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ABSTRACT

The aim of this project is to study the representation of compact groups
and understand Peter-Weyl theorem and irreducible unitary representations

of the special unitary group SU(2).
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Chapter 1

Representation of Finite Group

In this chapter, we will discuss the representation theory of finite groups and
their characters. In the first, section we will set up a few basic definitions,
notations and some elementary results related to the representation of finite
group. In the second section, we will setup definitions and some results

related to character theory of finite group.

1.1 Representation of the finite groups

Let V be a vector space over the field C of complex numbers and let GL(V)
be the group of all isomorphisms of V onto itself. Suppose G is a finite group

with identity element e. Throughout this chapter by group, we mean a finite
group.

Definition 1.1.1. A representation of a group G in V is a homomorphism

7:G — GL(V)ie m(gh) = n(g)n(h) Vg, h € G.
When 7 is given, we say that V is representation space of G and we denote
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group representation by (w,V). If G is group and V is finite dimensional
space, then the degree of representation is the dimension of V.

Following are some properties.

(a) w(e) =T, where is I is the identity map from V onto V.
(b) [m(g™ )] = [m(9)]™", Vg €G.

Definition 1.1.2. Suppose m and 7’ are two representation of the same
group G in vector spaces V and V’. Then we say that 7 and 7" are similar

(or isomorphic) if there exists an isomorphism T : V —— V’ such that

Ton(g) =7'(g)oT, Vg €G.

Definition 1.1.3. Suppose W is a subspace of vector space V. Then we say
that W is stable (or invariant) under =, if 7(G)W C W. Suppose (m, Vy)
and (mg, V) are two representations of G. Then we can make direct sum

representation of G into Vi @ Vy by defining,
(m D m)(9)(ViDV2) = (m(9)(V1), m(g)(V2)) ie.

m(g) O
(71 m)(9) =
Do 0 mg)

Definition 1.1.4. The representation (m, V) is said to be irreducible if there
is no non trivial 7-invariant subspace. Suppose W is an invariant subspace
of m. Then the restriction 7|w of 7 to W is an isomorphism of W onto itself.
Thus 7w is a representation of G in W and is called a subrepresentation of

7. We denote it by (m|yw, W), or simply by (m, W).



Theorem 1.1.5. Let 7 : G — GL(V) be a representation of G in 'V and let
W be a m-invariant subspace of V. Then there exists a complement Wy of W

'V which is invariant under .

Proof. Suppose W' be an arbitrary complement of W. Let P : V — W

be the projection map. Define, P’ = 2 Zﬂ(g)_le(g), where n is order

geG
of G. Since P7(g)(V) C W and W is 7-invariant, we get P'(V) C W and
P'(w) =w, Yw € W. Thus P’ is a projection map of V onto W corresponding
to some complement W, of W.

Claim: 7w(h)P' = P'n(h),Yh € G

1

m(h) " Pr(h) = — > (k)" n(g) " Pr(g)m(h)
geG
= LS w(gh) " Pr(gh)
geG
=P

If s € Wy, we have P'(s) = 0, which gives P'(7(g)(s)) = n(g)P'(s)) =
Hence 7(g)(s) € Wy. Therefore, Wy, is stable under . O

Remark 1.1.6. Suppose that in addition to above assumption V endowed with
an inner product satisfying (m(g)v, 7(g)w) = (v,w),¥V g € G and Yv,w € V.

Then the orthogonal complement W, of W in V is 7-invariant.

Example 1.1.7. Consider cyclic group G = {1,w,w?}. Define 7 : G —
GL(C) defined by m(w) = 2z, where z € C*. For 7 to be a group homomor-
phism, |7(1)| = 1. That is |2|> = 1, this implies that w can be mapped to

any of the cube root of unity to give a representation of degree one.



Theorem 1.1.8. Every finite degree representation of group G is a direct

sum of irreducible representations.

Proof. We will prove this theorem using the induction hypothesis on the
degree of representation. Let (7, V) be a finite degree representation of G. If
the degree of representation is one, then 7 is irreducible. Suppose degree of
representation of 7 is n. Suppose the theorem hold for all representation of
degree less than n. If 7 is irreducible, we are done. Otherwise by Theorem
1.1.5,V can be decompose into direct sums of Vi @V, with dimV; < dim V,
1 = 1,2. By the induction hypothesis, V; and V; are direct sum of irreducible

representations, hence V is the direct sum of irreducible representations. [

1.2 Character theory

Suppose V is a finite dimensional vector space having basis (e;)! ;. Let T be
a linear map from V into itself with matrix (a;;), then we denote trace of T

by Tr(T).

Definition 1.2.1. Let (7, V) be a representation of a finite group G. Then
for each g € G, define x,(g):= Tr(n(g)). Then the complex-valued function

X~ on G is called the character of representation.

Proposition 1.2.2. Suppose x is the character of representation (mw,V) of

degree m. Then,

(a) x(e) = m, where e is the identity element of the group G.

(b) x(g7") =x(9)*, Vg €G.



(c) x(ghg™") = x(h),V g,h €G.

Proof. Since xr(e) = Tr(n(e)) = T'r(I) = m, which proves (a).

Suppose order of G is n and let A1, Ag, ..., A\, are eigenvalues of m(g). Then
g" = e,V g € G, which gives 7(¢") = I, which in turn implies (7(g))" = L.
Hence \* =1 for each of its eigenvalue A. Therefore,

X(g™) =D A" => X =Tr(n(g)), which proves (b).

X(ghg™) = Tr(nlghg™)) = Tr(x(g)r(W)n(g)") = Tr(x(h) = x(h). O

Remark 1.2.3. A function f on G satisfying identity (c) i.e, f(ghg™') = f(h),
YV g,h € G is called class function on G.

Proposition 1.2.4. Suppose (mw,V) and (7',V') are two representations of
G, and let x and X' be their characters respectively. Then the character xg
of direct sum representation (m@ 7', VPV’ ) is x + .

