since f is continuous, it follows that f is bounded. Let ∥f∥∞ = supx∈R |f(x)| <∞.
Then

C0 =

{
f : R → R is continuous, lim

|x|→∞
|f(x)| = 0

}
is a normed linear space.

For any function f : R → R, define
supp(f) = {x ∈ R : f(x) ̸= 0}

called the support of f .
Let

CC = {f : R → R continuous and supp(f) is compact}.
Then f ∈ Cc is a bounded function and

∥f∥∞ = sup
x∈R

|f(x)| = sup
x∈supp(f)

|f(x)| <∞.

Let K = supp(f) be compact. Then (CC , ∥ · ∥∞) is a dense subspace of (C0, ∥ · ∥∞).
For this, let f ∈ C0, then for ϵ > 0, there exists δ > 0 such that |f(x)| < ϵ for |x| > 1

δ
.

Write K = {x : |x| ≤ 1
δ} .

Let O be a bounded open set with K ⊂ O.
Define

g(x) =
d(x,Oc)

d(x,Oc) + d(x,K)
Then g is continuous on R, 0 ≤ g(x) ≤ 1 and g(x) = 1 for x ∈ K and g(Oc) = {0} .

Let h = f · g. Then h ∈ CC and
∥f − h∥∞ = ∥f(1− g)∥∞ = sup

x∈R
|f(x)|(1− g(x)) ≤ ϵ.

Hence, CC is dense in C0.
Note that d(x,A) = infy∈A |x− y|.

Diagram:

xK

f
h

O

5.13. Complete Metric Spaces. We have seen that there are Cauchy sequences whose
limits need not necessarily belong to the space.
For example, the sequence 1

n
∈ ((0, 1), u) under the usual metric, is a Cauchy sequence

but the limit 1
n
→ 0 /∈ (0, 1).
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It is always possible to enlarge the space so that limits of all Cauchy sequences can
be accommodated. This process is known as the completion of metric spaces, we shall
see later. However, there are many spaces which do accommodate limits of their Cauchy
sequences.

Definition 5.34. A metric space (X, d) is called complete if every Cauchy sequence in
X has its limit in X.

Example 5.35. (R, u) is a complete space.
Let (xn) be a Cauchy sequence in R. Then it is bounded. And by the Bolzano–Weierstrass

theorem, there exists a subsequence xnk
→ x ∈ R. For any ϵ > 0, there exists a natural

number k0 such that
(1) |xnk

− x| < ϵ for all k ≥ k0
But the sequence (xn) is Cauchy, so for all ϵ > 0, there exists n0 ∈ N such that

|xn − xm| < ϵ for all n,m ≥ n0.
Let m ≥ n0 and m ≥ nk0 . Then

(2) |xn − xnk
| < ϵ for any n ≥ n0 and k ≥ k0.

From (1) and (2), it follows that:
|xn − x| ≤ |xn − xnk

|+ |xnk
− x|

< 2ϵ
for n ≥ n0 and nk ≥ nk0 .

Thus, for ϵ > 0, there exists n0 ∈ N such that
n ≥ n0 =⇒ |xn − x| < ϵ.

Notice that the above discussion can be used to prove the following result.

Result: Let (xn) be a Cauchy sequence in a metric space (X, d). If (xn) has a conver-
gent subsequence xnk

→ x, then xn → x.
(Proof is similar to the above.)

Example 5.36. (Rn, ∥ · ∥p) is complete for 1 ≤ p ≤ ∞.
Let 1 ≤ p < ∞, and xk = (xk1, . . . , x

k
n) be a Cauchy sequence in (Rn, ∥ · ∥p). Then for

ϵ > 0, there exists k0 ∈ N such that for all k, l ≥ k0,

∥xk − xl∥p =

(
n∑

j=1

|xkj − xlj|p
)1/p

< ϵ

=⇒ |xkj − xlj| < ϵ for all k, l ≥ k0
=⇒ (xkj ) is a Cauchy sequence in (R, u).

Hence xkj → xj for all j. Then for ϵ > 0, there exists mj ∈ N such that k ≥ mj =⇒
|xkj − xj| < ϵ.

Let m0 = maxj{mj}. Then, for x = (x1, . . . , xn),
∥xk − x∥p < ϵ for k ≥ m0.

Notice that the case p = ∞ is similar. We skip its proof here.
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Example 5.37. Let 1 ≤ p ≤ ∞. Then (ℓp, ∥ · ∥p) is complete.
Let 1 ≤ p <∞, and let xk = (xk1, x

k
2, . . .) be a Cauchy sequence in (ℓp, ∥ · ∥p). Then for

ϵ > 0, there exists n0 ∈ N such that
∀k, l ≥ n0 =⇒ ∥xk − xl∥p < ϵ

(1) =⇒
n∑

j=1

|xkj − xlj|p < ϵp

For each fixed n, this reduces to (R,∥ · ∥p), which we know is complete. Hence xkj → xj;
j = 1, 2, . . . , n. Thus, letting k → ∞ in (1), it follows that

(2)
n∑

j=1

|xlj − xj|p < ϵp, ∀l ≥ n0

But the left-hand side of (2) is an increasing sequence and bounded above, hence, letting
n→ ∞, we get

∞∑
j=1

|xlj − xj|p < ϵp

∥xl − x∥p ≤ ϵ, ∀l ≥ n0

where x = (x1, x2, . . . , xn, . . .).

Notice that
∥x∥p ≤ ∥x− xn0∥p + ∥xn0∥p < ϵ+ ∥xn0∥p <∞ =⇒ x ∈ ℓp.

Result: Every closed subset of a complete metric space is complete.

Proof. Let F be a closed subset of a complete metric space (X, d). Then (xn) ⊂ F is a
Cauchy sequence, it follows that (xn) is a Cauchy sequence in X. Hence xn → x ∈ X.
But F is closed, it implies that x ∈ F .

In fact, if (X, d) is complete, then F is closed if and only if F is complete.
(Hint: it follows easily.) □

Example 5.38. Show that c0 is a proper closed subspace of (ℓ∞, ∥ · ∥∞).
We know that c0 ⊊ ℓ∞.
Now, let xk = (xk1, . . . , x

k
j , . . . ) be a sequence in c0 such that xk → x = (x1, . . . , xj, . . . ).

That is, for every ϵ > 0, there exists k0 ∈ N such that
∀k > k0 =⇒ ∥xk − x∥∞ < ϵ

which implies
(1) |xkj − xj| < ϵ for each j ≥ 1and ∀k > k0.

Since xkj ∈ c0 =⇒ limj→∞ xkj = 0 for each k
For ϵ > 0, there exists j0 ∈ N such that

(2) |xkj | < ϵ ∀j ≥ j0 and k ≥ k0.
It follows from 1 and 2 that

|xj| < |xk0j − xj|+ |xk0j | < 2ϵ ∀j > J0,
i.e., |xj| < 2ϵ for all j > J0, which means limj→∞ xj = 0.

Hence c0 is a closed subspace of ℓ∞. Thus, c0 is complete in its own right.
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Example 5.39. The space (C[a, b], ∥ · ∥∞) is a complete normed linear space.
Let (fn) be a Cauchy sequence in (C[a, b], ∥ · ∥∞).
Then for ϵ > 0, there exists n0 ∈ N such that

∀n,m ≥ n0 =⇒ ∥fn − fm∥∞ < ϵ
which implies
(1) |fn(t)− fn0(t)| < ϵ ∀n ≥ n0, ∀t ∈ [a, b].
So (fn(t)) is a Cauchy sequence in (R, u) for each fixed t ∈ [a, b]. Hence fn(t) → f(t)

Letting n→ ∞ in (1), we get
|f(t)− fn0(t)| ≤ ϵ ∀t ∈ [a, b].

(Notice that n0 is free of choice of t)
Since fn0 is continuous, for each fixed t and ϵ > 0, there exists δ > 0 such that |s− t| < δ
implies |fn0(s)− fn0(t)| < ϵ.
Hence,

|f(s)− f(t)| < |f(s)− fn0(s)|+ |fn0(s)− fn0(t)|+ |fn0(t)− f(t)|
< 3ϵ

So f is continuous on [a, b].
However, the space (C[a, b], ∥ · ∥1) is not complete.
For this, we consider the following:

Consider

fn(t) =

{
nt 0 ≤ t < 1

n

1 1
n
≤ t ≤ 1

t

fn(t)

0 11
n

1

It is easy to see that for 1
m
< 1

n
,

∥fn − fm∥1 =

(∫ 1/m

0

+

∫ 1/n

1/m

+

∫ 1

1/n

)
|fn(t)− fm(t)|dt

=

∫ 1/m

0

(mt− nt)dt+

∫ 1/n

1/m

(1− nt)dt+

∫ 1

1/n

(1− 1)dt
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=
1

2

(
1

m
− 1

n

)
→ 0 as n < m→ ∞

Thus (fn) is a Cauchy sequence in (C[0, 1], ∥ · ∥1).
But the pointwise limit:

f(t) = lim
n→∞

fn(t) =

{
1 0 < t ≤ 1

0 t = 0

(Hint: fn(0) = 0 and fn(1) = 1 for all n, so f(0) = 0 and f(1) = 1. For 0 < t0 < 1, we
can find large n such that 0 < 1

n
< t0 < 1. Hence fn(t0) = 1 for large n. Thus f(t0) = 1.)

However, f is not continuous, hence (C[0, 1], ∥ · ∥1) is not complete.
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6. Sequences of Functions

Notice that in the previous exercises, we have seen that (C([0, 1]), ∥ · ∥∞) is complete.
That is, if ∥fn− fm∥∞ → 0, then there exists f ∈ C([0, 1]) such that ∥fn− f∥∞ → 0. But
then,

|fn(t)− f(t)| < ∥fn − f∥∞ → 0, ∀t ∈ [0, 1],
i.e., fn(t) → f(t) for each t ∈ [0, 1].

We say that fn → f uniformly if
sup
t

|fn(t)− f(t)| → 0.

But there are sequence of functions which converge pointwise but not uniformly.

Example 6.1. Let fn(t) = tn, t ∈ [0, 1].
Then,

f(t) = lim
n→∞

fn(t) =

{
0 0 ≤ t < 1

1 t = 1

So,
sup
t

|fn(t)− f(t)| = 1 ̸→ 0.

Example 6.2. Let fn : R → R be given by
fn(t) = e−nt2 , n ∈ N

Then,

f(t) = lim
n→∞

fn(t) =

{
1 t = 0

0 |t| > 0

Notice that for t = 0,
|fn(0)− f(0)| = |1− 1| = 0 < ϵ, ∀n ∈ N

If |t0| > 0, t20 > 0. Then for |fn(t0)− 0| < ϵ, we get

e−nt20 < ϵ =⇒ n >
log 1/ϵ

t20
Let n0 =

⌈
log 1/ϵ

t20

⌉
+ 1. Then,

|fn(t0)− f(t0)| < ϵ for n ≥ n0

Notice that n0 = n0(ϵ, t0) and n0 is large for |t0| close to zero. Thus, n0 cannot be free
from t0. Therefore, fn → f pointwise but not uniformly.

Also,
∥fn − f∥∞ = sup

t∈R
e−nt2 = 1 ̸→ 0

If fn(t) = e−nt for t ∈ [1,∞), then

sup
t

|fn(t)− 0| = e−n → 0 =⇒ e−nt unif.−−−→
[1,∞)

0

Exercise 6.3. Let fn, f : A(⊆ R) → R be such that fn → f uniformly on A. Then for
|fn(t)| ≤Mn (i.e. fn’s are bounded), that implies f is bounded.

(Hint: |f(t)| ≤ |fn0(t)− f(t)|+ |fn0(t)| < ϵ+Mn0 <∞ ∀t ∈ A)
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We shall see later that uniform convergent sequences is a good carrier for many underline
properties.

Result: Let f, fn : A(⊂ R) → R be such that fn → f uniformly. Then f is continuous
if fn’s are continuous (i.e. the uniform limit of a sequence of continuous functions is
continuous).

Proof. For ϵ > 0, there exists n0 ∈ N such that
sup
t∈A

|fn0(t)− f(t)| < ϵ

Thus,
|fn0(t)− f(t)| < ϵ, ∀t ∈ A

Since fn0 is continuous on A, for fixed t and for ϵ > 0, there exists δ > 0 such that
if |t− s| < δ =⇒ |fn0(t)− fn0(s)| < ϵ.
Thus,

|f(s)− f(t)| < |f(s)− fn0(s)| + |fn0(s)− fn0(t)|+ |fn0(t)− f(t)| < 3ϵ
□

Result: Let R[a, b] denote the space of all Riemann integrable functions on [a, b]. Let
fn, f ∈ R[a, b] and fn → f uniformly. Then,∫ b

a

fn →
∫ b

a

f

that is,

lim
n→∞

∫ b

a

fn =

∫ b

a

lim
n→∞

fn

Proof. ∣∣∣∣∫ b

a

(fn − f)

∣∣∣∣ ≤ ∫ b

a

|fn − f | ≤ ∥fn − f∥∞(b− a) → 0

□

Corollary 6.4. If fn ∈ R[a, b] such that Sn = f1 + f2 + . . . + fn converges uniformly to
S, then ∫ b

a

∞∑
n=1

fn =
∞∑
n=1

∫ b

a

fn

(Obvious from the previous result)

Result: Let fn ∈ C1[a, b] be such that f ′
n → g uniformly. If there exists x0 ∈ [a, b]

such that fn(x0) converges, then there exists f ∈ C1[a, b] such that fn → f uniformly and
f ′ = g.

