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ABSTRACT

This project explores the connection between differentiation and inte-

gration, focusing on when one can recover a function from its integral or

derivative. We begin by studying conditions under which integrals can be

differentiated and when derivatives can be integrated back.

Key topics include the Vitali Covering Lemma, monotone functions, func-

tions of bounded variation, and absolute continuity. We also discuss the dif-

ferentiation of integrals in Rn, the Hardy–Littlewood maximal function, and

the Lebesgue Differentiation Theorem.
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Chapter 1

1.1 Introduction

In this project , we consider two problems related to the reciprocity of dif-

ferentiation and integration.

(1) Let f be integrable on [a, b], and define

F (x) =

∫ x

a

f(y) dy.

Does this imply that f is differentiable (at least almost everywhere) and

that F ′ = f almost everywhere? We shall see that the answer to this ques-

tion is connected to a broader idea, not limited to dimension one.

(2) What conditions on a function F on [a, b] guarantee that F ′(x) exists

for almost every x, F ′ is integrable, and

∫ b

a

F ′(x) dx = F (b)− F (a)?

The second problem is more difficult than the first one.

As an example, we shall see that if F : [a, b] → R is monotone increasing,

then F is differentiable almost everywhere in [a, b], and

∫ b

a

F ′(x) dx ≤ F (b)− F (a).

However, there exist continuous monotone increasing functions that fail to
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satisfy this inequality. For example, the Cantor-Lebesgue function F on

[0, 1], with F (0) = 0 and F (1) = 1, satisfies F ′(x) = 0 almost everywhere.

To prove this result, we need the Vitali covering lemma.
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Chapter 2

2.1 Vitali Covering Lemma

Definition 2.1.1 : A collection S of intervals in R is said to be a Vitali

cover of a set E ⊂ R if for each x ∈ E and for all ϵ > 0, there exists I ∈ S

such that x ∈ I and ℓ(I) < ϵ.

Lemma 2.1.2 : Let m∗(E) < ∞ and let S be a Vitali cover of E. Then

for all ϵ > 0, there exists a finite subcollection {I1, I2, . . . , IN} ⊂ S such

that

m∗

(
E −

N⋃
n=1

In

)
< ϵ.

proof :

It is sufficient to prove the lemma assuming that the intervals in S are

closed. Since m∗(E) < ∞, we can always find an open set O ⊃ E such

that

m∗(E) ≤ m(O) < ∞.

Thus, without loss of generality, we assume that each I ∈ S is contained in

O.

We construct a sequence {In} of disjoint intervals in S by induction. Choose

I1 ∈ S. Suppose I1, I2, . . . , In have already been chosen. Define

kn = sup{ℓ(I) | I ∈ S, I ∩ (
n⋃

i=1

Ii) = ∅}.

Since I ⊂ O, we have kn < m(O) < ∞.
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If E ⊂
⋃n

i=1 Ii, we stop. Otherwise, we choose In+1 ∈ S such that

ℓ(In+1) >
1

2
kn, In+1 ∩

n⋃
i=1

Ii = ∅.

This process constructs a sequence of disjoint intervals {In} in S such that

∞⋃
n=1

In ⊂ O.

Since m(O) < ∞, we conclude

∞∑
i=1

ℓ(Ii) ≤ m(O) < ∞.

For ϵ > 0, there exists N ∈ N such that

∞∑
i=N+1

ℓ(Ii) <
ϵ

5
.

Define

R = E \
N⋃

n=1

In.

For every x ∈ R, since S is a Vitali cover, there exists an interval Jx ∈ S

such that x ∈ Jx and ℓ(Jx) < ϵ
5m(O)

. The set R is covered by these inter-

vals, forming an open cover. Extracting a finite subcover {J1, J2, . . . , JM},

we obtain

m∗(R) ≤
M∑
j=1

ℓ(Jj) <
ϵ

5
.

Now consider x ∈ R. Since
⋃N

i=1 Ii is closed, we can find a small interval
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I ∈ S such that x ∈ I and I ∩
⋃N

i=1 Ii = ∅. If I ∩ Ii = ∅ for all i ≤ n, then

ℓ(I) ≤ kn ≤ 2ℓ(In+1). Since ℓ(In+1) → 0, I must intersect some In0 with

n0 > N . The smallest such n0 satisfies

ℓ(I) ≤ kn0−1 ≤ 2ℓ(In0).

