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ABSTRACT

The aim of this project is to study the representation of compact groups

and understand Peter-Weyl theorem and irreducible unitary representations

of the special unitary group SU(2).
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Chapter 1

Representation of Finite Group

In this chapter, we will discuss the representation theory of finite groups and

their characters. In the first, section we will set up a few basic definitions,

notations and some elementary results related to the representation of finite

group. In the second section, we will setup definitions and some results

related to character theory of finite group.

1.1 Representation of the finite groups

Let V be a vector space over the field C of complex numbers and let GL(V)

be the group of all isomorphisms of V onto itself. Suppose G is a finite group

with identity element e. Throughout this chapter by group, we mean a finite

group.

Definition 1.1.1. A representation of a group G in V is a homomorphism

π : G → GL(V) i.e π(gh) = π(g)π(h) ∀g, h ∈ G.

When π is given, we say that V is representation space of G and we denote
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group representation by (π,V). If G is group and V is finite dimensional

space, then the degree of representation is the dimension of V.

Following are some properties.

(a) π(e) = I, where is I is the identity map from V onto V.

(b) [π(g−1)] = [π(g)]−1, ∀g ∈ G.

Definition 1.1.2. Suppose π and π′ are two representation of the same

group G in vector spaces V and V′. Then we say that π and π′ are similar

(or isomorphic) if there exists an isomorphism T : V 7−→ V′ such that

T ◦ π(g) = π′(g) ◦ T, ∀g ∈ G.

Definition 1.1.3. Suppose W is a subspace of vector space V. Then we say

that W is stable (or invariant) under π, if π(G)W ⊆ W. Suppose (π1,V1)

and (π2,V2) are two representations of G. Then we can make direct sum

representation of G into V1

⊕

V2 by defining,

(π1
⊕

π2)(g)(V1

⊕

V2) = (π1(g)(V1), π2(g)(V2)) i.e.

(π1
⊕

π2)(g) =





π1(g) 0

0 π2(g)



 .

Definition 1.1.4. The representation (π,V) is said to be irreducible if there

is no non trivial π-invariant subspace. Suppose W is an invariant subspace

of π. Then the restriction π|W of π to W is an isomorphism of W onto itself.

Thus π|W is a representation of G in W and is called a subrepresentation of

π. We denote it by (π|W,W), or simply by (π,W).
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Theorem 1.1.5. Let π : G → GL(V) be a representation of G in V and let

W be a π-invariant subspace of V. Then there exists a complement W0 of W

in V which is invariant under π.

Proof. Suppose W′ be an arbitrary complement of W. Let P : V −→ W

be the projection map. Define, P ′ = 1
n

∑

g∈G

π(g)−1Pπ(g), where n is order

of G. Since Pπ(g)(V) ⊆ W and W is π-invariant, we get P ′(V) ⊆ W and

P ′(w) = w, ∀w ∈ W. Thus P ′ is a projection map of V ontoW corresponding

to some complement W0 of W.

Claim: π(h)P ′ = P ′π(h), ∀h ∈ G

π(h)−1P ′π(h) =
1

n

∑

g∈G

π(h)−1π(g)−1Pπ(g)π(h)

=
1

n

∑

g∈G

π(gh)−1Pπ(gh)

= P ′.

If s ∈ W0, we have P ′(s) = 0, which gives P ′(π(g)(s)) = π(g)P ′(s)) = 0.

Hence π(g)(s) ∈ W0. Therefore, W0 is stable under π.

Remark 1.1.6. Suppose that in addition to above assumption V endowed with

an inner product satisfying 〈π(g)v, π(g)w〉 = 〈v, w〉, ∀ g ∈ G and ∀v, w ∈ V.

Then the orthogonal complement W0 of W in V is π-invariant.

Example 1.1.7. Consider cyclic group G = {1, ω, ω2}. Define π : G →
GL(C) defined by π(ω) = z, where z ∈ C∗. For π to be a group homomor-

phism, |π(1)| = 1. That is |z|3 = 1, this implies that ω can be mapped to

any of the cube root of unity to give a representation of degree one.
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Theorem 1.1.8. Every finite degree representation of group G is a direct

sum of irreducible representations.