Proof. Since f ′
n → g uniformly and fn is continuous, g will be continuous. Define

f : [a, b] → R by f(x0) = lim
n→∞

fn(x0)

and

f(x) =

{
f(x0) +

∫ x

x0
g(t) dt, if x > x0

f(x0)−
∫ x0

x
g(t) dt, if x < x0

Then f ′(x) = g(x) for every x ∈ [a, b]. Hence, f ∈ C1[a, b].
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Now,
fn(x)− fm(x) = fn(x)− fm(x)− (fn(x0)− fm(x0)) + (fn(x0)− fm(x0))

= (x− x0)(f
′
n(t)− f ′

m(t)) + (fn(x0)− fm(x0))
Therefore,

∥fn − fm∥∞ ≤ (b− a)∥f ′
n − f ′

m∥∞ + |fn(x0)− fm(x0)| → 0,
as n,m→ ∞.

Hence, (fn) is a Cauchy sequence in (C[a, b], || · ||∞). Therefore, fn converges uniformly.
Again, since f ′

n → g = f ′ uniformly, it follows that∫ x

x0

f ′
n(t) dt→

∫ x

x0

f ′(t) dt.

lim
n→∞

[fn(x)− fn(x0)] = f(x)− f(x0)

lim
n→∞

fn(x) = f(x) (∵ lim
n→∞

fn(x0) = f(x0))

□

Remark 6.5. Convergence of (fn(x0)) for some point is necessary. Consider
fn(t) =

√
t+ n, t ∈ [0, 1]

Then fn does not converge at any point of [0, 1], but

f ′
n(t) =

1

2
√
t+ n

unif.−−→ 0

Since

sup
t∈[0,1]

|f ′
n(t)− 0| = sup

t∈[0,1]

1

2
√
t+ n

=
1

2
√
n
→ 0.

Exercise 6.6. Let fn : R → R. Check for uniform convergence of fn to some f :

(1) fn(t) =
sin(nt)√

n

(2) fn(t) = n2t(1− t2)n

(3) fn(t) = te−nt

Also, verify for term-by-term integration and differentiation for each of the above.

Theorem 6.7. Let E ⊆ R, and fn → f uniformly on E. For a limit point x of E,
suppose
(*) lim

t→x
fn(t) = An (finite)

Then (An) is convergent and
lim
t→x

f(t) = lim
n→∞

An.

That is,
lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t)

Proof. Since fn → f uniformly on E. For each ϵ > 0, there exists n0 ∈ N such that
(*) |fn(t)− fm(t)| < ϵ, ∀n,m ≥ n0, ∀t ∈ E
By (∗), it implies that

|An − Am| < ϵ, ∀n,m ≥ n0

So (An) is Cauchy, hence convergent =⇒ An → A (Say).
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Now,
|f(t)− A| = |f(t)− fn(t) + fn(t)− An + An − A|

≤ |f(t)− fn(t)|+ |fn(t)− An|+ |An − A|
< ϵ+ ϵ+ ϵ

for t ∈ (x− δ, x+ δ) \ x and n ≥ n0 ( free of t)

lim
t→x

f(t) = A = lim
n→∞

An

Thus, lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t)

□

Theorem 6.8. Let fn : [a, b] → R be such that (f ′
n) converges uniformly. If there exists

x0 ∈ [a, b] such that (fn(x0)) is convergent, then (fn) is uniformly convergent, and

lim
n→∞

f ′
n(x) =

(
lim
n→∞

fn(x)
)′

(i.e. limit and derivative commute)

Proof. The first part of the proof is as earlier. By the Mean Value Theorem, it follows
that

|fn(x)− fm(x)| ≤ (b− a)∥f ′
n − f ′

m∥+ |fn(x0)− fm(x0)|
Since f ′

n converges uniformly and fn(x0) is convergent, it follows that fn → f (say)
uniformly.

Claim: limn→∞ f ′
n(x) = f ′(x).

Notice that f ′
n need not be continuous, hence Fundamental Theorem of Calculus cannot

be applied.
Therefore, we need to exploit the differentiability of f .
For x ∈ [a, b], define

φn(t) =
fn(x)− fn(t)

x− t
, t ∈ [a, b] \ {x}

Then

limφn(t) =
f(x)− f(t)

x− t
=: φ(t)

Notice that
lim
t→x

φn(t) = f ′
n(x) (finite)

Also,
|φn(t)− φm(t)| = |f ′

n(x)− f ′
m(x)| < ϵ (by MVT)

for n,m ≥ n0 and for all t ∈ [a, b] \ {x}.
Thus,

φn → φ uniformly on [a, b] \ {x}.
Apply previous theorem with E = [a, b].
Then,

lim
n→∞

f ′
n(x) = lim

n→∞
lim
t→x

φn(t) = lim
t→x

lim
n→∞

φn(t) = lim
t→x

φ(t) = f ′(x).

Thus,

lim
n→∞

f ′
n(x) =

(
lim
n→∞

fn(x)
)′
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□

6.1. Term-by-term differentiation. Let Sn = f1+f2+ · · ·+fn, where each fi : [a, b] →
R such that S ′

n
unif−−→ S and Sn(x0) → L. Then,

lim(S ′
n) = (limSn)

′

i.e.,
f ′
1 + f ′

2 + · · ·+ f ′
n + · · · = (f1 + f2 + · · ·+ fn + · · · )′.

This raises a very fundamental question: When does

(**)

(∫ x

a

f(t) dt

)′

=

∫ x

a

f ′(t)dt

hold?
Notice that if f ′ is continuous then for

F (x) =

∫ x

a

f ′(t) dt,

by the Fundamental Theorem of Calculus, F ′(x) = f ′(x).

(F − f)′ = 0
By the Mean Value Theorem, F − f is constant. So F (x) = f(x)− f(a) (∵ F (a) = 0).

However, if f ′ is not continuous, i.e. f ′ ∈ R[a, b] , then (∗∗) need not be true.



42 REAL ANALYSIS

7. Uniform Continuity

Definition 7.1. A function f : A(⊂ (X, d)) → R is said to be uniformly continuous on
A if for each ϵ > 0, there exists δ > 0 such that for all x, y ∈ A,

d(x, y) < δ =⇒ |f(x)− f(y)| < ϵ
Notice that δ is free of choice of locations of points x, y ∈ A; it only depends on their

separation.

Example 7.2. For x0 ∈ X, let f(x) = d(x, x0). Then f is uniformly continuous on X.
(Hint: d(x, x0) ≤ d(x, y) + d(y, x0) =⇒ f(x)− f(y) < d(x, y).)
Similarly, by replacing x with y, it follows.

Example 7.3. For x ∈ X, A ⊂ X, define
d(x,A) = inf{d(x, a) : a ∈ A},

which is called the distance of A from x, and is uniformly continuous as a function of x.
(Hint: d(x, a) ≤ d(x, y) + d(y, a).)
Thus,

d(x,A) ≤ d(x, y) + d(y, A)
and so,

|f(x)− f(y)| ≤ d(x, y) (∵ x↔ y)

Example 7.4. The function f : (0, 1) → R given by f(x) = 1
x
is continuous on (0, 1), but

not uniformly continuous.

7.1. Pointwise continuity of f . Let x0 ∈ (0, 1). Then for ϵ > 0, there exists n ∈ N
such that

(x0 − ϵ/n, x0 + ϵ/n) ⊂ (0, 1)s ss s s
0 x0 − ϵ/n x0 x0 + ϵ/n 1

Suppose ∣∣∣∣ 1x0 − 1

y

∣∣∣∣ < ϵ

for y ∈ (x0 − ϵ/n, x0 + ϵ/n) =: Ix0 .
Then |x0 − y| < ϵx0y.
Let δ = miny∈Ix0{ϵx0y} = ϵx0(x0 − ϵ/n) > 0.
If |x0 − y| < δ. Then∣∣∣∣ 1x0 − 1

y

∣∣∣∣ = |x0 − y|
x0y

<
δ

x0y
≤ ϵx0(x0 − ϵ/n)

x0y
< ϵ

Hence, f is continuous at each x0 ∈ (0, 1).
f is not uniformly continuous:
Let ϵ = 1/2, x = 1

n
, y = 1

n+1
, n ∈ N.

Then for any δ > 0, there exists n0 ∈ N such that

|x− y| =
∣∣∣∣ 1n − 1

n+ 1

∣∣∣∣ < δ
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but

|f(x)− f(y)| = 1 ≮
1

2
.

Hence, f is not uniformly continuous on (0, 1).
From the above argument, we can prove the following result.

Theorem 7.5. Let f : A(⊂ (X, d)) → R. Then f is uniformly continuous on A if and
only if for every pair of sequences xn, yn ∈ A with d(xn, yn) → 0, implies |f(xn)−f(yn)| →
0.

Proof. Suppose f is uniformly continuous on A. Then for any ϵ > 0, there exists δ > 0
such that
(1) d(x, y) < δ =⇒ |f(x)− f(y)| < ϵ.
Let xn, yn ∈ A such that d(xn, yn) → 0. Then for δ > 0, there exists n0 ∈ N such that for
all n ≥ n0,

d(xn, yn) < δ =⇒ |f(xn)− f(yn)| < ϵ (from (1)),
That is, if d(xn, yn) → 0, then |f(xn)− f(yn)| → 0.

Conversely, suppose that f is not uniformly continuous.
Then there exists ϵ0 > 0 such that for every δ > 0 there exist x, y ∈ A with d(x, y) < δ

but |f(x)− f(y)| ≥ ϵ0.
Now, let δ = 1

n
for n ∈ N. Then there exist xn, yn ∈ A such that

d(xn, yn) <
1

n
, ∀n ∈ N, but |f(xn)− f(yn)| ≥ ϵ0.

That is, d(xn, yn) → 0 but lim|f(xn) − f(yn)| ≥ ϵ0, is a contradiction. Hence, f is
uniformly continuous. □

Exercise 7.6. Show that a uniformly continuous function on a metric space (X, d) sends
Cauchy sequences to Cauchy sequences.
(Hint: If f : (X, d) → R is uniformly continuous, so for d(xn, xm) → 0 =⇒ |f(xn) −
f(xm)| → 0.)

Result: Let f : [a, b] → R be a continuous function. Then f is uniformly continuous.

Proof. On contrary, suppose f is not uniformly continuous on [a, b]. Then there exists
ϵ0 > 0 such that for every δ > 0, there exist x, y ∈ [a, b] with |x− y| < δ but

|f(x)− f(y)| ≥ ϵ0.
For δ = 1

n
, there exist xn, yn ∈ [a, b] such that |xn − yn| < 1

n
but |f(xn)− f(yn)| ≥ ϵ0.

By the Bolzano–Weierstrass theorem, xn, yn have convergent subsequences, say xnk
→ x

and ynk
→ y.

Now,

|x− y| = lim
k→∞

|xnk
− ynk

| ≤ lim
k→∞

1

nk

= 0,

so x = y. Since f is continuous, f(xnk
)−f(ynk

) → f(x)−f(y) = 0, but |f(xnk
)−f(ynk

)| ≥
ϵ0, contradiction. □

Example 7.7. Let f : R → R be continuous such that
lim

|x|→∞
f(x) = 0.
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Then f is uniformly continuous.

Proof. For ϵ > 0, there exists [−a, a] such that |f(x)| < ϵ/2 if x ∈ [−a, a]c.
Hence, if x, y ∈ [−a, a]c, then

|f(x)− f(y)| < ϵ

2
+
ϵ

2
= ϵ (1)

Since f is uniformly continuous on [−a, a]. For ϵ > 0, there exists δ > 0 such that
|x− y| < δ =⇒ |f(x)− f(y)| < ϵ (2)

Since (1) holds true for x, y with |x− y| < δ. It follows that for ϵ > 0, we get δ > 0 such
that |x− y| < δ =⇒ |f(x)− f(y)| < ϵ (for any x, y ∈ R).

Hence, f is uniformly continuous on R. □

Notice that if f ∈ C0(R), that is f is continuous and lim|x|→∞ f(x) = 0 and hence f is
uniformly continuous.