Since x ∈ I and I ∩ In0 ̸= ∅, the distance from x to the midpoint of In0 is

at most

ℓ(I) +
1

2
ℓ(In0) ≤

5

2
ℓ(In0).

Thus, x belongs to an interval Jn0 centered at the midpoint of In0 with

length 5ℓ(In0). Hence,

R ⊂
∞⋃

n0=N+1

Jn0 .

This implies

m∗(R) ≤
∞∑

n0=N+1

ℓ(Jn0) = 5
∞∑

n0=N+1

ℓ(In0) < ϵ.

This completes the proof.

Consider f : [a, b] → R and write

f ′(x) = lim
h→0

f(x)− f(x− h)

h
= lim

h→0

f(x+ h)− f(x)

h

whereh ̸= 0.

Note that these limits exist if for all hx tends to zero,
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f ′(x) = lim
hx→0

f(x)− f(x− hx)

hx

= lim
hx→0

f(x+ hx)− f(x)

hx

.

In case f is not differentiable, the following four limits could be different:

D+f(x) = lim sup
hx→0

f(x+ hx)− f(x)

hx

D−f(x) = lim inf
hx→0

f(x)− f(x− hx)

hx

.

D+f(x) = lim sup
hx→0

f(x+ hx)− f(x)

hx

D−f(x) = lim inf
hx→0

f(x)− f(x− hx)

hx

.

Then

D+f(x) ≥ D+f(x) and D−f(x) ≥ D−f(x).

If

D+f(x) = D+f(x) = D−f(x) = D−f(x) ̸= ∞,

we say f is differentiable, and the common value is called the derivative of
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f at x.

We denote it by f ′(x). If D+f(x) = D−f(x), f is right differentiable at x

and denote the right derivative by f ′(x+), similarlyf ′(x−).

2.2 Monotone Function

If f : [a, b] → R is monotone, then f is continuous a.e. x. Suppose f is

monotone, then

f(x−) = lim
y→x−

f(y) = sup
y<x

f(y) ≤ f(x) ≤ inf
z>x

f(x) ≤ lim
z→x+

f(z) = f(x+).

Thus, both f(x−) and f(x+) exist and

f(x−) ≤ f(x) ≤ f(x+).

2.2.1 Monotone Functions and Continuity

Let f : [a, b] → R be a monotone increasing function. Then f is continuous

almost everywhere (a.e.) on [a, b].

If f is monotone increasing, then for any x ∈ [a, b], the left and right limits

exist:

f(x−) = lim
y→x−

f(y) = sup
y<x

f(y), f(x+) = lim
z→x+

f(z) = inf
z>x

f(z).

Hence,

f(x−) ≤ f(x) ≤ f(x+).
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If f(x−) < f(x) < f(x+), then such points x are countable since the in-

tervals (f(x−), f(x+)) corresponding to different such x’s are disjoint, and

each such interval contains a unique rational number. Therefore, the set of

discontinuities is countable, and f is continuous a.e.

Theorem 2.2.2

Let f : [a, b] → R be a monotone increasing function. Then:

• f ′ exists a.e. x ∈ [a, b],

• f ′ is measurable, and

•
∫ b

a
f ′(x) dx ≤ f(b)− f(a).

Proof:

To show that f is differentiable a.e., it suffices to show that the set

E = {x : D+f(x) > D−f(x)}

has measure zero, where D+f(x) and D−f(x) denote the right and left

Dini derivatives, respectively.

Let

Eu,v = {x : D+f(x) > u > v > D−f(x)}, u, v ∈ Q.

Then E =
⋃

u,v∈QEu,v, so it is enough to show that m∗(Eu,v) = 0 for each

u > v ∈ Q.
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Let s = m∗(Eu,v), and fix ϵ > 0. By outer regularity, there exists an open

set O ⊃ Eu,v such that m(O) < s + ϵ. For each x ∈ Eu,v, there exists h > 0

such that:
f(x)− f(x− h)

h
< v ⇒ f(x)− f(x− h) < hv.

Thus, the collection {[x − h, x] : x ∈ Eu,v, h > 0} is a Vitali cover of

Eu,v. By Vitali’s Covering Lemma, there exists a finite disjoint subcollec-

tion {In = [xn − hn, xn]}Nn=1 such that:

N⋃
n=1

(xn − hn, xn) ⊃ A = Eu,v ∩
N⋃

n=1

(xn − hn, xn),

and

m∗(A) > s− ϵ.