Proof. Suppose g € G and w(g) and 7’(g) are in matrix forms. Then the

T 0
representation of 7 @ 7'(g) in matrix form is given by, (9)
0 (g
Therefore xo(g) = Tr(r @ '(g)) = Tr(n(g)) +Tr(n'(g)) and hence xo(g) =
x(g) +x'(9)- O

Theorem 1.2.5. (Schur's lemma) Suppose (m1,Vy) and (ma, V3) are two
irreducible representations of G and let T be a linear transformation from V,

to Vo such that, mo(g)T(v) = T(m(g)v)V g € G and ¥ v € Vi, Then
(a) If m1 and 7y are not isomorphic, then T= 0.

(b) If Vi =V, and m; = my, Then T' = A for some X € C.



Proof. Since m3(g)T(v) = T(m(g)v), ¥V g € G and ¥V v € V, implies that
ker(T) and Im(T) are invariant subspaces of V; and V,. Since (7, V) is
irreducible representation, therefore either ker(T) = V; or ker(T) = {0}. If
ker(T) = V; then T = 0. If ker(T) = {0} then T is one-one and maps V; iso-
morphically to Im(T). Since (mq, V3) is irreducible representation, therefore,
Im(T) = Vs, it follows that T is an isomorphism, which proves (a).

Now, suppose V; =V, and m; = my, and suppose A be an eigenvalue of
T. Define 77 := T - AL Since A is an eigenvalue of T, therefore ker{7"} #
{0}. On the other hand 75 0o 7" = T’ o ;. Therefore by part (a) 7" = 0,
which in turn implies that T = Al that proves (b). O

Corollary 1.2.6. Suppose (w1, V1) and (7, Vy) are two irreducible represen-
tations of group G of order n and let T: Vi — V5 be a linear transformation.

Define,

ZTFQ T7T1

gG(G
Then,
(a) If m1 and my are not isomorphic, then T" = 0.

(b) If Vi =V, and m = 7o, then T = LTr(T)I, where m is dimension of
V;.



Proof. Let h € G, then

m (T () = 3 mo(h) ma(e) T (g)m ()

geG

= 13" malgh) ' Tr(gh)

geG
_7
Applying schur’s lemma on 7", we see in case (a) 7" = 0, and in case (b)

T’ = M. Consider,

Tr(T') = % > Tr(ma(g) ™' Tmi(g))

geG

=Tr(T).

Hence Tr(Al) = mA = T'r(T), thus A = =T7(T), which proves (b). O

Suppose ¢ and ¢ are two complex-valued functions on G. Define, (¢, ¢):== Z d(g~H(g),
geG
then, (,) is an inner product.

Suppose m1(g9) = (aij(g)) and m(g) = (bim(g)) are in matrix form. And

suppose T' = (zy;) and 7" = (y;;) are in matrix form. Therefore,

Yui :% > (g )Tmiaig)- (1.1)

9€G,j,m

The right hand side is linear form with respect of z,,;, and since it is true

for arbitrary T, therefore in case (a), we have following result.



Corollary 1.2.7. In case (a), we have

—Zblm Yraji(g) =0

geG

i.€ (Qm, aj;) =0

for arbitrary choices of I, m, j, 1

In case (b) T" = AL

Yii = N0y, where § is kronecker delta
1 1
m r(T) m Z §mj

LS bl emsa(0) = & S s
7m

QJm

by equating the coefficient of z,,; we get the following result.

Corollary 1.2.8. In case (b) we have

Loifl=i,m=j

1 _ 1 P
o > b9 asig) = —01i0m; =

geG 0 otherwise

1
and (bym, ;i) = Eéliém]’

Theorem 1.2.9. (a) If x is the character of an irreducible representation,

then (x,x)= 1.

(b) If x and X' are characters of two non isomorphic irreducible represen-

tations, then (x,x’)= 0.



Proof.  (a) Suppose (a;) be matrix form of irreducible representation. We
know that (x,x’) = Z(aii, aj;). By Corollary 1.2.8, we have
4,3
(@i, aj;) = %@'j
(x.x) ==+ Z(Sij = 1. This proves (a).
1,J

(b) By Corollary 1.2.7, the result follows directly.



Chapter 2

Haar measure on the

topological groups

2.1 Topological group

Definition 2.1.1. A group G having a topology on it is said to be a topo-
logical group if the maps (g,h)— gh from G x G — G and g — g~! from

G — G are continuous.

Remark 2.1.2. Continuity of the above two maps is equivalent to the conti-

nuity of map (g,h)— gh™!, from G x G — G.

Suppose U,V C G, we will write UV = {uwv : w € Uyv € V} and
Ut={ut: ueU}. A neighbourhood U of e € G is called symmetric if
U = U~'. In this chapter, we will denote e to be the identity of group G.

Definition 2.1.3. A topological space is said to be locally compact if every

point possesses a compact neighbourhood. A topological group is called a

10



locally compact group if it is Hausdorff and locally compact.
Proposition 2.1.4. Suppose G be a topological group,

(a) if z = gh , O is a neighbourhood of z, then there exist neighbourhoods
U of g and V' of h such that UV C O.

(b) For each g € G, the maps t — gt, t — tg, and g — g~ ' are home-
omorphisms of G. A set U C G is a neighbourhood of g € G if g~*U

1s a neighbourhood of e € G.

(c) IfU is a neighbourhood of e € G, then U~1 is also a neighbourhood of e.

Every neighbourhood U of e € G contains a symmetric neighbourhood

of e.

(d) For every neighbourhood U of e € G, there exists a neighbourhood V' of
e such that V2 C U.

(e) If A, B C G such that, if any of them is open in G, then AB is open
n G.

(f) A, B are compact subsets of G, then AB is a compact subset of G.

(9) For A C G, A=nyAV, where the intersection is taken over all neigh-
bourhoods V' of e.

Proof. (a) Suppose ¢ : G x G — G be such that ¢(g,h) = gh. Let O be
a neighbourhood of z, then ¢~'(0) is open and contains (g,h). Hence
it contains a set of the form O; x Oy, where O; is a neighbourhood of
g and Oy is a neighbourhood of h such that ¢(O; x Os) = 0,05 C O.
Take U to be O; and V to be Os.