But if f is continuous and bounded, then f need not be uniformly continuous on R.

Example 7.8. f(x) = sin x2, which is continuous and bounded but not uniformly con-
tinuous on R.

Example 7.9. Let f : R → R be a bounded continuous function. If f is monotone, then
f is uniformly continuous on R.

Since f is bounded, let
inf f(x) = L, sup f(x) =M.

For ϵ > 0, there exist x0, y0 ∈ R such that f(x0) < L+ ϵ and f(y0) > M − ϵ.

M
M − ε

L
L+ ε

x0 y0

L
L+ ε

M − ε
M

If f is monotone increasing, then for x, y ∈ [x0, y0]
c and x, y ≥ y0

f(y)− f(x) ≤M − f(y0) < M − (M − ε) = ε.
Similarly, if x, y ≤ x0 then

f(y)− f(x) ≤ L+ ε− f(x0) < L+ ε− L = ε.
Thus, for x, y ∈ [x0, y0]

c, we get
|f(x)− f(y)| < ε (1)

Since f is continuous on [x0, y0], f is uniformly continuous on [x0, y0]. For any ε > 0,
there exists δ > 0 such that

x, y ∈ [x0, y0], |x− y| < δ =⇒ |f(x)− f(y)| < ε (2)
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Notice that (1) also holds for x, y ∈ [x0, y0]
c with |x− y| < δ. Thus, we get single δ > 0

such that
|x− y| < δ =⇒ |f(x)− f(y)| < ε

Exercise 7.10. If f : R → R is a bounded continuous function then for f monotone, it
follows that

lim
x→−∞

f(x) = finite, lim
x→+∞

f(x) = finite.

(Hint: For any sequence xn → ∞, f(xn) is bounded and limn→∞ f(xn) = supn f(xn),
for f is increasing.)

Example 7.11. Let f : (a, b] → R and f : (b, c) → R be uniformly continuous. Then
f : (a, c) → R is uniformly continuous.

a b c

Proof. Since f is uniformly continuous on (a, b] and (b, c), for any ε > 0, there exists δ > 0
such that if x, y ∈ (a, b] or x, y ∈ (b, c) with |x− y| < δ, then |f(x)− f(y)| < ε.

Now, let x, y ∈ (a, c), with |x− y| < δ.
Then |x− b| < δ and |y − b| < δ. Hence,

|f(x)− f(y)| < |f(x)− f(b)|+ |f(b)− f(y)| < 2ε.
Thus, f is uniformly continuous on (a, c). □

We see that a uniformly continuous function can be extended uniformly to the closure
of the set.

Theorem 7.12. Let f : A(⊂ R) → R be uniformly continuous on A. Then f can be
extended uniformly to A, and this extension is unique.

Proof. Let x ∈ A. Then there exists xn ∈ A such that xn → x. Now, f(xn) is a
bounded sequence in R. Hence, by Bolzano-Weierstrass theorem, f(xn) has a convergent
subsequence. WLOG we can assume that f(xn) is convergent.

Let f̃(x) = lim f(xn) (∵ lim f(xn) exists )

Notice that f̃ is well defined, because f is uniformly continuous on A. If xn, yn → x,
then xn − yn → 0 =⇒ f(xn)− f(yn) → 0 i.e. lim f(xn) = lim f(yn) (∵ lim f(xn) and

lim f(yn)) both exist).

Hence f̃ : A → R is well defined. Suppose x, y ∈ A and they are close enough to each
other. Then there exist xn, yn ∈ A such that xn → x and yn → y.

Hence,
f̃(x)− f̃(y) = f̃(x)− f(xn) + f(xn)− f(yn) + f(yn)− f̃(y)

=⇒ |f̃(x)− f̃(y)| ≤ |f̃(x)− f(xn)|+ |f(xn)− f(yn)|+ |f(yn)− f̃(y)|
Notice that |f̃(x)− f(xn)| < ε and |f̃(y)− f(yn)| < ε for n ≥ n0 (say).
Let |x − y| < δ (small enough). Then there exists n′ ∈ N such that |xn − yn| < δ for

n ≥ n′.
Since f is uniformly continuous on A, it follows that |f(xn)− f(yn)| < ϵ for n ≥ n′.
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Thus for sufficiently large n ≥ max(n0, n
′).

|f̃(x)− f(y)| ≤ 3ϵ, where |x− y| < δ.

Hence, f̃ is uniformly continuous on A.
This extension of f is unique:
If there exists g̃ : A → R which is uniformly continuous and g̃ = f on A, then for

x ∈ A, there is a sequence xn ∈ A such that xn → x.
Hence,

f̃(x) = lim
n→∞

f(xn) = lim
n→∞

g(xn) = g̃(x)

(∵ g is uniformly continuous extension). □

Next, we shall see that uniformly continuous function grows slower than a straight line.

Theorem 7.13. Let f : R → R be uniformly continuous,then there exist constants A,B ≥
0 such that |f(x)| ≤ A|x|+B for all x ∈ R.

Proof. For any ϵ > 0, there exists δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < 1.
We divide the proof into two parts: one is near ”0” and other is away from ”0”.

< δ

< δ

x1 y1

x2 y2

Let a > 0. Then |f(x)| ≤ A <∞ for x ∈ [−a, a].
Now, consider f : [a,∞) → R.Then for x ∈ [a,∞), we can find n ∈ N such that

x ∈ [a+ nδ, a+ (n+ 1)δ].

a a+ δ a+ 2δ a+ nδ x a+ (n+ 1)δ

Then,
f(x)− f(a) = f(x)− f(a+ nδ) + f(a+ nδ)− f(a)

= f(x)− f(a+ nδ) +
n∑

j=1

[f(a+ jδ)− f(a+ (j + 1)δ)]

⇒ |f(x)| < 1 + n+ |f(a)|

⇒
∣∣∣∣f(x)x

∣∣∣∣ < (n+ 1) + |f(a)|
a+ nδ

<
(n+ 1) + |f(a)|

nδ
<

(
1 +

1

n

)
1

δ
+

|f(a)|
nδ

≤ B <∞

Notice that B is independent of n, hence B is independent of x.
That is, |f(x)| ≤ B|x| if x > a.
Hence, we can summarize that

|f(x)| ≤ B|x|+ A for all x ∈ R.
□
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Example 7.14. Notice that f(x) = x2 is not uniformly continuous on R, as it cannot
satisfies the conclusion of the above theorem.

Example 7.15. Let f : R → R be differentiable and its derivative is bounded. Then f
is uniformly continuous on R.

For any x, y ∈ R, by the Mean Value Theorem,
|f(x)− f(y)| = |f ′(t)(x− y)| ≤M |x− y|

where t is between x and y, and M is an upper bound for |f ′(t)|.
However, f(x) =

√
x for x ∈ (0,∞) is uniformly continuous, but its derivative is

f ′(x) = 1
2
√
x
, is not bounded.
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8. Completeness

8.1. Fixed Points. Fixed point searching is an idea to solve equation of the form φ(x) =
x. This helps solving a range of problems, including approximation theory, differential
equations etc.

Fixed points can be obtained via iterations, i.e. if the function ”shrinks nicely”, then
we get fixed points via iteration.

That is, if x0 is a point in the space X, then
x0 → φ1(x0) → φ2(x0) → · · ·

where φn denotes n-times composition of φ.

x

y
y = x

x0

φ(x0)

φ2(x0)

If the sequence (φn(x0)) is convergent and φ is continuous, then φn(x0) → x and thus
φ(x) = φ(limn→∞ φn(x0)) = x.

However, if the space is complete, we only need to verify φn(x0) to be a Cauchy sequence.
Nicely shrinking function, we mean here with contraction mapping.

Definition 8.1. A function φ : (X, d) → (X, d) is called contraction if there exists
0 < α < 1 such that

d(φ(x), φ(y)) ≤ α d(x, y), ∀x, y ∈ X.

Theorem 8.2. Let (X, d) be a complete metric space. If φ : (X, d) → (X, d) is a con-
traction, then φ has a unique fixed point.

Proof. Let 0 < α < 1 be such that
d(φ(x), φ(y)) ≤ α d(x, y), ∀x, y ∈ X.

For a point x0 ∈ X, let
φ0(x0) = x0, φ1(x0) = φ(x0) etc.

Then
d(φn+1(x0), φ

n(x0)) ≤ α d(φn(x0), φ
n−1(x0)) ≤ αnd(φ(x0), x0).

We show that φn(x0) is a Cauchy sequence.
Let m > n:

r
n

r
n+ 1

r
· · ·

r
n− 1

r
m
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Then
d(φn(x0), φ

m(x0)) ≤ (αn + · · ·+ αm−1) d(φ(x0), x0)

≤ αn

1− α
d(φ(x0), x0) (∵ 0 < α < 1)

→ 0 as n→ ∞
Since (X, d) is complete, φn(x0) → x ∈ X (say).

=⇒ φ(x) = φ
(
lim
n→∞

φn(x0)
)
= lim

n→∞
φn+1(x0)

=⇒ φ(x) = x
If ∃y ∈ X such that φ(y) = y, then

d(x, y) = d(φ(x), φ(y)) ≤ αd(x, y)
⇐⇒ x = y (∵ 0 < α < 1)

This establishes that φ has unique fixed point. □

Notice that completeness property of the space is a sufficient condition for existence of
fixed point.

For example,
φ : (0,∞) → (0,∞)

φ(x) =
1

2
(x+

a

x
), a > 0

satisfies φ(
√
a) =

√
a.

Also, contraction is a sufficient condition for existence of fixed point. Notice that φ
above is not a contraction mapping, since

|φ(x)− φ(y)| = 1

2
|1− a

xy
| |x− y|

because the function |1− a
xy
| is not bounded near zero.

Exercise 8.3. If (X, d) is a complete metric space and f : X → X is such that fk is a
contraction, then show that f has a unique fixed point.

(Hint: do for k = 2, use the fact that fk cannot have two fixed points.
If f 2(x0) = x0 and y0 = f(x0)(say), implies that f(y0) = y0 =⇒ y0 = x0)

Exercise 8.4. Let T : C[0, 1] → C[0, 1] be defined by

T (f)(x) =

∫ x

0

f(t)dt

Show that T 2 is a contraction but T is not a contraction.

Notice that the above fact in these example is also clear from the fact that in the
convergence of φn(x0), we can ignore finitely many steps.

Now, we shall try to understand the existence and uniqueness of the initial value prob-
lem:

(*)

{
y′ = f(x, y)

y(0) = y0
with the help of fixed point theorem.
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Suppose f is a continuous function in some rectangle containing the interval (0, y0) in
its interior, and f is Lipschitz in the second variable, i.e.,

|f(x, y1)− f(x, y2)| ≤ K|y1 − y2|,
where K is a fixed constant.

0

y0

R

Then the equation (∗) has a unique solution in some neighborhood of x = 0.
Notice that solving (∗) is equivalent to solve∫ x

0

y′(t)dt =

∫ x

0

f(t, y(t))dt

i.e.,

(**) y(x) = y0 +

∫ x

0

f(t, y(t))dt

That is, we want y(t) such that (∗∗) holds.
In other words, we want to get fixed point for the map φ 7→ F (φ), where

F (φ)(x) = y0 +

∫ x

0

f(t, φ(t))dt,

with φ ∈ C[−δ, δ] for some δ > 0, which we get very soon.
Now,

|F (φ)(x)− F (ψ)(x)| ≤
∫ x

0

|f(t, φ(t))− f(t, ψ(t))|dt,

≤ K

∫ x

0

|φ(t)− ψ(t)|dt

≤ K · 2δ · ∥φ− ψ∥∞.
Thus, F : C[−δ, δ] → C[−δ, δ] is a contraction as long as 2Kδ < 1, i.e. if δ < 1

2K
.

Hence F has a unique fixed point in C[− 1
2K
, 1
2K

].

That is, (∗) has a unique solution in |x| < 1
2K

.

Example 8.5. Consider
y′ = 2x(1 + y), y(0) = 0.

Then

φ(x) =

∫ x

0

2t(1 + φ(t))dt.

With the initial guess φ0 ≡ 0, we get

φ1(x) =

∫ x

0

2t(1 + 0) dt = x2,

φ2(x) =

∫ x

0

2t(1 + t2) dt = x2 +
x4

2
,



REAL ANALYSIS 51

φ3(x) = x2 +
x4

2
+
x6

6
.

Thus, by induction,

(*) φn(x) =
n∑

k=1

x2k

k!
−→ ex

2 − 1,

and φ(x) = ex
2 − 1 is a solution, which is same as method of separation of variables.

Notice that the series (∗) converges uniformly on every interval [−a, a], or on any
interval [a, b].

On the other hand, φ′(x) = 2x(1 + φ(x)) has unique solution in neighborhood of any
point x0, i.e., [x0 − δ, x0 + δ] with δ < 1

4
.