Since f is monotone increasing,

N∑
n=1

(f(xn)− f(xn − hn)) < v
N∑

n=1

hn = vm

(
N⋃

n=1

In

)
< v(s+ ϵ).

Similarly, for y ∈ A ⊂ Eu,v, there exists k > 0 such that:

f(y + k)− f(y)

k
> u ⇒ f(y + k)− f(y) > uk.

Again, {[y, y + k]} forms a Vitali cover of A, and a disjoint subcollection

{Ji = [yi, yi + ki]}Mi=1 exists such that:

m∗(B) > s− 2ϵ, B = A ∩
M⋃
i=1

Ji,
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and
M∑
i=1

(f(yi + ki)− f(yi)) > u(s− 2ϵ).

However, since Ji ⊂ In for some n, and the intervals are disjoint:

M∑
i=1

(f(yi + ki)− f(yi)) ≤
N∑

n=1

(f(xn)− f(xn − hn)) < v(s+ ϵ).

So,

u(s− 2ϵ) < v(s+ ϵ),

and since u > v, this implies s = 0. Thus, m∗(Eu,v) = 0, and f is differen-

tiable a.e.

Let

g(x) = lim
h→0

f(x+ h)− f(x)

h
,

and define

gn(x) = n(f(x+ 1/n)− f(x)), f(x) = f(b)forx ≥ b.

Then gn(x) → g(x) a.e., so g is measurable. By Fatou’s Lemma:

∫ b

a

g(x) dx ≤ lim inf
n→∞

∫ b

a

gn(x) dx.

Now,

∫ b

a

gn(x) dx = n

∫ b

a

(f(x+1/n)−f(x)) dx = n

[∫ b+1/n

a+1/n

f(x) dx−
∫ b

a

f(x) dx

]
.
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So,

∫ b

a

g(x) dx ≤ lim inf
n→∞

[∫ b+1/n

b

f(x) dx−
∫ a+1/n

a

f(x) dx

]
≤ f(b)− f(a).

Therefore, g ∈ L1([a, b]) and f ′(x) = g(x) a.e. on [a, b].

2.3 Functions of Bounded Variation

Let f : [a, b] → R, and consider a partition

Q = {a = x0 < x1 < · · · < xi−1 < xi < · · · < xk = b}.

Define:

p =
k∑

i=1

[f(xi)− f(xi−1)]
+, n =

k∑
i=1

[f(xi)− f(xi−1)]
−

where, for any real-valued function g,

g+(x) = { g (x)ifg(x) ≥ 0,

0 otherwise , g−(x) = g+(x)− g(x), |g(x)| = g+(x) + g−(x).

Let

t = n+ p =
k∑

i=1

|f(xi)− f(xi−1)| .
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Define

P = sup p, N = supn, T = sup t,

where the suprema are taken over all partitions Q of [a, b].

If T b
a(f) < ∞, then we say that f is of bounded variation on [a, b], ab-

breviated as BV [a, b].

Lemma 2.3.1

If f ∈ BV [a, b], then

T b
a(f) = P b

a +N b
a, and f(b)− f(a) = P b

a −N b
a.

Proof:

For any partition Q of [a, b], we have:

p = n+ f(b)− f(a) ⇒ P = N + f(b)− f(a).

Also,

t = p+n = p+(p−{f(b)−f(a)}) = 2p−{f(b)−f(a)} ⇒ T = 2P−{f(b)−f(a)} = P+N.

Theorem 2.3.2

A function f : [a, b] → R is of bounded variation if and only if f can be

written as the difference of two monotone real-valued functions.

Proof:
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Suppose f ∈ BV [a, b]. Define:

g(x) = P x
a , h(x) = Nx

a

Then both g and h are increasing real-valued functions since

0 ≤ P x
a ≤ T x

a ≤ T b
a < ∞, 0 ≤ Nx

a ≤ T x
a ≤ T b

a < ∞.

By the lemma above,

f(x) = g(x)− h(x) + f(a).

Conversely, suppose f = g − h, where g and h are monotone increasing.

Then, for any partition Q, we have:

∑
|f(xi)− f(xi−1)| ≤

∑
(g(xi)− g(xi−1)) +

∑
(h(xi)− h(xi−1)) .

Hence,

T b
a(f) ≤ g(b)− g(a) + h(b)− h(a) < ∞.