Proof. We will prove this theorem using the induction hypothesis on the

degree of representation. Let (π,V) be a finite degree representation of G. If

the degree of representation is one, then π is irreducible. Suppose degree of

representation of π is n. Suppose the theorem hold for all representation of

degree less than n. If π is irreducible, we are done. Otherwise by Theorem

1.1.5, V can be decompose into direct sums of V1

⊕

V2 with dimVi < dimV,

i = 1, 2. By the induction hypothesis, V1 and V2 are direct sum of irreducible

representations, hence V is the direct sum of irreducible representations.

1.2 Character theory

Suppose V is a finite dimensional vector space having basis (ei)
n
i=1. Let T be

a linear map from V into itself with matrix (aij), then we denote trace of T

by Tr(T ).

Definition 1.2.1. Let (π,V) be a representation of a finite group G. Then

for each g ∈ G, define χπ(g):= Tr(π(g)). Then the complex-valued function

χπ on G is called the character of representation.

Proposition 1.2.2. Suppose χ is the character of representation (π,V) of

degree m. Then,

(a) χ(e) = m, where e is the identity element of the group G.

(b) χ(g−1) = χ(g)∗, ∀ g ∈ G.
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(c) χ(ghg−1) = χ(h), ∀ g, h ∈ G.

Proof. Since χπ(e) = Tr(π(e)) = Tr(I) = m, which proves (a).

Suppose order of G is n and let λ1, λ2, . . . , λm are eigenvalues of π(g). Then

gn = e, ∀ g ∈ G, which gives π(gn) = I, which in turn implies (π(g))n = I.

Hence λn = 1 for each of its eigenvalue λ. Therefore,

χ(g−1) =
∑

i

λ−1
i =

∑

i

λi = Tr(π(g)), which proves (b).

χ(ghg−1) = Tr(π(ghg−1)) = Tr(π(g)π(h)π(g)−1) = Tr(π(h)) = χ(h).

Remark 1.2.3. A function f on G satisfying identity (c) i.e, f(ghg−1) = f(h),

∀ g, h ∈ G is called class function on G.

Proposition 1.2.4. Suppose (π,V) and (π′,V′) are two representations of

G, and let χ and χ′ be their characters respectively. Then the character χ0

of direct sum representation (π
⊕

π′,V
⊕

V′) is χ+ χ′.

Proof. Suppose g ∈ G and π(g) and π′(g) are in matrix forms. Then the

representation of π
⊕

π′(g) in matrix form is given by,





π(g) 0

0 π′(g)



.

Therefore χ0(g) = Tr(π
⊕

π′(g)) = Tr(π(g))+Tr(π′(g)) and hence χ0(g) =

χ(g) + χ′(g).

Theorem 1.2.5. (Schur′s lemma) Suppose (π1,V1) and (π2,V2) are two

irreducible representations of G and let T be a linear transformation from V1

to V2 such that, π2(g)T (v) = T (π1(g)v) ∀ g ∈ G and ∀ v ∈ V1, Then

(a) If π1 and π2 are not isomorphic, then T= 0.

(b) If V1 = V2 and π1 = π2, Then T = λI for some λ ∈ C.
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Proof. Since π2(g)T (v) = T (π1(g)v), ∀ g ∈ G and ∀ v ∈ V, implies that

ker(T) and Im(T) are invariant subspaces of V1 and V2. Since (π1,V1) is

irreducible representation, therefore either ker(T) = V1 or ker(T) = {0}. If

ker(T) = V1 then T = 0. If ker(T) = {0} then T is one-one and maps V1 iso-

morphically to Im(T). Since (π2,V2) is irreducible representation, therefore,

Im(T) = V2, it follows that T is an isomorphism, which proves (a).