(Hint: Lipschitz constant = 2.)

8.2. Totally Bounded Set. Suppose A be a bounded set in R and, without loss of
generality, A ⊂ (0, 1). Then for ϵ = 1

n
> 0:

0 1
n

2
n

k
n 1

A ⊂
n⋃

k=1

(
k − 1

n
,
k

n

]
That is, A can be covered by finitely many intervals of arbitrarily small length.
A similar argument can be produced for a bounded set A ⊂ Rm (or in finite dimensional

spaces).
Notice that if A is bounded in R, then A ⊂ [a, b] (a = inf A, b = supA, b− a <∞).

a a+ b−a
n

a+ k(b−a)
n

b

Hence,

A ⊆
n⋃

k=1

[
a+

(k − 1)(b− a)

n
, a+

k(b− a)

n

]
Notice that, with small perturbation of the intervals, A can be covered by open intervals

of arbitrarily small length ϵ > 0.
However, if the dimension of the space X is infinite, then the above property need not

be inherited for an arbitrary bounded set.
For example, let X = ℓ1, en = (0, 0, . . . , 1, 0, . . .) (with 1 in the nth position):

∥en − em∥1 = 2, if n ̸= m

⇒ A = {en : n ∈ N} ⊂ B1[0] ⊂ B2[0]
This means A is bounded.
Notice that for any ϵ, 0 < ϵ < 1, if
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A ⊂
∞⋃
n=1

Bϵ(en)

But A cannot be covered by finitely many balls of arbitrarily small radius, i.e. if

A ⊂
n⋃

i=1

Bϵ(fi) ∀fi ∈ ℓ1

Then, for ϵ < 1, each ball Bϵ(fi) can contain exactly one point of A (∵ ∥en−em∥1 = 2).
Also, notice that A has no convergent subsequence. Since ℓ1 is complete, it is equivalent

to say that A has no Cauchy subsequence.

Definition 8.6. A ⊆ (X, d) is said to be totally bounded if for every ϵ > 0, there exist
x1, x2, . . . , xn ∈ X such that

A ⊆
n⋃

i=1

Bϵ(xi)

We can show that centers of these balls can be taken from some points of A, since

A ⊆
n⋃

i=1

Bϵ/2(xi)

Also, we can assume that A ∩ Bϵ/2(xi) ̸= ∅, for all i = 1, 2, . . . , n. Then there exists
yi ∈ A ∩Bϵ/2(xi).
And it is easy to see that

A ⊂
n⋃

i=1

Bϵ(yi)

(Hint: x ∈ A =⇒ d(x, xi) < ϵ/2 for some i and yi ∈ A ∩ Bϵ/2(xi) =⇒ d(x, yi) <
d(x, xi) + d(xi, yi) < ϵ.

Moreover, if A is totally bounded, then we can replace balls with sets in A with arbi-
trarily small diameter.

Result: A in (X, d) is totally bounded if and only if for every ϵ > 0, there exist sets
A1, · · · , An ⊂ A with δ(Ai) < δ such that

A ⊆
n⋃

i=1

Ai

Proof. Let A be totally bounded. Then for every ϵ > 0, there exist points x1, . . . , xn ∈ A
such that

A ⊆
n⋃

i=1

Bϵ(xi)

Set Ai = A ∩Bϵ(xi) ⊆ A and δ(Ai) ≤ 2ϵ.
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i.e.

A =
n⋃

i=1

Ai, δ(Ai) ≤ 2ϵ.

Conversely, suppose for all ϵ > 0, there exist Ai ⊂ A such that A ⊆
⋃n

i=1Ai, with
δ(Ai) < ϵ.

Let xi ∈ A, then Ai ⊆ B2ϵ(xi).
Since ϵ > 0 is arbitrary, we get

A ⊆
n⋃

i=1

B2ϵ(xi)

2ϵ

Ai ϵ

Notice that if A ⊆
⋃n

i=1Bi, Bi ⊆ X, with δ(Bi) < ϵ, then for Ai = A ∩Bi ⊂ A,

(*) A =
n⋃

i=1

Ai; δ(Ai) < δ

It is easy to see that if A is totally bounded in (X, d), then A is bounded.
Also, every finite set A = {x1, x2, . . . , xn} is totally bounded because A ⊆

⋃n
i=1Bϵ(xi).

□

Notice that total boundedness of a set solely depends upon the metric.
In fact, in discrete metric space, (X, d0), A ⊂ X is totally bounded if and only if A is

finite.
(Hint: If A ⊆

⋃n
i=1Bϵ(xi), xi ∈ A, then for 0 < ϵ < 1

2
, each Bϵ(xi) = {xi})

However, if X = ℓ1, ∥en − em∥1 = 2 for n ̸= m, A = {en : n ∈ N} cannot be covered by
finitely many balls of radius < 2.

In fact, A = {en : n ∈ N} with

d(en, em) =

{
2 n ̸= m

0 otherwise

(in its own discrete metric) is not totally bounded.

Exercise 8.7. Every subset of a totally bounded set is totally bounded.

Exercise 8.8. A ⊂ R is totally bounded if and only if A is bounded.
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Exercise 8.9. A is totally bounded iff A is covered by finitely many closed sets of arbi-
trarily small diameters.

(Hint: A ⊂
⋃n

i=1Ai; δ(Ai) < ϵ but δ(Ai) = δ(Ai) < ϵ and A ⊂
⋃n

i=1Ai)

Exercise 8.10. A is totally bounded iff A is totally bounded.
If A is totally bounded, then A ⊆

⋃n
i=1Ai, δ(Ai) < ϵ. So A ⊆

⋃n
i=1Ai, δ(Ai) < ϵ, so A

is totally bounded.
On the other hand, if A is totally bounded, then for ϵ > 0, ∃x1, . . . , xn ∈ X such that

A ⊆ A ⊆
n⋃

i=1

Bi, δ(Bi) < ϵ

Exercise 8.11. If A ⊂ Rn is bounded, then A is totally bounded.

Result: Let (xn) be a sequence in (X, d) and let A = {xn : n ∈ N} (range of (xn)).
(i) If (xn) is Cauchy sequence, then A is totally bounded.

(ii) If A is totally bounded, then (xn) has a Cauchy subsequence.

Proof. (i) Since (xn) is a Cauchy sequence, for ϵ > 0, ∃N ∈ N such that
d(xn, xN) < ϵ ∀n ≥ N
=⇒ δ{xn : n ≥ N} ≤ ϵ

Let
A = {xi : i = 1, . . . , N − 1} ∪ {xn : n ≥ N}

A ⊆
N−1⋃
i=1

Bϵ(xi) ∪Bϵ(xN)

which shows A is totally bounded.

(ii) If A is finite, then trivial.
Suppose A is an infinite set and totally bounded.

Then A can be covered by finitely many sets of diameter < 1. And one of them, say
A1, will contain infinitely many points of A. But A1 is also totally bounded, and hence
covered by finitely many sets of diameter < 1

2
. Let A2 be one of them having infinitely

many points from A. Thus,
A1 ⊃ A2 · · · ⊃ Ak ⊃ Ak+1 ⊃ · · ·

where each Ak is an infinite set with δ(Ak) <
1
k
.

Choose xnk
∈ Ak. Then

δ{xnk
: n ≥ k} ≤ δ(Ak) <

1

k
(∵ Ak are decreasing).

Thus, xnk
is a Cauchy sequence. □

Example 8.12. Let xn = (−1)n has Cauchy subsequences, as it is totally bounded.

Example 8.13. Let en ∈ ℓ2, en = (0, 0, . . . , 1, 0, . . .). Then (en) has no Cauchy subse-
quence.

Theorem 8.14. A set A ⊂ (X, d) is totally bounded if and only if every sequence in A
has a Cauchy subsequence.
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Proof. Let A be a totally bounded set in X, and (xn) be a sequence in A. Then (xn) is
totally bounded and by the previous result (xn) has a Cauchy subsequence.

For the other implication, suppose A is not totally bounded. Then, there exists ϵ > 0
such that

A ̸=
n⋃

i=1

Bϵ(xi)

for every choice of finite set {x1, · · · , xn}.
Thus, for each n ≥ 1, there exists yn ∈ A such that

d(yn, xi) ≥ ϵ ∀i = 1, 2, . . . , n.
Notice that the yn’s must be distinct (or an infinite set), else A will be covered by

finitely many balls of radius ϵ.
Also, notice that (yn) cannot be a Cauchy sequence, else A would be covered by finitely

many ϵ-balls and therefore A is covered by ϵ-balls.
This implies that (yn) has no Cauchy subsequence (as yn’s are distinct).
Therefore, A must be totally bounded. □

Corollary 8.15. (The Bolzano-Weierstrass Theorem) Every bounded infinite sub-
set of R has a limit point in R.

Proof. Let A be an infinite bounded set in R. Then there exist distinct sequence xn ∈ A.
Since A is totally bounded, (xn) has a Cauchy subsequence, say (xnk

). But R is complete,
so xnk

→ x ∈ R. Thus, x is a limit point of A. □

We know that a metric space X is complete iff every Cauchy sequence in X has limit
in X, and every closed set in X is complete. In fact, if X is complete, then A ⊆ X is
complete if and only if A is closed.

We can see that complete metric spaces have some common properties like R:

Theorem 8.16. Let (X, d) be a metric space. Then the following are equivalent:

(1) (X, d) is complete.
(2) (Nested Set Theorem:) Let Fn be a decreasing sequence of closed sets in X with

δ(Fn) → 0, then
⋂∞

n=1 Fn ̸= ϕ (exactly one point).
(3) (Bolzano-Weierstrass Theorem:) Every infinite totally bounded subset of X has a

limit point in X.

Proof. (1) =⇒ (2) :
Let Fn ⊃ Fn+1 ⊃ · · · and δ(Fn) → 0. Choose xn ∈ Fn, then δ{xk : k ≥ n} ≤ δ(Fn) → 0.
Hence, (xn) is a Cauchy sequence in X, and by (1), xn → x ∈ X.
Since Fn’s are closed, x ∈ Fn for each n,

=⇒ x ∈
∞⋂
n=1

Fn =⇒
∞⋂
n=1

Fn ̸= ∅.

(In fact,
⋂∞

n=1 Fn = {x}, exactly one point.)

(2) =⇒ (3) :
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Let A be an infinite, totally bounded set in X. Notice that A contains a distinct Cauchy
sequence xn (xn ̸= xm for n ̸= m), because A is totally bounded. Set

An = {xk : k ≥ n}
Then A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · · , and δ(An) → 0 (∵ xn is a Cauchy sequence).

But then An ⊇ An+1 · · · and
δ(An) = δ(An) → 0.

By (ii), there exists x ∈
⋂∞

n=1An ̸= ∅.

Now, xn ∈ A, and d(xn, x) ≤ δ(An) → 0.
Hence, xn → x. So x is a limit point of A.

(3) =⇒ (1) :
Let xn be a Cauchy sequence in X. We only need to show that (xn) has a convergent

subsequence.
Note that A = {xn : n ∈ N} is totally bounded, because (xn) is a Cauchy sequence. If

A is finite, the result is trivial. Otherwise (iii) implies A has a limit point. That is, there
exists a subsequence xnk

→ x ∈ X.
Hence, xn → x ∈ X. □

Exercise 8.17. Suppose that every countable, closed subset in X is complete. Show that
X is complete.

Exercise 8.18. Show that X is complete if and only if every closed ball in X is complete.

Remark 8.19. The total boundedness of a set is all about; an infinite set cannot be too
scattered. That is, the substantial portion of the set can be put into (or lies in) a set of
arbitrarily ”small” size by a continuous dissection process by leaving finitely many.
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9. Compact Metric Spaces

Definition 9.1. A metric space (X, d) is said to be compact if X is complete and totally
bounded.

Theorem 9.2. (X, d) is compact if and only if every sequence in X has a convergent
subsequence.

Proof. Suppose X is compact (complete and totally bounded). Let xn ∈ X. Then A =
{xn : n ∈ N} is totally bounded and hence has Cauchy subsequence, say xnk

. But X is
complete, which implies xnk

→ x ∈ X.
On the other hand, if every sequence (xn) in X has a convergent subsequence (xnk

),
which is then Cauchy, and this implies that X is totally bounded.

Also, let xn be a Cauchy sequence in X. Then again A = {xn : n ∈ N} is totally
bounded and has convergent subsequence, say xnk

→ x ∈ X. Thus, xn → x.[
Totally Bounded
+ Complete

]
⇐⇒

[
every sequence has a Cauchy subsequence

+ Cauchy sequence is convergent

]
□

Corollary 9.3.

(1) Let A ⊂ X. If A is compact, then A is closed.
(2) If X is compact and A is closed, then A is compact.

i.e. compact subsets of a compact metric space are closed sets.
(Hint:(i) If A is compact, then for xn ∈ A and xn → x =⇒ xnk

→ y ∈ A =⇒
xn → x = y.