11



(b)

Suppose ¢ be the map from G to G defined by t —— gt. Then ¢ is a
bijective function from G to G and by the continuity of maps t — (t,g)
and (t,g) — gt, we get continuity of ¢ — gt. The inverse function
¢! maps t — ¢~ 't and its continuity follows similarly. g — g=! is
bijective and self inverse function, hence continuity of inverse function
follows by definition. Suppose U is any neighbourhood of g then define
V =g U, e € ¢go'U and ¢ 'U is open. Hence V is a neighbourhood

of e.

Since g — g~! is homeomorphism, which in turn implies that if U is
any neighbourhood of e then U~! is a neighbourhood of e~! = e. For

the second part, take V=UNU"', ecVand V =V"1

Consider the map f : U x U — G defined by (g,g) — gh. Suppose
U is a neighbourhood of e. Since f is continuous, hence f~1(U) is open
and contains (e,e). Therefore, by (a) there exist neighbourhoods V3, V5,
of e such that (e,e) € Vi x V5 and V1V, C U. Take V3 = Vi N Vs, clearly
e € V3, and take V = V3N V3_1. Therefore V = V~! and V is open and
VicU.

Since A and B are compact subsets of G, therefore, A x B is a compact
subset of G x G and the map (g,h) — gh is continuous map. We know
that the continuous image of compact set is compact. Hence AB is a

compact subset of G.

Assume A is open. Then AB = Uy Ab is the union of open sets, hence

AB is open.

12



(g) Suppose g € A, and let V be any neighbourhood of e. Then gV !
is a neighbourhood of g, so gV "' N A # ¢. Suppose a € gV~ N A,
then a = gv~! for some v in V. So ¢ = av. Since V is an arbitrary
neighbourhood of e, A C Ny AV.

Conversely, suppose © € Ny AV, and let W be a neighbourhood of x.
Then V = 27'W is a neighbourhood of e. So V™! is a neighbourhood
of e. Therefore, x = gv~! for some g € A and v € V, which implies
g=av € zV = W. This, in turn, implies W N A # ¢. Since W is an
arbitrary neighbourhood of z. Hence z € A.

]

Lemma 2.1.5. Suppose G is a topological group and H is a subgroup of G.
Then H is a subgroup of G. Moreover, if H is normal subgroup of G, then H

1s a normal subgroup of G.

Proof. Suppose g,h € H and let U be any neighbourhood of gh. Suppose
p: G x G — G be defined by (g, h) — gh is continuous. So u~(U) is open
in G X G and contains (g,h), so there are neighbourhoods V' of g and W of h
such that V- x W C pu~Y(U). Sinceg, h € H, there exist z € V NH(# ¢) and
y € WNH(# ¢). Therefore, zy € H and (z,y) € u '(U), which implies
xy € U. This, in turn, implies that xy € U N H and since U is arbitrary
neighbourhood of gh, it implies that gh € H.

For the second part, suppose a € H and g € G. Let V be a neighbourhood
of e in G, and put W = ¢g~'Vyg, then W is a neighbourhood of e¢ in G
and Wa NH # ¢. Let h € H, be such that h € Wa. Since H is normal

1

subgroup, ghg™ € H and ghg™' € gWag™' = gg7'Vgag~' = Vgag™!, thus,

Vgag~' NH # ¢. This, in turn, implies that gag~' € H and hence the result.

13



2.2 Haar measure

Suppose X is locally compact space. Then the Borel o algebra B on X is
the sigma algebra generated by its open subsets. A measure p on this sigma

algebra is said to be a regular Borel measure if it satisfies:
1. p is finite for every compact subset.
2. If B € B then p(B) = inf{u(O): Ois open, B C O}

3. If B € B and u(B) < oo, then
w(B) = sup{p(K) : K is compact, K C B}

Members of B are called Borel sets.

Definition 2.2.1. A left Haar measure on a locally compact group G is
a regular Borel measure p such that pu(zE) = pu(FE), E € B and z € G.

Analogously we can define right Haar measure.

Suppose [ is a continuous function on a topological group G and y € G,

then left translate of f through y is defined as

Lyf(z) = f(y~'z)

and its right translate is defined as
Ry f(x) = f(zy).

14



f is called left uniformly continuous, if for every € > 0, there is a neighbour-
hood V' of e such that | L, f — f||. <, for y € V. Analogously we can define
right uniformly continuous. we will write C.(G) for compactly supported
continuous function on G and C(G) denotes the positively compactly sup-

ported continuous function.

Example 2.2.2. Suppose G is a finite group then for any set M, let |M]|
denotes the number of element in M. Suppose order of the group G is n.
Then we define the measure v on G by v(M) = L|M|, M C G. Then v is

normalised Haar measure on G.
Proposition 2.2.3. If f € C.(G), then f is right uniformly continuous.

Proof. Suppose K = supp(f) and let ¢ > 0. For each x € K there exists
a neighbourhood U, of e such that |f(zy) — f(z)| < § for every y €;U,.
By Proposition 2.1.4, there exists a symmetric neighbourhood V. of e such
thatV,V, C U,. Then {zV,},cx will form a cover of K. Since K is compact,
there exist finitely many points, say x1, 22, x3,...,2, € K such that K C
Ui 2;Vy,. Suppose V =N, V..

Claim: |f(zy) — f(x)| <eif forally € V.