Now, suppose V1 = V2 and π1 = π2, and suppose λ be an eigenvalue of

T. Define T ′ := T - λI. Since λ is an eigenvalue of T, therefore ker{T ′} 6=
{0}. On the other hand π2 ◦ T ′ = T ′ ◦ π1. Therefore by part (a) T ′ = 0,

which in turn implies that T = λI, that proves (b).

Corollary 1.2.6. Suppose (π1,V1) and (π2,V2) are two irreducible represen-

tations of group G of order n and let T: V1 −→ V2 be a linear transformation.

Define,

T ′ =
1

n

∑

g∈G

π2(g)
−1Tπ1(g).

Then,

(a) If π1 and π2 are not isomorphic, then T ′ = 0.

(b) If V1 = V2 and π1 = π2, then T = 1
m
Tr(T )I, where m is dimension of

V1.
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Proof. Let h ∈ G, then

π2(h)T
′π1(h) =

1

n

∑

g∈G

π2(h)
−1π2(g)

−1Tπ1(g)π1(h)

=
1

n

∑

g∈G

π2(gh)
−1Tπ(gh)

= T ′.

Applying schur’s lemma on T ′, we see in case (a) T ′ = 0, and in case (b)

T ′ = λI. Consider,

Tr(T ′) =
1

n

∑

g∈G

Tr(π2(g)
−1Tπ1(g))

= Tr(T ).

Hence Tr(λI) = mλ = Tr(T ), thus λ = 1
m
Tr(T ), which proves (b).

Suppose φ and ψ are two complex-valued functions onG.Define, 〈φ, ψ〉:= 1
n

∑

g∈G

φ(g−1)ψ(g),

then, 〈, 〉 is an inner product.

Suppose π1(g) = (aij(g)) and π2(g) = (blm(g)) are in matrix form. And

suppose T = (xli) and T
′ = (yli) are in matrix form. Therefore,

yli =
1

n

∑

g∈G,j,m

blm(g
−1)xmjaji(g). (1.1)

The right hand side is linear form with respect of xmj , and since it is true

for arbitrary T, therefore in case (a), we have following result.
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Corollary 1.2.7. In case (a), we have

1

n

∑

g∈G

blm(g
−1)xaji(g) = 0

i.e 〈alm, aji〉 = 0

for arbitrary choices of l, m, j, i.

In case (b) T ′ = λI

yli = λδli, where δ is kronecker delta

λ =
1

m
Tr(T ) =

1

m

∑

δmjxmj

1

n

∑

g,j,m

blm(g
−1)xmjaji(g) =

1

m

∑

j,m

δliδmjxmj .

by equating the coefficient of xmj we get the following result.

Corollary 1.2.8. In case (b) we have

1

n

∑

g∈G

blm(g
−1)aji(g) =

1

n
δliδmj =











1
m

if l = i, m = j

0 otherwise

and 〈blm, aji〉 =
1

m
δliδmj

Theorem 1.2.9. (a) If χ is the character of an irreducible representation,

then 〈χ, χ〉= 1.

(b) If χ and χ′ are characters of two non isomorphic irreducible represen-

tations, then 〈χ, χ′〉= 0.
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Proof. (a) Suppose (aii) be matrix form of irreducible representation. We

know that 〈χ, χ′〉 =
∑

i,j

〈aii, ajj〉. By Corollary 1.2.8, we have

〈aii, ajj〉 = 1
n
δij

〈χ, χ′〉 = 1
m

∑

i,j

δij = 1. This proves (a).

(b) By Corollary 1.2.7, the result follows directly.

9



Chapter 2

Haar measure on the

topological groups

2.1 Topological group

Definition 2.1.1. A group G having a topology on it is said to be a topo-

logical group if the maps (g,h) 7−→ gh from G×G −→ G and g 7−→ g−1 from

G −→ G are continuous.

Remark 2.1.2. Continuity of the above two maps is equivalent to the conti-

nuity of map (g,h) 7−→ gh−1, from G×G −→ G.