(ii) If A is closed and xn ∈ A, then xn ∈ X =⇒ xnk
→ x ∈ X =⇒ x ∈ A, since A

is closed.)

Exercise 9.4. If K is a compact subset of (R, u), then infK and supK ∈ K.
By definition of infimum, there exists xn ∈ K such that xn → infK. But, since K is

compact, there exists xnk
→ x ∈ K, which implies infK = x etc.

Exercise 9.5. Let E = {x ∈ Q : 2 < x2 < 3}. Show that E is closed and bounded in
(Q, u), but not compact.

(Hint: Q is not complete.)

Exercise 9.6. Suppose f : (X, d) → (Y, ρ) is continuous, then for K ⊂ X to be compact,
f(K) is compact in Y .

Let yn ∈ f(K), then yn = f(xn) for some xn ∈ K. Therefore, there exists a subsequence
xnk

→ x ∈ K such that f(xnk
) → f(x) ∈ f(K).

Exercise 9.7. If A ⊂ X is compact, then show that δ(A) < ∞. If A ̸= ∅, then there
exist x, y ∈ A such that δ(A) = d(x, y).

Note that
δ(A) = sup{d(x, y) : (x, y) ∈ A× A} (say S)
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And d : A× A→ R is (jointly) continuous.
As A× A is compact, the set S is compact in R.
Hence, there exist (x0, y0) ∈ A× A such that δ(A) = d(x0, y0).

Exercise 9.8. Show that S1[0] = {x ∈ ℓ2 : ∥x∥2 ≤ 1} is not compact.
(Hint: The set {en : n ∈ N} is not totally bounded.)

Exercise 9.9. Show that A =
{
x ∈ ℓ2 : |xn| ≤ 1

n
, n = 1, 2, . . .

}
is compact.

(Hint: A is closed, hence complete. A is totally bounded, since for ε = 1, okay. For
ε < 1, only finitely many coordinates are left unpatched (uncovered), hence for each ε < 1,
A = Aε ∪Bε, Aε ∈ Rn for some n.

Corollary 9.10. Let (X, d) be compact. Suppose f : X → R is continuous, then f is
bounded. Moreover, f attains its maximum and minimum.

Proof. f(X) is compact in R, which implies f(X) is closed and bounded. Hence,
sup
x∈X

f(x) ∈ R, inf
x∈X

f(x) ∈ R.

i.e. there exist x0, y0 ∈ X such that f(y0) = supx∈X f(x), f(x0) = infx∈X f(x). Hence,
f(x0) ≤ f(x) ≤ f(y0) ∀x ∈ X.

□

Corollary 9.11. If f : [a, b] → R is continuous, then f([a, b]) is compact and f([a, b]) =
[c, d] for some c, d ∈ R.
Corollary 9.12. If (X, d) is a compact metric space and

C(X) = {f : X → R or C | f is continuous} .
Define

∥f∥∞ = sup
x∈X

|f(x)| <∞.

Then (C(X), ∥ · ∥∞) is complete normed linear space.

Lemma 9.13. Let (X, d) be a metric space. Then the following are equivalent:

(a) If G is a arbitrary collection of open sets in X with
⋃

G∈G G ⊇ X, then there exist
G1, . . . , Gn (finitely many) such that

⋃n
i=1Gi ⊇ X.

(In other words, every open cover has a finite subcover.)
(b) If F is a collection of closed sets in X with

⋂n
i=1 Fi ̸= ∅ for every choice of finitely

many Fi’s in F , then ⋂
F∈F

F ̸= ∅.

(This is called the finite intersection property.)

Notice that (a) =⇒ X is totally bounded, since

X ⊆
⋃
x∈X

Bε(x) =⇒ X ⊆
n⋃

i=1

Bε(xi).

(b) =⇒ X is complete, since every decreasing sequence of closed sets has non-empty
intersection.

Proof.
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(a) =⇒ (b): Let F be a collection of closed sets in X such that
⋂n

i=1 Fi ̸= ∅ for every choice of
finitely many Fi’s in F . On contrary, suppose

⋂
F∈F F = ∅.

Then X =
⋃

F∈F F
c is an open cover of X. Hence X =

⋃n
i=1{F c

i : Fi ∈ F}.
This implies

⋂n
i=1 Fi = ∅, a contradiction.

(b) =⇒ (a): Suppose X =
⋃

G∈G G but X ̸=
⋃n

i=1Gi for any choice of finitely many Gi’s in G.
Then X \

⋃n
i=1Gi ̸= ∅ for every choice of finitely many Gi’s in G, which implies⋂n

i=1G
c
i ̸= ∅ for every choice of finitely many sets Gi’s from G.⋂

G∈G

Gc ̸= ∅ =⇒
⋃

{G : G ∈ G} ̸= X.

□

Theorem 9.14. X is compact iff either (a) or (b) (hence both) of the previous lemma is
satisfied.

Proof. Notice that (a) and (b) imply that X is totally bounded and complete. Hence X
is compact.

Now suppose X is compact, and G is an open cover that admits no finite subcover.
Since X is totally bounded, it can be covered by finitely many closed sets of diameter

≤ 1. But then it implies that one of these, say A1, will not be covered by finitely many
open sets in G.

It follows that A1 ̸= ∅, and it must be an infinite set (else covered by finitely many
G’s).

Next, A1 is totally bounded, so A1 is covered by finitely many closed sets of diameter
≤ 1

2
.

Choose one of them, say A2, such that A2 cannot be covered by finitely many G’s from
G.

Thus,
A1 ⊃ A2 ⊃ · · ·An ⊃ · · ·

where An is closed, infinite, diam(An) ≤ 1
n
, and An cannot be covered by finitely many

G’s from G.
Notice that

⋂∞
n=1An ̸= ∅ (∵ X is complete).

Let x ∈
⋂∞

n=1An, then x ∈ An. Then x ∈ G for some G ∈ G. But G is open, hence
x ∈ Bϵ(x) ⊂ G for some ϵ > 0.

For 1
n
< ϵ, we get x ∈ An ⊂ Bϵ(x) ⊂ G.

Hence, An is covered by a single G ∈ G, which is a contradiction. □

Anϵ
x
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Corollary 9.15. X is compact if and only if every decreasing sequence of non-empty
closed sets has non-empty intersection.

i.e. F1 ⊃ F2 ⊃ · · · ⊃ Fn ⊃ Fn+1 · · · =⇒
∞⋂
n=1

Fn ̸= ∅

Proof. The forward implication is followed by the previous theorem.
Conversely, suppose every nested ( decreasing) sequence of closed sets in X has non-

empty intersection.
We prove compactness of X in the sense of the Bolzano–Weierstrass theorem. Let

xn ∈ X. Define
An = {xk : k ≥ n}.

Then
⋂∞

n=1An ̸= ∅.
Let x ∈

⋂∞
n=1An = A (say). Then A is closed.

Hence, there exists a subsequence xnk
such that xnk

→ x.
(Notice that the sequence xn has been taken distinct, i.e., an infinite set.) □

Remark 9.16. Note that, as long as compactness is concerned, we do not require the
diameter of Fn tends to zero. Hence

⋂∞
n=1 Fn can contain more than one point. This is

in sharp contrast with the condition for completeness.

Corollary 9.17. X is compact if and only if every countable open cover admits a finite
subcover.

Proof. ( =⇒ :) Compact =⇒ lemma (a) holds =⇒ countable cover has finite subcover.
( ⇐= :) Suppose every countable open cover has a finite subcover. This is equivalent

to every countable family of closed sets having the finite intersection property (can be
proved similar to the previous lemma).

Let (xn) ⊂ X be a sequence of distinct terms. Write

An = {xk : k ≥ n}.
Then x ∈

⋂∞
n=1An ̸= ∅, so there exists xnk

∈ X such that xnk
→ x.

Hence, X is compact. □
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10. Separable Metric Spaces

If a space admits a countable dense set, we say that the space is separable. Eventually,
it helps determine the size of the space, certainly not in terms of cardinality only, rather
dimensions, or in a more general sense of size. Evidently, every totally bounded space is
separable.

Definition 10.1. A metric space (X, d) is said to be separable if there exists a countable
set A ⊂ X such that A = X.

For example, Q (the set of rationals) is a countable dense subset of R.
Likewise, Qn and Qn + iQn are countable dense subsets of Rn and Cn, respectively.

It is easy to see that (Rn, ∥ · ∥p) is separable for 1 ≤ p ≤ ∞. However, (ℓp, ∥ · ∥p) is
separable for 1 ≤ p <∞ and not separable for p = ∞.

We know that c00 ⊂ ℓp, where c00 is the space of finite sequences. Let x ∈ ℓp,
x = (x1, x2, . . . , xn, xn+1, . . .)

Define xn = (x1, . . . , xn, 0, 0, . . .). Then
(1) ∥x− xn∥p → 0 as n→ ∞
Since xi ∈ C, there exists xki ∈ Q+ iQ such that |xki − xi|p → 0; i = 1, 2, . . . , n. Thus,(

n∑
i=1

|xki − xi|p
)1/p

→ 0

i.e.
(2) ∥xkn − xn∥p → 0
where xkn = (xk1, . . . , x

k
n) ∈ Qn + iQn.

From (1) and (2),
∥x− xkn∥p ≤ ∥xkn − xn∥p + ∥xn − x∥p → 0

That is, c00(N,Q+ iQ) = ℓp(N,C) .

Next, we shall show ℓ∞(N,C) is not separable, by proving that ℓ∞ cannot be the union
of countably many balls of arbitrarily small radius.

Let A = {x̃1, x̃2, . . .} be any countable set in ℓ∞. Consider
S = {x = (x1, x2, ...) ∈ ℓ∞ : xi ∈ {0, 1} }

Then S is an uncountable set. For this, x ∈ S =⇒ y = x1

2
+ x2

22
+ · · · , xi ∈ {0, 1}. Then

the map from S to [0, 1] is surjective, and hence S is uncountable.
Let x, y ∈ S be such that x ̸= y. Then ∥x− y∥∞ = 1.
Hence, {B 1

2
(x) : x ∈ S} is an uncountable, disjoint collection of open balls in ℓ∞.

Since A is countable, A can intersect only countably many balls B 1
2
’s. Hence A cannot

be dense.
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Exercise 10.2. Show that c00 = c0 and hence deduce c0 is separable.

Exercise 10.3. Let B([0, 1]) be the space of all bounded functions on [0, 1]. Show that
(B([0, 1]), ∥ · ∥∞) is not separable. For t ∈ (0, 1), define ft = χ[0,t). Then for s ̸= t ,
s, t ∈ (0, 1), we get ∥fs − ft∥∞ = 1.

Then S = {B1/2(ft) : t ∈ (0, 1)} is an uncountable collection of disjoint open balls
in B([0, 1]). If A is any countable set, say A = {g1, g2, . . .} ∈ B([0, 1]),then there exists
t0 ∈ (0, t) such that B1/2(ft0) ∩ A = ∅.

That is, except countably many, all the balls in S are left un-intersected by A

Exercise 10.4. The space (C([0, 1]), ∥ · ∥∞) is separable.
(Hint: proof of this will be done by Weierstrass approximation theorem, which we do
later.)

Exercise 10.5. Every totally bounded metric space is separable.
Let (X, d) be totally bounded. For ϵ = 1

n
, there exist xn1 , . . . , xnk

such that

X =

nk⋃
j=1

B 1
n
(xnj

).

Let Dnk
= {xn1 , . . . , xnk

}. Then
D =

⋃
Dnk

is a countable dense set in X.

Next, we consider the compact subsets of the space of continuous functions C(X), then
X is a compact metric space.

Notice that dimC(X) <∞ if and only if X is a finite set. Hence, closed and bounded
subset of C(X) are compact if X is finite.

But the question of compact subsets of C(X), X is compact, is same as when a subset
of C(X) is totally bounded?

In terms of the Bolzano–Weierstrass theorem, we can rephrase, when (uniformly)
bounded sequence in C(X) have a uniformly convergent subsequence?

We will see later that this question is related to the earlier question of asking, When
does a pointwise convergent sequence imply uniform convergence?

That is, pointwise convergence + [something] =⇒ uniform convergence.

Example 10.6. If fn ∈ C(X), X compact, fn
unif−−→ f , then {f} ∪ {fn : n ∈ N} is

compact. (i.e., every Cauchy sequence is totally bounded).

Definition 10.7. A collection F ⊂ C(X) is said to be uniformly bounded if
sup
f∈F

sup
x∈X

|f(x)| = sup
f∈F

∥f∥∞ <∞.
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Example 10.8. Any uniformly convergent sequence fn in B(X) (or C(X)) is uniformly
bounded. (Hint: ∥fn∥∞ ≤ ∥f∥∞ + 1 (for ϵ = 1) for all n ≥ N , n ∈ N.)