If z € K then X € x;V,, for some j and xj_lx € V., and hence xy € z;U,,,

therefore

[f(zy) = f@)] < [f(ey) — )] + | f ;) = flo)] <e

And if x ¢ K then f(z) = 0, and hence either f(zy) = 0 (if zy ¢ K) or
vy € x;V,, for some j and xj_lx = xj_lxyy_l € Uy, so that |f(z;| < 5 and

hence the results. O

15



Suppose f,¢ € CF(G), then we define Haar covering number of f with
respect to ¢ by

(f:0)= z'nf{Zci D f < Zcingb for some x1, 9, ..., x, € G}
i=1 i=1

The above definition make sense as the set {z : ¢(x) > £[|¢||.} is open, non
empty and as supp(f) is compact, so finitely many left translates of it cover

supp(f) and therefore there are xy, zs,. .., z, such that

2||”<2>f|||£u 2 Leio
and hence (f : ¢) > 0.
Lemma 2.2.4. Suppose that f,¢,g € CF, then
(a) (f:¢)=(Laf: ) foranyx € G.
(b) (cf : 6) = c(f : &) for any positive c.
(¢c) (f+g9:0)<(f:9)+(9:9).
(d) (f:0)<(f:9)(g:9).

Proof. Since f <> ¢;L,,¢ if and only if L, f <> ¢;L,,,¢ which proves (a)
part. Similarly part (b) is easy to see. For part (c), suppose f < > . ¢;Ly, ¢
and g < 5, ds Loy, thus if (f : 6) < v and (g 6) < Xd; then (f +g
®) <> ¢+ > d; and hence prove (c). O

16



Now, we shall make a normalization by choosing fy, € CF and define

f:0)

7 +
ooy Jor foeCe

Iy(f) =

Hence by the previous lemma

(fo, &)™ < Ls(f) < (f : fo)-

Lemma 2.2.5. If f1, fo € CF(G) and € > 0, then there is a neighbourhood
V' of e such that I5(f1) + Is(f2) < Is(f1 + fa) + €, whenever supp(¢p) C V.

Proof. Fix g € CF(G) such that ¢ = 1 on supp(fi + f2) and let § > 0.
Suppose h = f; + fo + 0g and h; = % for ¢ = 1,2, and h; = 0 outside
of supp(f;). Then h; € CF(G), therefore by Proposition 2.2.3, there is a
neighbourhood V' of e such that |h;(z) — hi(y)| < 6 and y~'z € V. Suppose
¢ € CH(G) be such that supp(¢) C V, and h < 7" | ¢;L,, ¢, then if xj_lx €
supp(¢) we get |h;(z) — hi(z;)] <4, so

fi(z) = <ch¢:c x) <Zc]¢:c x)[hi(x;) + 6].
But then (f; : ¢) <> ¢;lhi(z;) + d] and since hy + hy < 1
(f:0)+(f2:0) <D i1 +20]
J
Now > ¢; can be made arbitrary close to (h: ¢), so by Lemma 2.2.4,

Is(f1) + 1s(f2) < (14 20)Io(h) < (14 20)[Ls(f1 + f2) + 01s(9)].

17



Therefore, by the inequality which we get just earlier of this lemma, it suffices

to choose § to be as small so that

20(fr+ fa: fo) +0()1+20(g: fo) <e. [

Theorem 2.2.6. Every locally compact group G possesses a left Haar mea-

sure.

Proof. Suppose X; be the interval [(fo : f)™', (f : fo)] for every f € CSG,
suppose X = ercj Xy. Then by Tychonoft’s theorem, X is compact
Hausdorff space and by lemma 2.2.5, every I, is an element of X. Sup-
pose for every compact neighbourhood V' of e, K(V') denotes the closure of
{Is : supp(¢) C V} in X. It is easy to see N, K(V;) D K(N?_,V;), so by
finite intersection property of compact space, there is an element [ in the
intersection of all the K(V'), such that for every neighbourhood V' of e and
any gi, g2, - - -, gn and € > 0, there exists ¢ € CH(G) with supp(¢) C V such
that |I(g;) —15(g;)| < efor j =1,2,...,n. Therefore in view of Lemma 2.2.3
and Lemma 2.2.4, I is left invariant and satisfies I(af + bg) = al(f) + bI(g)
V f,g € CH(G) where a,b > 0. Now, if we extend I to C.(G) by defining
I(f) = I(f*) — I(f7), then I is left invariant positive linear functional on
C.(G). Therefore, by invoking the Riesz representation theorem, we get the
result. O

18



Chapter 3

Representation of Compact

Group

Throughout this chapter, by a group, we mean a topological group.

3.1 Representation of the topological groups

Suppose H is a Hilbert space over C. Let B(H) be the set of all bounded
linear operator on H and GL(H ) denotes the group of all invertible members
of B(H).

Definition 3.1.1. A representation of a group G on H is a group homomor-
phism 7 : G — GL(H) such that for every v € H, the map g — m(g)v from

G into H is continuous.

For given 7, we called H to be representation space and denotes group
representation by (7, H). The dimension of H is called the dimension of the

representation.

19



Definition 3.1.2. A representation (7, H) of G is said to be unitary repre-
sentation if w(g) is unitary operator on H for every g € G, that is, if (-,-)
is an inner product on H, then (m(g)v,7(g)w) = (v,w), ¥V v,w € H and
VgeG.

Definition 3.1.3. Suppose (7, H) and (p, M) are two representations of the
group G. Then 7 and p are called equivalent if there exists a continuous

linear isomorphism 7' : H — M such that T'w(g) = p(g)T, for all g € G.

Definition 3.1.4. Suppose (7, H) be a representation of group G on fi-
nite dimensional Hilbert space H. Suppose H* denotes the dual of H. We
define contragredient representation by ¢ : G — GL(H*) by 7°(g)y(v) =
y(m(g W), Vy€e H* and Vv € H.

The above definition make sense because,
1. m¢(e)y(v) =7(v), ¥~y € H* and Vv € H, which gives 7°(e) = I on H*.

2. 7(gh)y(v) =~ (r((gh) " )v)m*(h)(v( (g~ )v)) = 7(g)mc(h)(v(v)),V g €
G and Vv e H.

Definition 3.1.5. Suppose (7, H) be a representation of G. A closed sub-
space M of H is said to be invariant subspace of wif w(g)v € M for allv € M
and V g € G. If M is an invariant subspace of 7, then g — 7|y/(g) is group

representation and called subrepresentation of m and denoted by (m|y, M).