Corollary 2.3.3

If f ∈ BV [a, b], then the derivative f ′(x) exists almost everywhere on [a, b].
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2.4 Differentiation of Integrals

Let f be an integrable function on [a, b]. Define

F (x) =

∫ x

a

f(y) dy.

Does this imply that F ′(x) = f(x) almost everywhere?

Lemma 2.4.1

If f is an integrable function on [a, b], then the function

F (x) =

∫ x

a

f(y) dy

is continuous and of bounded variation.

Proof:

For h ∈ R,

F (x+ h)− F (x) =

∫ x+h

x

f(y) dy =

∫ b

a

χ[x,x+h](y)f(y) dy,

where χ[x,x+h] is the indicator function on [x, x+ h].

Since f ∈ L1([a, b]) and χ[x,x+h] → 0 pointwise as h → 0, we have χ[x,x+h]f →

0 almost everywhere. By the Dominated Convergence Theorem (DCT), it

follows that

lim
h→0

(F (x+ h)− F (x)) = 0,

i.e., F is continuous.
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Now, for any partition {x0, x1, . . . , xk} of [a, b], we have

k∑
i=1

|F (xi)− F (xi−1)| =
k∑

i=1

∣∣∣∣∫ xi

xi−1

f(y) dy

∣∣∣∣ ≤ ∫ b

a

|f(y)| dy.

Hence,

T b
a(F ) ≤

∫ b

a

|f(y)| dy < ∞.

Therefore, F ∈ BV [a, b].

Lemma 2.4.2

Let f ∈ L1([a, b]), and suppose

∫ x

a

f(t) dt = 0, forallx ∈ [a, b].

Then f = 0 almost everywhere on [a, b].

Proof:

Define the set

E = {x ∈ [a, b] : f(x) > 0}.

Assume m(E) > 0. Then there exists a closed set F ⊂ E with m(F ) > 0.

Let

O = (a, b) \ F.

Then O is open, and can be written as a countable disjoint union:

O =
∞⋃
n=1

In, In = (an, bn).
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Now, since
∫ b

a
f = 0, we write:

0 =

∫ b

a

f =

∫
F

f +

∫
O

f.

But since f > 0 on F , we have
∫
F
f > 0, implying

∫
O
f < 0, which is a

contradiction. So
∫
In
f ̸= 0 for some n. Then

∫ an

a

f −
∫ bn

a

f ̸= 0,

implying one of them is non-zero, again contradicting the assumption that∫ x

a
f = 0 for all x ∈ [a, b].

Hence, m(E) = 0. Similarly, the set {x : f(x) < 0} also has measure zero.

Thus, f = 0 almost everywhere.

Lemma 2.4.3

Let f be a bounded measurable function on [a, b]. Define

F (x) =

∫ x

a

f(y) dy + F (a).

Then F ′(x) = f(x) almost everywhere on [a, b].

Proof:

By Lemma 2.4.1, F is of bounded variation, which implies that F ′(x) exists

almost everywhere.

Assume |f(x)| ≤ M for all x ∈ [a, b], so |F ′(x)| ≤ M almost everywhere.
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Define

fn(x) = n (F (x+ 1n)− F (x)) .

Then

fn(x) = n

∫ x+ 1
n

x

f(t) dt.

Since |fn(x)| ≤ M , and fn(x) → F ′(x) pointwise almost everywhere, we

may apply the Bounded Convergence Theorem (BCT). Therefore,

∫ c

a

F ′(x) dx = lim
n→∞

∫ c

a

fn(x) dx = lim
n→∞

n

[∫ c

a

(F (x+ 1n)− F (x)) dx

]
.

Changing variables:

∫ c

a

(F (x+ 1n)− F (x)) dx =

∫ c+ 1
n

c

F (x) dx−
∫ a+ 1

n

a

F (x) dx.

Since F is continuous, we have:

∫ c

a

F ′(x) dx = F (c)− F (a) =

∫ c

a

f(x) dx.

Thus, ∫ c

a

(F ′(x)− f(x)) dx = 0 forallc ∈ [a, b].

By Lemma 2.4.2, it follows that F ′(x) = f(x) almost everywhere on [a, b].
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Theorem 2.4.4

Let f be an integrable function on [a, b], and define

F (x) = F (a) +

∫ x

a

f(t) dt.

Then F ′(x) = f(x) almost everywhere on [a, b].