Definition 10.9. A collection F ⊂ C(X) is said to be pointwise bounded if for each
x ∈ X,

sup
f∈F

|f(x)| <∞.

Example 10.10. If fn → f pointwise, then fn is pointwise bounded.

Theorem 10.11. Let (X, d) be a compact metric space and f : X → R (or C) be
continuous. Then f is uniformly continuous.

Proof. Let x ∈ X (compact), and ϵ > 0. Then there exists δx > 0 such that d(x, y) <
δx =⇒ |f(x)− f(y)| < ϵ. i.e. y ∈ Bδx(x) =⇒ |f(x)− f(y)| < ϵ

Notice that
X =

⋃
x∈X

Bδx(x).

Since X is compact,

X =
n⋃

i=1

Bδxi
(xi).

Let

δ =
1

2
min
1≤i≤r

{δxi
}.

Then δ > 0.
Let x, y ∈ X and they close enough.There exist xi such that x ∈ Bδxi

(xi).Choose δ
′ > 0

such that δ′ < δ and d(x, y) < δ′ with y ∈ Bδxi
(xi).

xi y

Then d(x, y) < δ′ =⇒ |f(x)− f(y)| ≤ 2ϵ.
Thus, for ϵ > 0, there exists δ′ > 0 such that whenever d(x, y) < δ′ =⇒ |f(x)−f(y)| <

2ϵ. □

Next, we shall discuss the missing ingredient of pointwise convergence to the uniform
convergence.
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11. The Space of Continuous Functions

11.1. Equicontinuity. A collection F ⊂ C(X) is said to be (uniformly) equicontinuous
if for every ε > 0, there exists δ > 0 such that

d(x, y) < δ =⇒ |f(x)− f(y)| < ε, ∀f ∈ F .

Example 11.1.

(i) Finite subset of C(X) is (uniformly) equicontinuous and every sub-collection of a
(uniformly) equicontinuous collection is equicontinuous.

(ii) Let 0 < α ≤ 1 and k > 0. Define
Lipα

K = {f ∈ C([0, 1]) : |f(x)− f(y)| ≤ k|x− y|α}
This collection is equicontinuous, but not totally bounded, since all constant func-
tions are satisfying this condition.

Lemma 11.2. If F ⊂ C(X) is totally bounded, then F is uniformly bounded and (uni-
formly) equicontinuous.

Proof. Since a totally bounded set is (uniformly) bounded, we only need to show that F
is equicontinuous.

Since F is totally bounded, for ε > 0, there exists f1, . . . , fn ∈ F such that for f ∈ F ,
there exists fi with

∥f − fi∥∞ < ε.
But {f1, · · · , fn} is equicontinuous, so for ε > 0, there exists δ > 0 such that

d(x, y) < δ =⇒ |fi(x)− fi(y)| < ε, ∀i = 1, . . . , n.
Now, for any f ∈ F ,

|f(x)− f(y)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |fi(y)− f(y)| ≤ ε+ ε+ ε = 3ε.
□

Corollary 11.3. If fn
unif−−→ f in C(X), then {fn} is uniformly bounded and (uniformly)

equicontinuous.

Proof. Notice that {f} ∪ {fn : n ∈ N} is compact, hence {fn} is totally bounded, so
(uniformly) equicontinuous. □

11.2. Arzelà-Ascoli Theorem. Let X be a compact metric space, and F ⊂ C(X).
Then F is compact if and only if F is closed, uniformly bounded, and uniformly equicon-
tinuous.

Proof. The forward implication follows from the previous lemma.
Conversely, let (fn) ⊂ F be a sequence.

Claim: (fn) has a (uniformly) convergent subsequence.
Note that (fn) is equicontinuous. For ε > 0, there exists δ > 0 such that

d(x, y) < δ =⇒ |fn(x)− fn(y)| < ε, ∀n ≥ 1.
Since X is totally bounded, there exists a finite set x1, . . . , xk ∈ X such that

X =
k⋃

i=1

Bδ(xi).

Let x ∈ X, then there exist xi such that d(x, xi) < δ.
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Also, (fn) is uniformly bounded, so for each i,
{fn(xi)}∞n=1 is bounded in R.

So WLOG, we may assume that {fn(xi)}∞n=1 is convergent for each i = 1, . . . , k.
In particular, for every ε > 0, there exists N ∈ N such that

|fm(xi)− fn(xi)| < ε
for all m,n ≥ N , for each i = 1, 2, . . . , k.

Now, for x ∈ X, there exists xi such that d(x, xi) < δ. Hence,
|fm(x)− fn(x)| ≤ |fm(x)− fm(xi)|+ |fm(xi)− fn(xi)|+ |fn(xi)− fn(x)|

< ε+ ε+ ε = 3ε.
So ∥fm − fn∥∞ ≤ 3ε for all m,n ≥ N . Therefore, (fn) is a (uniformly) Cauchy sequence,
hence convergent (because C(X) is complete). □

Corollary 11.4. Let X be compact. If (fn) is uniformly bounded and (uniformly) equicon-
tinuous in C(X), then (fn) has convergent subsequence.

(Hint: A = {fn : n ∈ N} is closed.)

Example 11.5. Let X = (0, 1) and define

fn(t) =

{
1− nt if t < 1

n

0 if t ≥ 1
n

Show that (fn)
∞
n=1 is pointwise equicontinuous but not uniformly equicontinuous on (0, 1).

Notice that for any point t ∈ (0, 1), there exists n0 ∈ N such that for each n ≥ n− 0,
fn(t) = 0 in a small neighborhood of t.

Hence, (fn)n≥1 is pointwise equicontinuous on (0, 1). However,∣∣∣∣fn( 1

2n

)
− fn

(
1

n

)∣∣∣∣ = |1− n · 1

2n
− 0| = 1

2
where | 1

2n
− 1

n
| = 1

2n
→ 0. Hence, (fn)n≥1 is not uniformly equicontinuous on (0, 1).

1
2n

1
n

t0 1

1

Example 11.6. For X = [0, 1], define

fn(t) = max

{
1− 2(n+ 1)2

∣∣∣∣t− 1

n

∣∣∣∣ , 0} .
Then (fn)n≥1 is equicontinuous at each point t > 0, but not at t = 0.
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For t0 > 0, it follows from the fact that

1− 2(n+ 1)2
∣∣∣∣t0 − 1

n

∣∣∣∣ ≤ 0 iff
1

n
+

1

2(n+ 1)2
≤ t0.

And hence, fn(t) = 0 for n ≥ n0 in a small neighborhood of t0 > 0. Notice that the above
means that (fn)

∞
n=n0

is pointwise equicontinuous at t0 > 0. Since {f1, · · · , fn0−1} (finitely
many) is always equicontinuous. Thus (fn)n≥1 is pointwise equicontinuous for t > 0.

However, for t = 0, fn(0) = 0, fn
(
1
n

)
= 1, but |0 − 1

n
| → 0 and |fn(0) − fn(

1
n
)| = 1.

Thus, (fn)n≥1 is not pointwise equicontinuous at t = 0.

Remark 11.7. We end this section with a remark on structural property of sets in real
line. Any set can be inscribed into countably many disjoint open intervals, however, a
bounded (totally bounded) set can be covered by finitely many almost disjoint intervals
of arbitrarily small length.

Remark 11.8. A closed observation of totally bounded sets reveals that most of the
properties which are true for finitely many points (centers) in a totally bounded metric
space, can easily be percolated to the full space, since any point of the space is in a small
(arbitrarily small) ball.

11.3. Dini’s Theorem.

Theorem 11.9. Let X be a compact metric space, and f, fn ∈ C(X) such that fn ↓ f
pointwise on X. Then fn ↓ f uniformly on X.

Proof. Let gn = fn − f . Then gn ↓ 0 pointwise on X. Notice that for each ϵ > 0,
|gn(x)| < ϵ for large n (depending upon x).

Let
En = {x ∈ X : gn(x) < ϵ}.

Then En = g−1
n (−∞, ϵ), hence open. Also, En ⊂ En+1 ⊂ · · · . Since gn ↓ 0 at each point,

it follows that X =
⋃∞

n=1En.
(If x ∈ X and x /∈ En for all n ∈ N, then gn(x) ≥ ϵ for all n ∈ N, which is a

contradiction.)

But X is compact, hence there exist N ∈ N such that X =
⋃N

n=1En = EN . Thus, for
x ∈ X and n ≥ N , gn(x) ≤ fN(x) < ϵ, i.e., |gn(x)| < ϵ for all n ≥ N , for all x ∈ X.

Hence gn ↓ 0 uniformly on X. □

Corollary 11.10. Suppose fn, f ∈ C(X) and fn ↑ f pointwise, then fn ↑ f uniformly.
(Hint: gn = f − fn ↓ 0 pointwise, so use the above argument.)

1. Notice that the limit function f must be continuous, else fn(x) = xn will contradict
the above theorem.

2. If X is not compact, then the conclusion of the theorem might not be true.
For X = R,

fn(t) =


0 if −∞ < t ≤ n
t
n
− 1 if n < t ≤ 2n

1 if t > 2n



REAL ANALYSIS 67

fn ↓ 0 pointwise,
but

∥fn∥∞ = 1.

t
0 n 2n

1

Remark 11.11. However, a pointwise convergent sequence can differ with uniform con-
vergence on an arbitrarily small set (Egoroff’s Theorem).

11.4. Upper Semi-Continuity. Let f : (X, d) → R. Then f is said to be upper
semi-continuous on X if for each α ∈ R, the set {x ∈ X : f(x) < α} is open.

Result: f : X → R is upper semi-continuous iff for any x ∈ X, and each sequence
xn → x implies

lim sup
n→∞

f(xn) ≤ f(x).

Proof. Let x0 ∈ X and ϵ > 0. Then x0 ∈ {x : f(x) < f(x0) + ϵ} is open.
=⇒ There exists a neighbourhood Bδ(x0) such that f(x) < f(x0) + ϵ for all x ∈ Bδ(x0).
Let 1

n
< δ and xn → x then xn ∈ B 1

n
(x0) such that f(xn) < f(x0) + ϵ.

Hence,
xn → x0 =⇒ lim sup

n→∞
f(xn) ≤ f(x0) + ϵ for all ϵ > 0

So lim supn→∞ f(xn) ≤ f(x0).
Conversely, suppose (on contrary) that f is not upper semi-continuous on X.
Then there exists α ∈ R such that

Aα = {x ∈ X : f(x) < α} is not open. That is there exists x0 ∈ Aα such that for
any neighbourhood Bδ(x0), there exist xδ ∈ Bδ(x0) with xδ ̸∈ Aα =⇒ f(xδ) > α.

For δ = 1
n
, choose xn ∈ B 1

n
(x0) =⇒ xn → x0, but f(xn) > α > f(x0). Thus,

lim sup
n→∞

f(xn) ≥ α > f(x0)

which is a contradiction. □

Example 11.12. If X is compact and f : X → R is upper semi-continuous, then f
attains its maximum.

Note that X =
⋃

α∈R{x ∈ X : f(x) < α}, but X is compact, hence X =
⋃k

i=1{x ∈ X :
f(x) < αi}. For any x ∈ X, f(x) < αi < max{αi} = α <∞. Hence f is bounded above.
Next, f attains its supremum on X.

If not, then f(x) < sup f for all x ∈ X. For n ∈ N, there exists xn ∈ X such that

sup f − 1

n
< f(xn)
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Now, xn ∈ X, X is compact, hence ∃ subsequence xnk
→ x ∈ X. But, then

sup f ≤ lim sup
k→∞

f(xnk
) ≤ f(x)

Thus sup f ≤ f(x), which is not possible, as it contradicts our assumption.

Note that, in similar way, we can define lower semi-continuity, i.e., f : X → R,
{x ∈ X : f(x) > α} is open for each α ∈ R. Also, it follows that f is lower semi-
continuous if and only if for all xn → x,

f(x) ≤ lim inf
n→∞

f(xn)

Thus, f is continuous if and only if f is both lower and upper semi-continuous.

(Hint: limn→∞ supf(xn) ≤ f(x) ≤ limn→∞ inff(xn) whenever xn → ∞.)

Remark 11.13. Note that if f : X → R is upper semi-continuous (USC), then
f−1{(−∞, α)} is open, and hence f−1{[β, α)} is open if β < α, but it does not imply that
f−1{(β, α)} is open for each α,B ∈ R, else f is continuous.
(However, f is Lebesgue measurable!)

But if f is both lower semi-continuous (LSC) and upper semi-continuous (USC), then
f−1{(α, β)} = f−1{(−∞, β) ∩ (α,∞)}

is open, hence f is continuous.

Remark 11.14. There is no relation between lower semi-continuity and upper semi-
continuity with left limit and right limit.