Remark 3.1.6. If M is a closed subspace of H and T € B(H), then M is
invariant under T if and only if TP = PT P, where P is orthogonal projection
on M. This is because, if M is invariant under 7', then TP(z) € M for
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all z € H, which in turn implies that TP(X) = PTP(x). Conversely, if
TP =PTPand z € M, then T'(z) = TP(x) = PTP(z) € M, which implies
that T'(xz) € M. Hence M is invariant under 7.

Example 3.1.7. Suppose G be a compact group and let x4 be a Haar measure

on G. Let H = L*(G). Define,

(R(9)f)(s) = f(s9), € G, f € H.

Then g — R(g) is a unitary representation and is called right reqular repre-

sentation. Analogously we define left reqular representation as (L(g)f)(s) =

flg71's), g€ G, f € H.

Lemma 3.1.8. Suppose (w, H) be a unitary representation of a group G.

(a) If M is an invariant subspace of 7, then the subspace M= is also in-

variant subspace of .

(b) Let M be a closed subspace of H and let P be the orthogonal projection
of H on M. Then M s invariant for = if and only if Pr(g) = n(g)P
forall g € G.

Proof. (a) Suppose m € M and v € M+ and g € G.
(m(g)u,m) = (u, 7 (g)m)
= (u,m(g~H)m), since 7 is unitary

=0, since M 1s invariant under w

and hence m(g)u € M*.
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(b) Suppose Pr(g) = m(g)P, and let m € M then 7(g)(m) = w(g)P(m) =
Pr(g)(m) € M, and hence M is invariant for 7. Conversely, suppose
M is invariant for 7, then by Remark 3.1.6, 7(g)P = Pw(g)P, which in
turn implies that w(g)*P = Pr(g)*P (as P is self adjoint). Which gives
(m(g)*P)* = (P7(g)*P)*, which in turn implies Pn(g) = Pn(g)P.

Direct Sum

Suppose {H;}iea be a collection of Hilbert spaces. Consider the set

H=A{u = (w) : u; € H; and 2:||uz||2 < 0o}. Then H is vector space
with coordinate-wise addition andz scalar multiplication. Suppose v = (v;)
and u = (u;), define (u,v) = Z(ul, v;), with this inner product H become
Hilbert space. This Hilbert spa(i:e H is called the direct sum of the collection
{H;}iea and is denoted by €, H;. Suppose {(7;, H;)}iea be a family of
unitary representations of a group G. Then for each g € G, consider the

map 7(g) defined on H by
7(g)v = (mi(g)v;) for all v e H.

Then 7 is a unitary representation of G on H. This representation is called

the direct sum of family {m;};ca of unitary representations of G and denoted

by @71'2'.

Definition 3.1.9. Suppose (7w, H) be a group representation of group G.

Then (7, H) is said to be irreducible if there is no non trivial m-invariant
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closed subspace of H.

Definition 3.1.10. Suppose (7, H) be a unitary representation of G, then it
is said to be completely reducible if there exists a family { H;} of closed mutu-

ally orthogonal invariant subspaces of 7 such that each (m, H;) is irreducible

and H = € H,.

Notation: Suppose (7, H) be unitary representation of G. We will denote
I, = {T € B(H) : Tn(g) = n(9)T V g € G}, the space of intertwining

operators.

Theorem 3.1.11. (Schur’s Lemma) Suppose (w, H) is a unitary repre-
sentation of a group G, then 7 is irreducible if and only if T, = {\I : X\ € C},

where I s identity operator.

Proof. Suppose Z, = {\ : X € C}. If 7 is reducible, then there exists a
proper closed subspace M of H, which is invariant under 7. Suppose P is
the orthogonal projection on M. Clearly P # cI for any scalar c. By Lemma
3.1.8, Pm(g) = m(g)P for all ¢ € G, which is a contradiction. Hence 7 is
irreducible.

Converse part can be proved using the spectral theorem for the self-adjoint

compact operators. We omit the proof here. O

Corollary 3.1.12. Suppose (w, H) is an irreducible unitary representation

of an abelian group G, then the dimension of H is one.

Proof. Since the group G is abelian, 7(gh) = w(g)w(h) = n(h)w(g9) ¥ g,h €
G. Hence w(h) € Z, ¥ h € G. Thus, by Schur’s lemma, each 7(g) is a scalar
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multiple of identity operator. Therefore every subspace of H is invariant

under 7. This proves the result. O

Cyclic representation

Suppose (w, H) is a representation of G. Let v(# 0) € H, define M, =
span{m(g)v : g € G}. Then M, is a closed invariant subspace of 7, and is
called cyclic space generated by v. If there exists v # 0 such that M, = H,

then v is called cyclic vector for .

Proposition 3.1.13. (a) A representation (7, H ) is irreducible if and only

if every non zero v € H is a cyclic vector for m.

(b) Any unitary representation of a group is a direct sum of cyclic repre-

sentations.

Proof.  (a) Suppose 7 is irreducible. Let v(# 0) € H, then M, is non trivial
invariant subspace for w. Hence M, = H.
Conversely, suppose 7 is not irreducible. Then there exists a non trivial
invariant closed subspace M for w. Let v(# 0) € M, then M, C M C

H, which is a contradiction.

(b) This proposition can be proved with the help of Zorn’s lemma on the
family of mutually orthogonal cyclic subspaces of H, where partial

order is the set inclusion.

O

Lemma 3.1.14. Suppose H and K are two Hilbert spaces and letT : H — K
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be a bounded linear map. Suppose f : G — H is a continuous map, then

T( / f(y)du(y)) - [ Tiwauty)

Proof. Suppose u € K,

( /@ fy)duly), T u) = /G (Tf(y), u)du(y)
= / TF(y)du(y), u).