Suppose U, V ⊂ G, we will write UV = {uv : u ∈ U, v ∈ V } and

U−1 = {u−1 : u ∈ U}. A neighbourhood U of e ∈ G is called symmetric if

U = U−1. In this chapter, we will denote e to be the identity of group G.

Definition 2.1.3. A topological space is said to be locally compact if every

point possesses a compact neighbourhood. A topological group is called a
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locally compact group if it is Hausdorff and locally compact.

Proposition 2.1.4. Suppose G be a topological group,

(a) if z = gh , O is a neighbourhood of z, then there exist neighbourhoods

U of g and V of h such that UV ⊂ O.

(b) For each g ∈ G, the maps t 7−→ gt, t 7−→ tg, and g 7−→ g−1 are home-

omorphisms of G. A set U ⊂ G is a neighbourhood of g ∈ G if g−1U

is a neighbourhood of e ∈ G.

(c) If U is a neighbourhood of e ∈ G, then U−1 is also a neighbourhood of e.

Every neighbourhood U of e ∈ G contains a symmetric neighbourhood

of e.

(d) For every neighbourhood U of e ∈ G, there exists a neighbourhood V of

e such that V 2 ⊂ U .

(e) If A,B ⊂ G such that, if any of them is open in G, then AB is open

in G.

(f) A,B are compact subsets of G, then AB is a compact subset of G.

(g) For A ⊂ G, A = ∩VAV , where the intersection is taken over all neigh-

bourhoods V of e.

Proof. (a) Suppose φ : G × G → G be such that φ(g, h) = gh. Let O be

a neighbourhood of z, then φ−1(O) is open and contains (g,h). Hence

it contains a set of the form O1 × O2, where O1 is a neighbourhood of

g and O2 is a neighbourhood of h such that φ(O1 × O2) = O1O2 ⊂ O.

Take U to be O1 and V to be O2.
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(b) Suppose φ be the map from G to G defined by t 7−→ gt. Then φ is a

bijective function from G to G and by the continuity of maps t 7−→ (t,g)

and (t,g) 7−→ gt, we get continuity of t 7−→ gt. The inverse function

φ−1 maps t 7−→ g−1t and its continuity follows similarly. g 7−→ g−1 is

bijective and self inverse function, hence continuity of inverse function

follows by definition. Suppose U is any neighbourhood of g then define

V = g−1U , e ∈ g−1U and g−1U is open. Hence V is a neighbourhood

of e.

(c) Since g 7−→ g−1 is homeomorphism, which in turn implies that if U is

any neighbourhood of e then U−1 is a neighbourhood of e−1 = e. For

the second part, take V = U ∩ U−1, e ∈ V and V = V −1.

(d) Consider the map f : U × U → G defined by (g, g) 7−→ gh. Suppose

U is a neighbourhood of e. Since f is continuous, hence f−1(U) is open

and contains (e,e). Therefore, by (a) there exist neighbourhoods V1, V2

of e such that (e,e) ∈ V1×V2 and V1V2 ⊂ U . Take V3 = V1∩V2, clearly
e ∈ V3, and take V = V3 ∩V −1

3 . Therefore V = V −1 and V is open and

V 2 ⊂ U .

(e) Since A and B are compact subsets of G, therefore, A×B is a compact

subset of G×G and the map (g,h) 7−→ gh is continuous map. We know

that the continuous image of compact set is compact. Hence AB is a

compact subset of G.

(f) Assume A is open. Then AB = ∪b∈BAb is the union of open sets, hence

AB is open.
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(g) Suppose g ∈ A, and let V be any neighbourhood of e. Then gV −1

is a neighbourhood of g, so gV −1 ∩ A 6= φ. Suppose a ∈ gV −1 ∩ A,

then a = gv−1 for some v in V . So g = av. Since V is an arbitrary

neighbourhood of e, A ⊂ ∩VAV .

Conversely, suppose x ∈ ∩VAV , and let W be a neighbourhood of x.