Proof:

Without loss of generality, assume f ≥ 0.

For each n ∈ N, define

fn(x) =
[ f(x), if f(x) ≤ n,

n, if f(x) > n.

Then f − fn ≥ 0, and define

Gn(x) =

∫ x

a

(f(t)− fn(t)) dt.

By Lemma 2.4.3, Gn is differentiable almost everywhere and G′
n(x) =

f(x)− fn(x) ≥ 0.

We write:

F (x) = F (a) +

∫ x

a

(f(t)− fn(t)) dt+

∫ x

a

fn(t) dt = Gn(x) +

∫ x

a

fn(t) dt.

Differentiating both sides, we get:

F ′(x) = G′
n(x) +

d

dx

(∫ x

a

fn(t) dt

)
≥ fn(x) a.e.
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Since fn(x) → f(x) as n → ∞, we obtain:

F ′(x) ≥ f(x) a.e.

Now integrate both sides over [a, b]:

∫ b

a

F ′(x) dx ≥
∫ b

a

f(x) dx = F (b)− F (a). (1)

Since f ≥ 0, F is monotone increasing, and hence:

∫ b

a

F ′(x) dx ≤ F (b)− F (a). (2)

Combining (1) and (2), we get:

∫ b

a

F ′(x) dx =

∫ b

a

f(x) dx,

which implies ∫ b

a

(F ′(x)− f(x)) dx = 0.

Since F ′(x)− f(x) ≥ 0, it must be that F ′(x) = f(x) almost everywhere on

[a, b].
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2.5 Absolute Continuity

A function f : [a, b] → R is said to be absolutely continuous if for every

ε > 0, there exists δ > 0 such that

n∑
i=1

|f(x′
i)− f(xi)| < ε,

whenever {(xi, x
′
i)}ni=1 is a finite collection of disjoint intervals in [a, b] satis-

fying
n∑

i=1

|x′
i − xi| < δ.

Lemma 2.5.1

Every absolutely continuous function on [a, b] is of bounded variation on

[a, b].

Proof:

Given that f is absolutely continuous. Take ε = 1, then there exists δ > 0

such that
n∑

i=1

|f(yi)− f(xi)| < 1,

whenever {(xi, yi)}ni=1 is a disjoint family of intervals with

n∑
i=1

|yi − xi| < δ.
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Let N be the smallest positive integer such that

N >
b− a

δ
.

Define points aj = a + j(b−a)
N

for j = 0, 1, . . . , N , so that each subinterval

[aj−1, aj] has length < δ.

Then for each subinterval [aj−1, aj], any partition Q of it satisfies ∥Q∥ < δ,

so

T aj
aj−1

(f) < 1.

Therefore,

T b
a(f) ≤

N∑
j=1

T aj
aj−1

(f) < N < ∞.

Hence, f ∈ BV [a, b].

Corollary 2.5.2

If f is absolutely continuous on [a, b], then f is differentiable almost every-

where on [a, b].

Lemma 2.5.3

If f is absolutely continuous on [a, b] and f ′(x) = 0 almost everywhere,

then f is constant.

Proof:

We prove that f(a) = f(c) for any c ∈ [a, b]. Let E = {x ∈ (a, c) : f ′(x) =

0}. Since f ′ = 0 a.e., we have m(E) = c− a.
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Let ε > 0 and η > 0 be arbitrary. For each x ∈ E, there exists a small

interval [x, x+ h] such that

|f(x+ h)− f(x)| < ηh.

By the Vitali Covering Lemma, there exists a disjoint finite subcollection

{[xk, yk]}nk=1 that covers all of E except for a set A of measure less than

some δ > 0, where δ corresponds to ε in the definition of absolute continu-

ity.

Assume xk < xk+1, and define:

y0 = a ≤ x1 < y1 < x2 < · · · < yn ≤ c = xn+1,

so that
n∑

k=0

|xk+1 − yk| < δ.

Now,
n∑

k=1

|f(yk)− f(xk)| ≤ η
n∑

k=1

(yk − xk) < η(c− a).

Also, by absolute continuity of f ,

n∑
k=0

|f(xk+1)− f(yk)| < ε.

Hence,

|f(c)− f(a)| =

∣∣∣∣∣
n∑

k=0

(f(xk+1)− f(yk)) +
n∑

k=1

(f(yk)− f(xk))

∣∣∣∣∣ < ε+ η(c− a).
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Since ε and η are arbitrary, it follows that f(c) = f(a).