Since U is unitary, it follows that T(fG f(y)du(y)) = Jo Tf(y)du(y) O

Lemma 3.1.15. Suppose (w, H) is a cyclic unitary representation of G with

x € H,x # 0 a cyclic vector. Then the operator defined by

Ky = / (v, m(g)zym(g)edu(g) (3.1)

is bounded, strictly positive compact on H such that Kn(g) = w(g)K for all
g€G.

Proof. Suppose (h,) is a net in G converging to h € G. Since the inner
product is continuous, we get (y, m(hq)x)7(he)r — (y, w(h)z)m(h)x. Now
to show K is bounded, consider

IKy|1? = (Ky, Ky)| = | [{y, 7(g)z)(7(9)z, Ky)dp(g)]

< Jo . m(g)2)[(m(9)z, Ky)ldu(g) < [lyllllx*[ Kyl

That gives ||Ky|| < HyH |z||* and hence K is bounded. Now consider,

= (Joly,m m(9)xdu(g).y) = [ [y, 7(g)x)|*du(g) > 0. If possible
suppose (Ky,y) = 0, then < y,ﬁ(g)x >= 0 a.e. But g — (y,m(g)x) is a
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continuous map, and support of p is G, it follows (y, m(g)z) = 0 for all g € G.
That is, y = 0, since x was cyclic vector. Thus K is positive.

To prove K is compact, suppose z, — z, then

(Kzp, K2) = (2, K*K2) — ||Kz]|? and

|Kz, — Kz||* = HKan2—|— |Kz||> — 2Re(K z,,, K z).

1Kz = fG zn, m(g))(m(g)z, Kzn)dp(g)

~ Julen Kw( >a:, )dilg) = [t m(9)2) k() 2)du(o)

= [ z,w(g)x)(w(g)x, Kz)du(g) =||Kz||?>. Hence K is compact.

Suppose g € Gand u,v € H, then (Km(g) = Jo(m( h)z)(m(h)z,v)du(h)
= Jo(u,m(g h)x)(m (g~ )z, w(g~ )v)dp(h ZfG UaW(h)ZE)(W(h)I’W(g_lv)du(h»
= (Ku,7(g7)v) = (r(g)u,v). Hence K7(g9) =n(g)K Vg € G. O

Corollary 3.1.16. Suppose (m, H) is a unitary representation of group G.
Then there exists a non-trivial finite dimensional subspace of H which is

movariant under .

Proof. By Proposition 3.1.13, every unitary representation is nothing but
the direct sum of cyclic representations, therefore, without loss of generality,
we may assume (7, H) is a cyclic representation. By the spectral theorem
for the self-adjoint compact operators, there exists v # 0 such that H, =
ker(K —~I) # {0} and finite dimensional, where K is defined by (3.1).
Suppose v € H,, then K7(g)v = n(g)Kv = 7(g)yv = y7(g)v and hence H,

is invariant subspace. ]

Suppose (7, H) is an irreducible unitary representation of a compact
group, then by the previous corollary, there exists a finite dimensional non

trivial invariant subspace, and hence we have the following results.
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Corollary 3.1.17. Every irreducible unitary representation of a compact

group is finite dimensional.

Lemma 3.1.18. Any finite dimensional unitary representation of a group is

completely reducible.

Proof. We shall prove this theorem by using the induction hypothesis on the
degree of representation. Suppose (7, H) be a finite degree representation of
G. If the degree of representation is one, then 7 is irreducible. Suppose degree
of representation of m, i.e deg(m, H) = n, n€ N. Now, suppose the theorem
holds for all representations of degree less than n. If 7 is irreducible, we
are done. Otherwise, there exists proper nontrivial invariant closed subspace
M of H. Since 7 is unitary, which gives M~ is also invariant under 7 and
dimension of M and M= is less than the dimension of H. Hence by induction

hypothesis we get the results. O

Theorem 3.1.19. FEvery unitary representation of a compact group is a di-

rect sum of irreducible finite dimensional unitary representations.

Proof. Suppose (m, H) is a unitary representation of compact group G and
let F = {H; : i € I}, where H;’s are pairwise disjoint orthogonal finite
dimensional irreducible subrepresentations of m. By the Corollary 3.1.16
and Lemma 3.1.18, F is non empty, and set inclusion is partial order on F.
Suppose O = {{H,}icr; : j € A} be a chain in F, and let K = Ujea{H;}ier, -
Since O is chain it follows that K is an upper bound of O, so by the Zorn’s
lemma, there exists a maximal element {H;};c;.

Claim: H = @,; H;

Suppose H # D, ; H; and let H, = P, ; H;, then by Corollary 3.1.16 and
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Lemma 3.1.18, there exists non trivial finite dimensional irreducible subspace

H'. Then H' 1 H; j € J, which contradicts the maximality of H;, j € J. O

Notation

1. Let G be the set of equivalence classes of irreducible unitary represen-

tations of G.

2. If (m, H) is a finite dimensional unitary representation of G and {ey, ..., e,}
is an orthonormal basis of H, we define ¢;; = (7(g)e;, ), 1 <i,j < n.
Then, ¢;;’s are continuous functions on G and are called matriz coeffi-

cient of the representation of 7.

Proposition 3.1.20. Suppose (7, H) and (p, K) are two finite dimensional
representations of G, and let T : K — H be a linear map such that w(g)T =
Tn(g), Vg € G. Then ker(T) and Im(T) are invariant subspaces of K and

H respectively. Also if m and p are irreducible and inequivalent, then T = 0.

Proof. Proof of this theorem is easy. O

Schur’s orthogonality relations

Let m and o be two irreducible representations of G and (¢;;(g)) and (¥ (g))
are the corresponding matrix coefficients of 7 and p respectively with respect

to some fixed orthonormal bases in the respective Hilbert spaces. Then,

(a) (Pij, Yri)r2@) = 0, if m and p are not equivalent.
(b) (@ij, Vi) 12 (@) = mdikdﬂ-
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3.2 Character of representation

Definition 3.2.1. Suppose (7, H;) is a finite dimensional representation of
a group G. The character of 7 is the function x,(g) = Tr(n(g)), where Tr

denotes trace.