Example 11.15.

f(x) =

{
sin 1

x
x ̸= 0

1 x = 0

is upper semi-continuous, but none of left limit and right limit exists at x = 0.

Exercise 11.16. Check for lower semi-continuity and upper semi-continuity for f(x) =
⌊x⌋, the greatest integer function.

11.5. Weierstrass Approximation Theorem. We shall see that polynomials are dense
in (C[a, b], ∥ · ∥∞) if b− a <∞. As a consequence, C[a, b] is a separable space.

The question of density of polynomials in C[a, b] can be transferred to C[0, 1] with the
help of the map:

f(t) =
t− a

b− a
For f ∈ C[0, 1] and n = 0, 1, 2, . . ., define (Bernstein polynomial):

Bn(f)(x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k

Then Bn(fn) is a polynomial of degree at most n. Here, Bn(fn) is known as Bernstein
polynomial.

In fact, we have
Bn(f)(0) = f(0), Bn(f)(1) = f(1)

Let us denote fn(x) = xn for n = 0, 1, 2, . . ..
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The following lemma, which is involved with combinatorics, is crucial in proving the
density of Bn(f) in C[0, 1].

Lemma 11.17.

(1) Bn(f0) = f0 and Bn(f1) = f1
(2) Bn(f2) =

(
1− 1

n

)
f2 +

1
n
f1, hence Bn(f2) → f2 uniformly.

(3)
∑n

k=0

(
k
n
− x
)2 (n

k

)
xk(1− x)n−k = x(1−x)

n
≤ 1

4n

(4) Given δ > 0, 0 ≤ x ≤ 1, let F denote the set of
F =

{
k ∈ {0, 1, . . . , n} :

∣∣ k
n
− x
∣∣ ≥ δ

}
. Then∑

k∈F

(
n

k

)
xk(1− x)n−k ≤ 1

4nδ2

Proof. (i) is trivial, as it follows from simple binomial expansions.
Hint:

n∑
k=0

k

n

(
n

k

)
xk(1− x)n−k = x

n∑
k=1

(
n− 1

k − 1

)
xk−1(1− x)n−k

= x
n−1∑
j=0

(
n− 1

j

)
xj(1− x)(n−1)−j = x[x+ (1− x)]n−1 = x

So Bn(f1) = f1.
(ii) To compute Bn(f2), we break the sum into two parts:(

k

n

)2(
n

k

)
=
k

n

(
n− 1

k − 1

)
= (1− 1

n
)

(
n− 2

k − 2

)
+

1

n

(
n− 1

k − 1

)
for k ≥ 2

Thus,

Bn(f2) =

(
1− 1

n

) n∑
k=2

(
n− 2

k − 2

)
xk(1− x)n−k +

1

n

n∑
k=1

(
n− 1

k − 1

)
xk(1− x)n−k

=

(
1− 1

n

)
x2 +

1

n
x→ f2 uniformly

(iii) Note that (
k

n
− x

)2

=

(
k

n

)2

− 2x
k

n
+ x2

hence
n∑

k=0

(
k

n
− x

)2(
n

k

)
xk(1−x)n−k = (1− 1

n
)x2+

1

n
x−2x2+x2 =

x(1− x)

n
≤ 1

4n
( by (ii))

(iv) For k ∈ F , 1 ≤ ( k
n
−x)2

δ2
.

Hence,∑
k∈F

(
n

k

)
xk(1−x)n−k ≤ 1

δ2

∑
k∈F

(
k

n
− x

)2(
n

k

)
xk(1−x)n−k ≤ 1

δ2

n∑
k=0

(
k

n
− x

)2(
n

k

)
xk(1−x)n−k ≤ 1

4nδ2

□

Theorem 11.18. Bernstein: Let f ∈ C[0, 1], then Bn(f) → f uniformly.
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Proof. Since f is uniformly continuous, for ε > 0 there exists δ > 0 such that |x − y| <
δ =⇒ |f(x)− f(y)| < ε

2
.

Now,

|f(x)−Bn(f)(x)| =

∣∣∣∣∣
n∑

k=0

(
f(x)− f

(
k

n

))(
n

k

)
xk(1− x)n−k

∣∣∣∣∣ (∵
n∑

k=0

(
n

k

)
xk(1− x)n−k = 1)

≤
n∑

k=0

∣∣∣∣f(x)− f

(
k

n

)∣∣∣∣ (nk
)
xk(1− x)n−k

Let us fix a n (to be specified soon). Let F denote the set of k ∈ {0, 1, . . . , n} such that∣∣ k
n
− x
∣∣ ≥ δ. Then

|f(x)− f

(
k

n

)
| < ε

2
for k /∈ F,

and

|f(x)− f

(
k

n

)
| ≤ 2∥f∥∞ for k ∈ F.

Thus,

|f(x)−Bn(f)(x)| ≤
ε

2

∑
k/∈F

(
n

k

)
xk(1− x)n−k + 2∥f∥∞

∑
k∈F

(
n

k

)
xk(1− x)n−k

≤ ε

2
· 1 + 2∥f∥∞

(
1

4nδ2

)
< ε

if n > ∥f∥∞
εδ2

.
Therefore,

∥Bn(f)− f∥∞ < ε if n >
∥f∥∞
εδ2

.

□

Exercise 11.19. If f ∈ C[0, 1] and
∫ 1

0
xnf(x) dx = 0 for all n ≥ 0, then f = 0.
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12. Connected Sets

The structure of the real line has been invaded in several ways to know the peculiar
hidden properties. We have already seen that any open set O ⊂ R can be expressed as
the disjoint union of countably many open intervals. That is,

O =
∞⊔
n=1

In, where In = (an, bn).

Hence, for any set A ⊂ R, we get an open set O ⊃ A, and thus

A ⊂ O ⊂
⋃

In.

Hence, any set can be embedded into countably many open intervals. The “connected
set” has its natural meaning, and we can extract its definition from the intervals.

We know that an interval cannot be broken into two relatively open parts.
On the contrary, suppose that

[a, b] = A ⊔B,
where A and B are non-empty, disjoint, and relatively open sets in [a, b]. This implies
that A and B are disjoint closed sets too, as

A = [a, b] \B, B = [a, b] \ A.
Thus A and B are disjoint, non-empty open and closed sets (called clopen sets).

To start with, let b ∈ B. Since B is open, (b− ε, b] ⊂ B for some ε > 0.

a c− ε c b− ε b

Now, let c = supA. Then a < c < b.
(if a = c, then A = {a} (not open), and if c = b, then A ∩B ̸= ∅.)

By definition of supremum, (c− ε, c)∩A ̸= ∅ and (c, c+ ε)∩B ̸= ∅ (since c is the dead
end of A).

That is, c ∈ A = A and c ∈ B = B, which is a contradiction that A ∩B = ∅.
Hence, based on the above observation, we can define connected/disconnected sets.

Definition 12.1. A metric space X is said to be disconnected (not connected) if there
exist two non-empty open sets A and B such that X = A ⊔ B. The sets A and B are
called a disconnection of X.

We say that X is connected if X cannot be expressed as a disjoint union of two non-
empty open sets in X.

Thus, the interval [a, b] is connected.
Note that, when X = A⊔B where A and B are disjoint, non-empty open sets, it follows

that A and B are closed sets too (as A = Bc, B = Ac). Thus, A and B are disjoint,
non-empty clopen sets.

Thus, X is connected if and only if X has no nontrivial clopen sets.
(Hint: if A is clopen, then X = A ⊔ Ac, and Ac is also open.)

Definition 12.2. A subset E of a metric space X is called disconnected in E if there
exist non-empty disjoint open sets U and V in E such that E = U ⊔ V .
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Note that there exist open sets A and B in X such that
U = A ∩ E, V = B ∩ E

=⇒
E = (A ∩ E) ∪ (B ∩ E) = (A ∪B) ∩ E =⇒ E ⊂ A ∪B.

It is clear that A and B need not be disjoint. However, we can filter them further to
make them disjoint and still cover E.

Lemma 12.3. Let E ⊂ X. If U and V are disjoint open sets in E, then there exist
disjoint open sets A and B in X such that

U = A ∩ E and V = B ∩ E.

Proof. For x ∈ U , there exists εx > 0 such that
E ∩Bεx(x) ⊂ U (∵ U is open in E).

Similarly, for y ∈ V , there exists εy > 0 such that
E ∩Bεy(y) ⊂ V.

Now, U ∩ V = ∅ =⇒ E ∩ (Bεx(x) ∩Bεy(y)) = ∅.
Claim: B εx

2
(x) ∩B εy

2
(y) = ∅.

Note: If d(z, x) < εx
2
and d(z, y) < εy

2
, then

d(x, y) <
εx
2

+
εy
2
.

Choose εx and εy so that

d(x, y) >
εx
2

+
εy
2
.

Then the claim will be satisfied.

E

U V

Bεx(x) Bεy(y)

x y

d(x, y)

Write:
A =

⋃
x∈U

B εx
2
(x), B =

⋃
y∈V

B εy
2
(y)

⇒ A ∩B = ∅ and A,B are open in X, and E ⊂ A ⊔B.
Thus, we say E ⊂ X is disconnected if there exist disjoint open sets A,B in X with

A ∩ E ̸= ∅, B ∩ E ̸= ∅, and E ⊂ A ⊔B. □

Next, we see that connected subsets of R are precisely singletons or intervals.

Theorem 12.4. A subset E of R (containing more than one point) is connected iff for
every x, y ∈ E with x < y it follows that [x, y] ⊂ E.
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Proof. If for some x, y ∈ E, with x < z < y =⇒ z /∈ E, then
E ⊂ (−∞, z) ⊔ (z,∞)

is a disconnection of E. This proves the assertion.
On the other hand, suppose for each pair x, y ∈ E we have [x, y] ⊂ E, but E is

disconnected. Then there exist non-empty open sets A,B ⊂ R such that A ∩ E ̸= ∅,
B ∩ E ̸= ∅ and E ⊂ A ⊔B.
Let a ∈ A ∩ E, b ∈ B ∩ E and assume a < b. Then [a, b] ⊂ E ⊂ A ⊔B.

So, [a, b] is disconnected (∵ [a, b] = (A ∩ [a, b]) ⊔ (B ∩ [a, b])), which is a contradiction.
Finally, suppose for each x, y ∈ E, [x, y] ⊂ E. We claim E is an interval.

α = inf E β = supEα + ε β − ε

Note that (inf E, supE) ⊂ E,where we include the possibilities that inf E = −∞,
supE = +∞.

(Hint: For any ϵ > 0, there exist x, y ∈ E with inf E + ϵ > x and supE− ϵ < y so that
[x, y] ⊂ E ∀ϵ > 0).

Thus, E must be an interval, and it depends upon disposition of inf E, supE as finite
or infinite as element or not of E. □

Exercise 12.5. Show that the connected subsets of Cantor’s set are only singletons (i.e.,
Cantor set is totally disconnected).

Now, we simplify our study of connected sets with the help of continuous functions.
Notice that a discrete metric space (containing more that one point) is always discon-

nected. We use this fact to identify disconnected sets through comparison via continuous
maps.

Theorem 12.6. A space X is disconnected if and only if there exists a continuous sur-
jective map f : X → {0, 1} (two-point discrete space).

Proof. If f : X → {0, 1} is continuous and surjective, then
A = f−1({0}), B = f−1({1}).

are non-empty, disjoint open sets and A⊔B = X. Since f is continuous, A,B are closed.
Thus, X has a disconnection.

Conversely, if X = A⊔B where A and B are non-empty, disjoint open sets in X. Define

f(x) =

{
0 x ∈ A

1 x ∈ B

which is a continuous and surjective map. □

This result gives a perfect replacement of definition of connected sets.
Thus, we conclude that X is connected if and only if every continuous map from X

into a discrete space is constant.

Theorem 12.7. Let f : (X, d) → (Y, ρ) be continuous, and let E ⊆ X. If E is connected,
then f(E) is connected.
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Proof. Suppose f(E) is not connected. Then there exists a continuous surjective map
g : f(E) → {0, 1}. Thus, g ◦ f : E → {0, 1} is continuous and surjective, so E is
disconnected, a contradiction. □

Remark 12.8. A non-constant continuous image of an interval is again an interval. This
is nothing but the intermediate value theorem.

Corollary 12.9. Let I be an interval in R, and f : I → R be a non-constant continuous
function, then f(I) is an interval.

In particular, if a, b ∈ I and f(a) ̸= f(b), then f assumes all values between f(a) and
f(b).

Example 12.10. If A,B are connected subsets of a metric space X, then A × B is
connected in (X ×X, d× d), where

(d× d){(x1, y1), (x2, y2))} = d(x1, x2) + d(y1, y2).