Theorem 2.5.4

A function F is an indefinite integral if and only if it is absolutely continu-

ous.

Proof:

(⇒) Suppose F (x) =
∫ x

a
f(t) dt. Then F is absolutely continuous.

(⇐) Suppose F is absolutely continuous. Then F ∈ BV [a, b], so F (x) =

F1(x)−F2(x), where F1, F2 are increasing functions. Therefore, F ′(x) exists

almost everywhere and

|F ′(x)| ≤ F ′
1(x) + F ′

2(x).

This implies

∫ b

a

|F ′(x)| dx ≤ F1(b) + F2(b)− F1(a)− F2(a) < ∞,

so F ′ ∈ L1[a, b].

Define G(x) =
∫ x

a
F ′(t) dt. Then G is absolutely continuous, and so is f =

F −G. Thus,

f ′(x) = F ′(x)−G′(x) = 0 a.e.

By Lemma 2.5.3, f is constant. Hence,

F (x) =

∫ x

a

F ′(t) dt+ F (a).
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Corollary 2.5.5

Every absolutely continuous function is the indefinite integral of its deriva-

tive.

Remark

∫ b

a

F ′(t) dt = F (b)− F (a).

2.6 Differentiation of Integrals in Rn

Let f : [a, b] → R be an integrable function. Define

F (x) =

∫ x

a

f(y) dy for x ∈ [a, b].

Then
F (x+ h)− F (x)

h
=

1

h

∫ x+h

x

f(y) dy.

Let I = (x, x + h) and |I| be the length of the interval I. Letting |I| → 0,

the question is whether

lim
|I|→0

(
1

|I|

∫
I

f(y) dy

)
= f(x) a.e. x.

We can reformulate this problem by considering intervals containing x.

24



That is, does

lim
|I|→0,x∈I

(
1

|I|

∫
I

f(y) dy

)
= f(x) a.e.?

In an analogous way, a similar question can be posed in higher dimensions.

For instance, in Rn (n ≥ 1): Let

r(x) = {y ∈ Rn : ∥x− y∥ < r},

where ∥x− y∥ is the Euclidean distance. Then the Lebesgue measure of the

ball Br(x) is given by

m(Br(x)) = rn ·m(B1(0)),

since the Lebesgue outer measure m∗ is translation and dilation invariant.

If we denote

vh = m(B1(0)),

then

m(Br(x)) = vhr
n.

Suppose f is integrable on Rn, and B denotes a ball containing x. The

question is whether

lim
m(B)→0,x∈B

(
1

m(B)

∫
B

f(y) dy

)
= f(x).

As an example, if f is continuous at x ∈ Rn, then the above limit converges
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to f(x). We have:∣∣∣∣ 1

m(B)

∫
B

|f(y)− f(x)| dy
∣∣∣∣ ≤ 1

m(B)

∫
B

|f(y)− f(x)| dy.

For ε > 0, there exists δ > 0 such that

∥x− y∥ < δ|f(x)− f(y)| < ε.

If B is a ball of radius less than δ
2
and containing x, then∣∣∣∣ 1

m(B)

∫
B

|f(y)− f(x)| dy
∣∣∣∣ < ε,

which is the desired result.

From the above, we can make the observation that the limit is the result of

taking the supremum of a sequence of shrinking balls. This leads to a way

to define the maximum function for |f |.
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Chapter 3

3.1 Hardy-Littlewood Maximum Func-
tion

For f ∈ L1(Rn), define the Hardy-Littlewood maximal function f ∗(x) by

f ∗(x) = sup
x∈B

(
1

m(B)

∫
B

|f(y)| dy
)
,

where the supremum is taken over all balls B ⊂ Rn. The function f ∗ is

known as the Hardy-Littlewood maximal function of |f |.

Theorem 3.1.1

Let f ∈ L1(Rn). Then the following hold:

1. f ∗ is measurable,

2. f ∗(x) < ∞ for almost every x ∈ Rn,

3. m ({x ∈ Rn : f ∗(x) > α}) ≤ A
α
∥f∥1, where A = 3n.

Before proving this result, the focus will be on conclusion (iii). It can be

shown later that f ∗(x) ≥ |f(x)| for almost every x. However, conclusion

(iii) suggests that f ∗ is not much larger than |f |. This observation leads

to the expectation that if f is integrable, then f ∗ should be integrable as
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well. But this is not necessarily the case, as f ∗ of a non-zero function f ∈

L1(Rn) may decay too slowly at infinity.