Proposition 3.2.2. (a) If ™ and o are equivalent, then x» = X,-

(b) Xx(9) = xx(hgh™"), g, h € G.

(¢) Xr@o = Xr + Xo-

(d) xx(€) = d., where d, is dimension of Hy
(e) Xr is continuous function on G.

(f) If 7 is unitary, then for all g € G, xx(g7') = xx(9).

Proof. We will prove (e) only, others are easy to see. Suppose (h,) is a net

in G converging to h € G. Then, ¢;;(ha) — ¢u(h), where 1 < i < dim(m).

dim() dim()

This, in turn, implies Z ®ii(hea) Z ¢ii(h). Hence xr(ha) = xx(h).
i=1
Thus x, is continuous. O

Proposition 3.2.3. Suppose (7, H;) and (o, H,) are two irreducible unitary

representations of a compact group G.
(a) If  and o are equivalent, then (Xx, Xo)r2(c) = 1.
(b) If ™ and o are inequivalent, then (X, Xo)r2(c) = 0.

Proof. Suppose ¢;; and v;; are matrix coefficient of m and p respectively.

Then (e Xe)£2(6) = Ji Xe(@OXe(9)A1(9) = [ Tr(m(g)) Tr(m(9))dulg). By
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Schur’s orthogonality relation (b), we get Z(gbii,gbj) r2@) = 1. Similarly
4,3
using Schur’s orthogonality relation (a) we get (b). O

3.3 Peter-Weyl Theorem

we shall state and prove this theorem in five related assertions, PW1-PW5.
PW1
Every irreducible unitary representation of a compact group is equivalent to

a subrepresentation of the right reqular representation.

Proof. Suppose (m, H) is an irreducible unitary representation of group G.
Then by Corollary 3.1.17, the dimension of H is finite, say n. Let {e1, es,...,e,}
be an orthonormal basis of H and let ¢;;(g) = (w(g)ej,e). Fix [ (say
[=1), and suppose ¥;(g) = /n¢1;(g). Then, by Schur’s orthogonality re-
lations, {t1,s,...,4,} is an orthonormal set in L?(G). Suppose E; =
span{iy, o, ... 1, }. Then,

R(h)%—(g) = %’(gh) = \/ﬁﬁblj(gh) = ﬂ(ﬂ(gh)ej.eﬁ

n

= Vilr(o) (e ). 1)

= \/_Z 6],61 g)elv€1>

—WZ@] )6y

= Z ¢i;(h)ilg
=1
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Thus subspace Fj is invariant with respect to right regular representation
and R(g)|g, has matrix entries (¢;;(g)) with respect to orthonormal basis

{t1,¢s,...,0,}. Thus, (R(h)|g,, E1) is equivalent to (7, H). O

Remark 3.3.1. Let ¢! (g) = /n¢i;(g), and E; = span{yi, ..., ¢} € L*(G).
Thus, by Schur’s orthogonality relations, E;’s are mutually orthogonal. Sup-

pose E, = @f;l E;, where d, is the dimension of 7. Thus dim(E,) = d2.

Proposition 3.3.2. (a) Define, m,.(g9) = (7(g)x,y) for all g € G, then
Tyx € L*(G) and called matriz coefficient functions. Then,

E. =span({m,, :y,x € H}).

(b) If m and o are equivalent representations, then E, and E, are identical

with dim(E,) = d2.

Proof.  (a) Obviously, E, C span{rm,, :y,x € H}. Suppose y,z € H and

{e1,€s,...,e,} is an orthonormal basis for H and g € G, then

wy,x<g><w<g>(i<x, ei>ei),i<y,ej>ej>

i=1 Jj=1
n n

= 3> el elm(g)enes)

i=1 j=1

n n

— Z Z(x, ey, e;)bii (g).

Hence m,, € E,.

(b) Since 7 and p are equivalent, there exists an isomorphisms U of 7 and

o such that Un(g) = p(g)o.
Tye = (7(g)z,y) = (U to(g)Uz,) = (o(g)Uz, (U™")"y).

31



This implies 7, , = 0@ -1)+y,vz- Since U is an isomorphism, it follows
that E; and £, are identical.
U

For \ € G, suppose F) is a finite dimensional space that spanned by the
matrix coefficient functions of the representation 7 in the equivalence class

A. Then, by the previous lemma, E, = Ej for o, 8 € .
PW2

(a) Each E) is invariant under the right regular representation of G.

(b) If 7 is an irreducible unitary representation in the equivalence class
A, then R|g, is equivalent to the direct sum of d, copies of 7 and

consequently, dim(E)) = d2.
(c) L*(G) = Diec En-
Proof.  (a) It is directly followed from PW1 and remark after PW1.

(b) Since each E; is invariant under R and by remark after PW1 implies

that R|g, is equivalent to 7. Hence proves (b).

(¢) Suppose M = @, Then M and M~ are invariant under right regu-
lar representation R. Suppose U C M+ be an invariant subspace such
that R|x is irreducible and it is in the equivalence class A\ € G. For
f € K, suppose F'(h) = (R(h)f, ), where h € G. Clearly F' is contin-
uous function, F' € Ey, C M and F(e) = || f||*.

Suppose {(;S;\j} is matrix coefficient functions of some representation
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(ma, Hx) € X, ie. ¢35(g) = (ma(ge;), e;) with respect to some orthonor-

mal basis {ej, e, ..., €4, }, where d is dimension of Hy.Then,

<F>¢Z\j>L2( :/F(h) L (h)duh
= [ [ 1 T mduts)dn (i

/ / () F @)@ (g Ddu(g)dp(h).

Since p is left invariant and by the Fubini’s theorem,

(F, 63 12(0) = / / f<gh>f<g>Z¢3k<g—l>¢zj<h>du<g>du<h>,

- Z / F@ PG 6L du(g).

=0, since f € M* andqﬁf‘j € FE,.