Then V = x−1W is a neighbourhood of e. So V −1 is a neighbourhood

of e. Therefore, x = gv−1 for some g ∈ A and v ∈ V , which implies

g = xv ∈ xV = W . This, in turn, implies W ∩ A 6= φ. Since W is an

arbitrary neighbourhood of x. Hence x ∈ A.

Lemma 2.1.5. Suppose G is a topological group and H is a subgroup of G.

Then H is a subgroup of G. Moreover, if H is normal subgroup of G, then H

is a normal subgroup of G.

Proof. Suppose g, h ∈ H and let U be any neighbourhood of gh. Suppose

µ : G×G → G be defined by (g, h) 7−→ gh is continuous. So µ−1(U) is open

in G×G and contains (g,h), so there are neighbourhoods V of g and W of h

such that V ×W ⊂ µ−1(U). Sinceg, h ∈ H, there exist x ∈ V ∩H( 6= φ) and

y ∈ W ∩ H( 6= φ). Therefore, xy ∈ H and (x, y) ∈ µ−1(U), which implies

xy ∈ U . This, in turn, implies that xy ∈ U ∩ H and since U is arbitrary

neighbourhood of gh, it implies that gh ∈ H.

For the second part, suppose a ∈ H and g ∈ G. Let V be a neighbourhood

of e in G, and put W = g−1V g, then W is a neighbourhood of e in G

and Wa ∩ H 6= φ. Let h ∈ H, be such that h ∈ Wa. Since H is normal

subgroup, ghg−1 ∈ H and ghg−1 ∈ gWag−1 = gg−1V gag−1 = V gag−1, thus,

V gag−1∩H 6= φ. This, in turn, implies that gag−1 ∈ H and hence the result.
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2.2 Haar measure

Suppose X is locally compact space. Then the Borel σ algebra B on X is

the sigma algebra generated by its open subsets. A measure µ on this sigma

algebra is said to be a regular Borel measure if it satisfies:

1. µ is finite for every compact subset.

2. If B ∈ B then µ(B) = inf{µ(O) : Ois open, B ⊆ O}

3. If B ∈ B and µ(B) <∞, then

µ(B) = sup{µ(K) : K is compact, K ⊆ B}

Members of B are called Borel sets.

Definition 2.2.1. A left Haar measure on a locally compact group G is

a regular Borel measure µ such that µ(xE) = µ(E), E ∈ B and x ∈ G.

Analogously we can define right Haar measure.

Suppose f is a continuous function on a topological group G and y ∈ G,

then left translate of f through y is defined as

Lyf(x) = f(y−1x)

and its right translate is defined as

Ryf(x) = f(xy).
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f is called left uniformly continuous, if for every ε > 0, there is a neighbour-

hood V of e such that ‖Lyf − f‖u < ε, for y ∈ V . Analogously we can define

right uniformly continuous. we will write Cc(G) for compactly supported

continuous function on G and C+
c (G) denotes the positively compactly sup-

ported continuous function.

Example 2.2.2. Suppose G is a finite group then for any set M , let |M |
denotes the number of element in M . Suppose order of the group G is n.

Then we define the measure ν on G by ν(M) = 1
n
|M |, M ⊆ G. Then ν is

normalised Haar measure on G.

Proposition 2.2.3. If f ∈ Cc(G), then f is right uniformly continuous.

Proof. Suppose K = supp(f) and let ε > 0. For each x ∈ K there exists

a neighbourhood Ux of e such that |f(xy) − f(x)| < ε
2
for every y ∈;Ux.

By Proposition 2.1.4, there exists a symmetric neighbourhood Vx of e such

thatVxVx ⊂ Ux. Then {xVx}x∈K will form a cover of K. Since K is compact,

there exist finitely many points, say x1, x2, x3, . . . , xn ∈ K such that K ⊂
∪n
i=1xiVxi

. Suppose V = ∩n
i=1Vxi

.

Claim: |f(xy)− f(x)| < ε if for all y ∈ V .

If x ∈ K then X ∈ xjVxj
for some j and x−1

j x ∈ Vxj
and hence xy ∈ xjUxj

,

therefore

|f(xy)− f(x)| < |f(xy)− f(xj)|+ |f(xj)− f(x)| < ε.