For this, let α > 0 and r = |x| > α. Then Br(0) ⊂ B2r(x), and we have

f ∗(x) ≥ 1

m(B2r(x))

∫
B2r(x)

|f(y)| dy =
C

|x|n

∫
B2r(x)

|f(y)| dy ≥ C

|x|n

∫
Bα(0)

|f(y)| dy,

where C is some constant.

However, 1
|x|n is not integrable on Rn \Bα(0). Hence, if f

∗ ∈ L1(Rn), then

∫
Bα(0)

|f(y)| dy = 0 forall α > 0.

This implies that |f | = 0 almost everywhere.

Exercise

Let f(x) = 1
x(log x)2

χ(0, 1
2
)(x), where χ(0, 1

2
)(x) is the characteristic function of

the interval (0, 1
2
). Then f ∈ L1(R) but f ∗ /∈ L1

loc(R).

For 0 < x < 1
2
, we have:

f ∗(x) ≥ 1

2x

∫ 2x

0

|f(y)| dy ≥ 1

2x

∫ x

0

1

y(log y)2
dy.

We then estimate this as follows:

f ∗(x) ≥ 1

2x

∫ x

0

1

y(log y)2
dy >

1

2x| log x|
.

The term 1
2x| log x| is not integrable near x = 0, which implies that f ∗ /∈

L1
loc(R).
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Considering F (x) = f(|x|), it is possible to construct F ∈ L1(Rn) with the

above properties via polar decomposition.

The inequality in (iii) is called a weak inequality because it is weaker than

the corresponding inequality in L1-norm (due to the Chebyshev inequal-

ity):

m{x : |f(x)| > α} ≤ 1

α

∫
Rn

|f(x)| dx =
1

α
∥f∥1.

Proof ( of theorem 3.1.1 ) :

(i) f ∗ is a measurable function

To show this, it is enough to show that the set Eα = {x ∈ Rn : f ∗(x) > α}

is open. For any x ∈ Eα, there exists an open ball B such that x ∈ B and

1

m(B)

∫
B

|f(y)| dy > α.

If x′ is any point close enough to x, then x′ ∈ B, and we have:

sup
x′∈B′

1

m(B′)

∫
B′

|f(y)| dy ≥ 1

m(B)

∫
B

|f(y)| dy > α,

where B′ is a ball containing x′. Since B is part of the family over which

the supremum is taken, it means that x′ ∈ Eα. Hence, there exists a small

ball around x that is contained within Eα. This shows that Eα is open.
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(ii) Proof of {x : f ∗(x) = ∞} ⊂ {x : f ∗(x) > α}

If we assume (iii) for the time being, then

{x : f ∗(x) = ∞} ⊂ {x : f ∗(x) > α}, ∀ α > 0.

Hence, by the result in (iii),

m{x : f ∗(x) = ∞} ≤ 1

α
∥f∥1 → 0 as α → ∞.

Finally, the proof of (iii) will be followed by the following lemma.

Covering Lemma

Let B = {B1, B2, . . . , BN} be a finite collection of balls in Rn. Then there

exists a disjoint subcollection {Bi1 , Bi2 , . . . , Bik} of B such that

m

(
N⋃
l=1

Bl

)
≤ 3n

k∑
j=1

m(Bij).

Proof of Covering Lemma:

If all balls in B are disjoint, then the result holds trivially. If not, let B

and B′ be two balls in B that intersect, with radius(B) ≥ radius(B′).

Then, B′ ⊂ 3B = B̃, where B̃ is the ball with the same center as B and

radius 3 times that of B.

First, pick a ball Bi1 in B with the largest radius. Then, delete Bi1 from B

and any other ball that intersects Bi1 . All the deleted balls are contained

in B̃i1 . The remaining balls yield a new collection, say B′, for which the
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procedure is repeated. Pick a ball Bi2 in B′ with the largest radius, and

delete Bi2 and any other ball intersecting Bi2 .

Continuing this way, after at most N steps, we obtain a collection of dis-

joint balls B1, B2, . . . , Bk. Let B̃j = 3Bj. Since any ball B ∈ B must inter-

sect some of the Bj’s, and hence B has equal or smaller radius than Bj, we

must have B ⊂ B̃j. That is,

N⋃
l=1

Bl ⊂
k⋃

j=1

B̃j.