Therefore, F € E{ N E\ = {0}. Which gives f =0. So M = L*(G).
U

Remark 3.3.3. 1. By PW2, (R, L*(G)) is the direct sum of irreducible
representations of G and each A € G occurs in the decomposition dy

times.

dy dy
2. For any f € L?(G) we have, f = ZdAZZ(f, 2)¢% and

e =1 j=1
dy  dy

A2 =D > ) Kol

pY=te: i=1 j=1
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Definition 3.3.4. Suppose f g € LYG), then we define convolution of
fand g as fxg(x) = [ f( x)dp(z).

A A
Lemma 3.3.5. Suppose f € L*(G), then f x x\ = ZZ(]‘, ¢f‘]) ;\J Con-
i=1 j=1
sequently, we have

F=Y daf*xn

xe@
where X is the character of the representation wy. If f,g € L*(G), then the

above series for the function f * g converges to f * g uniformly.

Proof. Suppose dimension of 7y is d) and let ¢ € G, then

frxn= / f(@)xalag)du(x)
- / F(@)Tr(ma (@) ma(9)) dp)

/f Z¢ du(z), since m(@) = ma(h)"

i,j=1

= Z<f, Ao

1,j=1

U
PW3
For f € L*(G) and A € G, choose 7y € A. Define, f( = Jo f( “Hdu(g).
Then F(N) € B(Hy) and £(g) = 3 daTr(f( >> and ||f||L2(G> _ denfnﬂs,

\eG ed
where ||A|lgs = Tr(AA").

Proof. 1t is easy to see that f (A)\)Z.j = (f, 7). Now consider
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dy  dy dy  dy

=D DD Y (Feheh(9) =D A > D FNushle) =Y dTr(f(

AeG i=1 j=1 AeG i=1 j=1 AeG
dy  dy R R
Then /]2y = 30 a3 D FO) = 32 dull (N s Hemce we et the
Ae@ i=1 j=1 \e@
result. OJ

Define L2(G) as the space of function ® from G to the disjoint union
U2, GL(n,C) that satisfies;

1. ®(\) € GL(dy,C)V X € G.
2. ZdAH(I) )zs < oo
Ae@

Then L*(G) is a Hilbert space with inner product

PW4
The fourier transform F : f — f is an isometry from L?(G) onto L2(G).

Proof. We have already proved that F is an isometry in PW3.
Suppose ® € L*(G). Then,

> d\Tr(®( ZdAZZCD 09

\eG AeG =1 =1

converges in L?(G). By definition, Z dy Z Z |®(\);;|* < oo and suppose

pY=te: i=1 j5=1
it converges to f € L*(G). Then by PW3 and Schur’s orthogonality relations,

we get f(\) = ®(N). O
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Suppose R(G) be the linear space spanned by {r,, : dim(r) < oo, and x,y €
H}. Elements belonging to R(G) are called representative function, and in
view of Proposition 3.3.2, R(G) is spanned by the orthogonal family of func-
tion {4} : A€ G,1<1i,j <d,.

PW5
R(G) is dense in C'(G), equipped with sup norm.

We skip the proof of PW5.

3.4 Irreducible Unitary Representation of SU(2)

Suppose G = SU(2), the special unitary group consists of all matrices A
of degree 2 satisfying A*A = I and det(A) = 1. Suppose Cy = {(z1, 22) :
21, 29 € C} is the vector space of all row vector, then SU(2) act on Cy from
right, i.e if A € SU(2) and z € C5 then z — zA is group action.

Suppose S? is the unit sphere in R*. Then the map ¢ : S* — SU(2)
defined by,

Ty + i[L’g —T3 + i[L’4 3
¢($1,$2,x3,x4) == ) ) ,(.Z'17,T2,x3,x4> € S
T3+ 1Ty T — 1To

is a homeomorphism of S* onto SU(2). Let (21,9, 23, 74) € S3. Then we
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can write

r1 = cosf
Lo = sinf cos ¢
x3 = sin f sin ¢ cos Y

x4 = sin @ sin ¢ sin ¢

where 0 < 6, ¢ <7 and 0 < ¢ < 27.

The normalised Haar measure of element dzx on SU(2) is given by

ds = 1 sin? 6 sin pdfdpda).
272

For each n > 0, let

= {f(z1,2) Zakz’fz;‘ ":ap €C)

Then H, is vector space and the set of monomial ¢y (21, 22) = 2F257%, 0 <

k < n, form a basis for H,, and hence dimension of H, is n + 1. Define an
inner product (,) on H, by (¢, ¢;) =0if j # k and

(Or, r) = kl(n — k), otherwise.

Then, for any g, h € H,, g(z Z apzy 2y and h(z Zﬁszzg k)

k=0
= kl(n — k)loyBy.
k=0

Definition 3.4.1. For every n > 0, suppose H, is defined as above. If
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g € SU(2), define a linear map m,(g) on H,, by,

m(9)f(2) = f(29), f € Hn

Then the map g — m,(g) from SU(2) to B(H,,) is a representation of SU(2).

Proposition 3.4.2. For each n > 0, the representation (m,, H,) of SU(2)

15 an irreducible unitary representation.

Proof. We will only prove the unitary part. To show (m,, H,) is unitary,

consider the subset

U={¢s: ¢o(2) = (2a)", a € C*} C H,,.

Then, 7,(9)¢a(2) = ¢(zg9) = (29a)™ = ¢4a(2), So if a,b € C?, then,

(70 (9)Pa> T (9) D) = (Dgas Pgb) (3.2)

and (¢q, ¢p) = n!{a,b)”, which in turn implies that

(Tn(9)Pas T (g)de) = nl(ga, gb)" = n¥{a,b)" = (¢a, Ps).

So it remains to prove U contains a basis for H,,. Suppose w be the primitive
n" root of unity. Then the following n + 1 polynomials (z; + w*25)", where
0 <k <n-—1, and 2§ are linearly independent and contained in U, hence

T, is a unitary representation. ]

Remark 3.4.3. Suppose (m, H) be an irreducible unitary representation of

SU(2). Then 7 is equivalent to (m,, H,) for some n.
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