Suppose f : A × B → {0, 1} is continuous. We claim f is constant. For a ∈ A and
b ∈ B, f(a, ·) and f(·, b) are continuous function on A and B respectively . Since A and
B are connected implies f(a, ·) and f(·, b) both are constant. That is, f is constant on
every vertical and horizontal lines. Hence, f is constant.

A

B

c1 c1 c1

c2 c2 c2

Exercise 12.11. Show that (0, 1)×(0, 1) cannot be written as disjoint union of countably
many open balls.

(Hint: (0, 1)× (0, 1) is connected)

Exercise 12.12. Let D ⊂ R and f : D → R continuous. Show that D is connected if
and only if the graph of f , Gf = {(x, f(x)) : x ∈ D} is connected in R2.

(Hint: g : X → X ×X, g(x) = (x, f(x)) is continuous =⇒ Gf is connected (∵ X is
connected)
On the other hand, projection ρ1 : Gf → X =⇒ ρ1(x, f(x)) = x, is continuous =⇒ X
is connected)

Exercise 12.13. If A ⊂ X is connected, then for A ⊆ B ⊆ A, it implies that B is
connected. In particular, A is connected.

Suppose f : B → {0, 1} is continuous and surjective, then f |A : A→ {0, 1} is continuous
=⇒ f is constant on B.

Exercise 12.14. Let A ⊂ B ⊂ X. If A and X are connected, does it imply B is
connected?

( (0, 1) ⊂ (0, 1) ⊔ (1, 2) ⊂ R)
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Exercise 12.15. Let f : [0, 1] → R be defined by

f(x) =

{
sin
(
π
x

)
if x ̸= 0

0 if x = 0

(Topologist’s sine curve)
Show that f is not continuous, but Gf is connected.
(Hint: Consider g : (0, 1] → [−1, 1] by g(x) = sin

(
π
x

)
. Then g is continuous, and hence

g{(0, 1]} is connected =⇒ g is onto.
Also, Gg is connected. Since

Gg ⊂ Gf ⊂ Gg =⇒ Gf is connected.

Exercise 12.16. If f : X → Y is continuous and onto, Y not connected, then X is not
connected.

(Hint: Y = C ⊔D =⇒ X = f−1(C) ⊔ f−1(D))

Exercise 12.17. Ln(R) = {space of all n× n real matrices}
and GLn(R) = {A = (xij) ∈ Ln(R) : detA ̸= 0}.

Then, GLn(R) is disconnected in the usual metric on Ln(R).
(Hint: det(A) =

∑n
i=1 xii =⇒ det is continuous

=⇒ GLn(R) = (det)−1(R \ {0}) is open.
Now,

det : GLn(R)
continuous, onto−−−−−−−−−→ R \ {0}

=⇒ GLn(R) = GL+
n (R) ∪GL−

n (R)
is disconnected, where

(det)−1{(−∞, 0))} = GL−
n (R), (det)−1{(0,∞))} = GL+

n (R).
(Hint: An easiest metric on Ln(R) is d(A,B) = maxij |aij − bij|)
12.1. Path Connectedness. A set E ⊂ X is said to be path connected if for every
x, y ∈ E, there exists a continuous function γ : [0, 1] → E such that γ(0) = x and
γ(1) = y.

Example 12.18. Show that the continuous image of a path connected set is path con-
nected.

Let E ⊂ X be path connected and f : E → C be continuous. Then, for f(x), f(y) ∈
f(E), there exists a path γ : [0, 1] → E (∵ x, y ∈ E) such that γ(0) = x and γ(1) = y.
Therefore, f ◦ γ(0) = f(x) and f ◦ γ(1) = f(y). So f ◦ γ is the required path connecting
f(x) and f(y).

Example 12.19. Let P be a polynomial in Cn. Then Cn \ P−1(0) is path connected.
Let z, w ∈ Cn \ P−1(0). Define γ : C → Cn by γ(t) = (1− t)z + tw, t ∈ C.
Then {t ∈ C : γ(t) ∈ P−1(0)} = (P ◦ γ)−1(0). Since (P ◦ γ) is a polynomial on C, it

implies that (P ◦ γ)−1(0) is a finite set. Hence, C \ (P ◦ γ)−1(0) is path connected in C.
Hence, f(C \ (P ◦ γ)−1(0)) is path connected in Cn \ P−1(0) (since γ(C \ P−1(0)) is

contained in Cn \ P−1(0)) containing z and w. Hence, Cn \ P−1(0) is path connected.
(Note that γ is not onto unless n = 1, hence γ(C \ (P ◦ γ)−1(0)) ⊊ Cn \ P−1(0).)

Once again Topologist’s Sine Curve:
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Let f : [0, 1] → [−1, 1] by

f(x) =

{
sin π

x
, x ̸= 0

0, x = 0

Then
Gf = {(x, sin π

x
) : x ∈ (0, 1]} ⊔ {(0, 0)}

is not open. Gf is not path connected.
(The hope comes from the fact that f is not continuous at 0.)

Diagram: Sine Curve

x

y

(0, 0) (1, 0)

On contrary, suppose there is a continuous path

γ : [0, 1] → Gf = {(x, sin 1

x
) : x ̸= 0} ∪ {(0, 0)}

where γ(0) = (0, 0) and γ(1) = (1, 0); write γ = (γ1, γ2). Since γ is continuous, γ becomes
uniformly continuous. For ε = 1 > 0, there exists δ > 0 such that

|s− t| < δ =⇒ |γ2(s)− γ2(t)| < 1

0 a t t∗ 1

Since 0 ∈ γ−1{(0, 0)}, let
t∗ = sup γ−1{(0, 0)} < 1 (∵ γ(1) = (1, 0))

Choose δ1 > 0 such that 0 ≤ t∗ < t∗ + δ1 < 1 and δ1 < δ.
Note that

t∗ = sup{ t : γ(t) = (γ1(t), γ2(t)) = (0, 0) }
So, there exists tn → t∗, with γ1(tn) = 0 =⇒ γ1(t

∗) = 0, but γ1(t
∗ + δ1) > 0.



REAL ANALYSIS 77

0 t∗ tn tNt∗ + δ1 1

For large N , there exists s, t ∈ (t∗, t∗ + δ1) such that

γ1(t) =
2

N + 1
, γ1(s) =

2

N
Therefore,

γ2(t) = sin

(
N + 1

2

)
π, γ2(s) = δ1 sin

(
Nπ

2

)
So,

|γ2(t)− γ2(s)| = 1
This is a contradiction.

Example 12.20. Rn \ {0}, ( n ≥ 2) is connected.

Suppose not, let U be an open and closed set in Rn\{0}. For x ∈ U and y ∈ Rn\{0}\U ,
we get a line segment path connecting x and y, say L.

Then L∩U is the finite union of open and closed sets in R, but R is connected. Hence,
our assumption is wrong, and Rn \ {0} is connected. In fact, path connected.

U
x

y

Example 12.21. Let Sn−1 = {x ∈ Rn : ∥x∥ = 1}. Then Sn−1 is connected.

Define φ : Rn \ {0} → Sn−1 by

φ(x) =
x

∥x∥
Then φ is continuous and onto, hence Sn−1 is connected. In fact, Sn−1 is continuous
image of a path connected set Rn \ {0}, hence path connected.

Example 12.22. Alternative: If I ⊂ R is connected, then I is an interval.
Suppose there exist x, y ∈ I, x < z < y, but z /∈ I. Define

f(s) =

{
1 if s < z

−1 if s > z

So,
f : I \ {z} = I → {1,−1}

is continuous and onto, so I is not connected!

Example 12.23. Let f : R → R be such that
Gf = {(x, f(x)) : x ∈ R}

is closed and connected in R2. Then f is continuous.
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Let xn → x. Assume f(xn) → y. Then (xn, f(xn)) is a Cauchy sequence in R2 and
hence

(xn, f(xn)) → (x, y)
But Gf is closed, so (x, y) ∈ Gf , which implies y = f(x). Hence, f is continuous.

Note that: f(xn) → y can be achieved by considering the boundedness of f where
xn → x.

If f is bounded, then f(xn) is bounded in R, and by Bolzano-Weierstrass Theorem,
there exists a subsequence f(xnk

) → y ∈ R. Thus,
(xnk

, f(xnk
))

is a Cauchy sequence in R2 and hence convergent, say
(xnk

, f(xnk
)) → (x, y)

But Gf is closed, implies y = f(x).
Notice that there is no other limit point for (xn, f(xn)) than (x, f(x)), else f will not

be well-defined. Thus,
(xn, f(xn)) → (x, f(x))

Hence, f is continuous.
Notice that so far we have not used the fact that Gf is connected.
Next case is when |f(xn)| → ∞, where xn → x. In this case, we reach to a contradiction

that Gf is disconnected in a neighborhood of x.
We claim that there exists δ > 0 such that for |x− y| < δ =⇒ either |f(x)− f(y)| < 1

or |f(x)− f(y)| > 2.

(Bounded below and above in a neighbourhood of x)
If it is false, then there is a sequence un with |un−x| < 1

n
such that 1 ≤ |f(x)−f(un)| ≤

2.

⇒ There is a subsequence f(unk
) of f(un) such that f(unk

) → w.
Then

(unk
, f(unk

)) → (x,w),
and the graph Gf is closed (by hypothesis), which implies f(x) = w.

But 1 ≤ |f(x)− w| ≤ 2
Thus, our claim is true.

Let [a, b] = [x− δ, x+ δ].
We claim that Gf ∩ {[a, b]× R} is connected.

x−δ x x+δ
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On the other hand,
Gf ∩ ([a, b]× R)

= (Gf ∩{[a, b]×R})∩{(t, s) : |f(x)−s| < 1}∪ (Gf ∩ ([a, b]×R))∩{(t, s) : |f(x)−s| > 1}
i.e. Gf ∩ ([a, b]× R) = A ⊔B. (*)
Thus, Gf ∩ ([a, b]×R) is disconnected as (x, f(x)) ∈ A and (xn, f(xn)) ∈ B for large n.
This implies xn → x =⇒ f(xn) is bounded.
Hence, from the previous case, it follows that f(xn) → f(x).

To show Gf is connected, let
g : Gf ∩ ([a, b]× R) → {0, 1}

be continuous. Then g can be extended continuously outside Gf ∩ ([a, b]×R) by constant.
Hence g : G→ {0, 1} is continuous. But G is connected, hence g is constant.
Thus, Gf ∩ ([a, b]× R) is connected.

Example 12.24. Let K = { 1
n
: n ≥ 1} and E = ([0, 1]× {0}) ∪ (K × [0, 1]).

Then E is path connected (Why?)

(0, 0) (1, 0)

Let C = E × ({0} × [0, 1]), known as the comb space, which is path connected.
The deleted comb space

C0 = E ∪ {(0, 1)}
is connected, since E ⊂ C0 ⊂ E and E is connected.

But C0 is not path-connected,

(0, 1) (1, 1)

(0, 0) (1, 0)

because there is no path connecting (0, 1) and (1, 0).

On the contrary, suppose
γ : [0, 1] → C0

be a continuous path such that γ(0) = (0, 1) and γ(1) = (1, 0).
Then γ−1((0, 1)) is a closed set, and
let t0 = sup γ−1((0, 1)) = sup{t ∈ [0, 1] : γ(t) = (0, 1)}.
We claim that there exists t1 ∈ (t0, 1] such that

(P1 ◦ γ){(t0, t1)} ⊆ K,
where P1 : R2 → R is the projection onto the x-axis.

Suppose the claim is false. Then ∃tn ∈ (t0, 1] with tn → t0. By assumption, ∃sn ∈
(t0, tn) such that γ(sn) = (xn, 0) for some xn ∈ [0, 1] \K.
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Note that sn → t0. By continuity, (xn, 0) = γ(sn) → γ(t0) = (0, 1), which is absurd.

0 t0 sn t1 1

Thus, there exists t1 ∈ (t0, 1] such that (P1 ◦ γ){(t0, t1)} ⊆ K.
=⇒ 1 ∈ (P1 ◦ γ)(t0, t1) is a connected subset of K.
Hence (P1 ◦ γ)(t0, t1) = {1} (by contunuity),
but (P1 ◦ γ)(t0) = 0, an absurd.

Example 12.25. Let U be an open set in Rn (or Cn). Then U is path connected if and
only if U is connected.

Let A be the collection of all path connecting a point p ∈ U . Then A is open.
Let q ∈ A, then q ∈ U =⇒ Br(q) ⊂ U for some r > 0.
Let S ∈ Br(z), then S is connected by a path to q by straight line, and q is connected

to p. Hence, Br(q) ⊂ U .
Let B = A \ U . Then B is also open. Since for t ∈ B, there does not exist a path

connecting p, then we can draw a path for both surrounding t, which is not connected to
p. Thus,

U = A ⊔B.
Since U is connected, this implies B = ∅, thus U is path connected.
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