Therefore,

m

(
N⋃
l=1

Bl

)
≤ m

(
k⋃

j=1

B̃j

)
≤ 3n

k∑
j=1

m(Bj).

= 3nm

(
k⋃

j=1

Bj

)
.

Proof of (iii):

Let x ∈ Eα. Then there exists a ball Bx containing x such that

1

m(Bx)

∫
Bx

|f(y)| dy > α.

This implies

m(Bx) <
1

α

∫
Bx

|f(y)| dy.

Since m is inner regular, we have

m(Eα) = sup
K⊂Eα

m(K).
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Let K ⊂ Eα. Then K ⊂
⋃

x∈Eα
Bx. Hence, by the covering lemma, there

exist disjoint balls Bi1 , Bi2 , . . . , Bik such that

m(K) ≤ m

(
N⋃
l=1

Bl

)
≤ 3n

k∑
j=1

m(Bij).

Now, using the inequality for each ball Bij , we obtain

m(K) ≤ 3n

α

k∑
j=1

∫
Bij

|f(y)| dy =
3n

α

∫
⋃

Bij

|f(y)| dy.

Thus, we have

m(K) ≤ 3n

α
∥f∥1.

3.2 Lebesgue Differentiation Theorem

Theorem 3.2.1 : (Lebesgue Differentiation )

If f ∈ L1(Rn), then

lim
m(B)→0,x∈B

1

m(B)

∫
B

f(y) dy = f(x) a.e. x.

Proof:

It is enough to show that for each α > 0, the set

Nα =

{
x | lim inf

m(B)→0,x∈B

∣∣∣∣ 1

m(B)

∫
B

f(y) dy − f(x)

∣∣∣∣ > α

}

32



has measure zero. Since f ∈ L1(Rn), for each ϵ > 0, there exists g ∈ Cc(Rn)

such that

∥f − g∥1 < ϵ.

Since g is continuous, for each x ∈ Rn, we have

lim
m(B)→0,x∈B

1

m(B)

∫
B

g(y) dy = g(x).

Now, we can decompose the difference:

1

m(B)

∫
B

f(y) dy−f(x) =
1

m(B)

∫
B

(f(y)−g(y)) dy+
1

m(B)

∫
B

g(y) dy−g(x)+g(x)−f(x).

Hence,

lim inf
m(B)→0,x∈B

∣∣∣∣ 1

m(B)

∫
B

f(y) dy − f(x)

∣∣∣∣ ≤ (f − g)∗(x) + |f(x)− g(x)|. (∗)

Let Gα = {x : |f(x)− g(x)| > α} and Fα = {x : (f − g)∗(x) > α}. Then,

Nα ⊂ Fα ∪Gα [from(∗)].

By Chebyshev’s inequality, we have

m(Gα) ≤
1

α
∥f − g∥1.

And by the weak inequality, we have

m(Fα) ≤
A

α
∥f − g∥1.
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Thus,

m(Eα) ≤
A

α
ϵ+

1

α
ϵ ∀ϵ > 0.

This implies that

m(Eα) = 0.

Applying the above result to |f |, we get

f ∗(x) = sup
x∈B

1

m(B)

∫
B

|f(y)| dy ≥ lim
x∈B,m(B)→0

1

m(B)

∫
|f(y)| dy = |f(x)|.

Hence, f ∗(x) ≥ |f(x)| for almost every x.

Since differentiation is a local notion, and the behavior of the function is

considered on balls which shrink to a point x, it is enough for the function

to be locally integrable.

f ∈ L1
loc(Rn) if f is integrable over each compact subset of Rn. That is,∫

fχK ∈ L1(Rn) for any compact set K ⊂ Rn.

Corollary 3.2.2 : If f ∈ L1
loc(Rn), then

lim
m(B)→0,x∈B

1

m(B)

∫
B

f(y) dy = f(x) a.e. x.

Let E be a measurable set. By the corollary, for χE ∈ L1
loc(Rn),

lim
m(B)→0,x∈B

m(B ∩ E)

m(B)
= 1 a.e. x.

This means that small balls around x are almost entirely covered by E.
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Moreover, if 0 < ϵ < 1, then there exists a ball B containing x such that

m(B ∩ E) > (1− ϵ)m(B).

This implies that E covers at least (1− ϵ) part of B.
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