And if x /∈ K then f(x) = 0, and hence either f(xy) = 0 (if xy /∈ K) or

xy ∈ xjVxj
for some j and x−1

j x = x−1
j xyy−1 ∈ Uxj

so that |f(xj | < ε
2
and

hence the results.
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Suppose f, φ ∈ C+
c (G), then we define Haar covering number of f with

respect to φ by

(f : φ) = inf{
n

∑

i=1

ci : f ≤
n

∑

i=1

ciLxi
φ for some x1, x2, . . . , xn ∈ G}

The above definition make sense as the set {x : φ(x) ≥ 1
2
‖φ‖u} is open, non

empty and as supp(f) is compact, so finitely many left translates of it cover

supp(f) and therefore there are x1, x2, . . . , xn such that

f ≤ 2‖f‖u
‖φ‖u

n
∑

j=1

Lxjφ

and hence (f : φ) > 0.

Lemma 2.2.4. Suppose that f, φ, g ∈ C+
c , then

(a) (f : φ) = (Lxf : φ) for any x ∈ G.

(b) (cf : φ) = c(f : φ) for any positive c.

(c) (f + g : φ) ≤ (f : φ) + (g : φ).

(d) (f : φ) ≤ (f : g)(g : φ).

Proof. Since f ≤
∑

ciLxi
φ if and only if Lxf ≤

∑

ciLxxi
φ which proves (a)

part. Similarly part (b) is easy to see. For part (c), suppose f ≤ ∑

i ciLxi
φ

and g ≤
∑

j djLxj
φ, thus if (f : φ) ≤

∑

ci and (g : φ) ≤
∑

dj then (f + g :

φ) ≤
∑

ci +
∑

dj and hence prove (c).
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Now, we shall make a normalization by choosing f0 ∈ C+
c and define

Iφ(f) =
(f : φ)

(f0 : φ)
for f, φ ∈ C+

c .

Hence by the previous lemma

(f0, φ)
−1 ≤ Iφ(f) ≤ (f : f0).

Lemma 2.2.5. If f1, f2 ∈ C+
c (G) and ε > 0, then there is a neighbourhood

V of e such that Iφ(f1) + Iφ(f2) ≤ Iφ(f1 + f2) + ε, whenever supp(φ) ⊂ V .

Proof. Fix g ∈ C+
c (G) such that g = 1 on supp(f1 + f2) and let δ > 0.

Suppose h = f1 + f2 + δg and hi = fi
h

for i = 1, 2, and hi = 0 outside

of supp(fi). Then hi ∈ C+
c (G), therefore by Proposition 2.2.3, there is a

neighbourhood V of e such that |hi(x)− hi(y)| < δ and y−1x ∈ V . Suppose

φ ∈ C+
c (G) be such that supp(φ) ⊂ V , and h ≤ ∑n

i=1 cjLxj
φ, then if x−1

j x ∈
supp(φ) we get |hi(x) − hi(xj)| < δ, so

fi(x) = h(x)hi(x) ≤
n

∑

j=1

cjφ(x
−1
j x)hi(x) ≤

n
∑

j=1

cjφ(x
−1
j x)[hi(xj) + δ].

But then (fi : φ) ≤
∑

cj[hi(xj) + δ] and since h1 + h2 < 1

(f1 : φ) + (f2 : φ) ≤
∑

j

cj[1 + 2δ].

Now
∑

cj can be made arbitrary close to (h : φ), so by Lemma 2.2.4,

Iφ(f1) + Iφ(f2) ≤ (1 + 2δ)Iφ(h) ≤ (1 + 2δ)[Iφ(f1 + f2) + δIφ(g)].
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Therefore, by the inequality which we get just earlier of this lemma, it suffices

to choose δ to be as small so that

2δ(f1 + f2 : f0) + δ()1 + 2δ(g : f0) < ε.

Theorem 2.2.6. Every locally compact group G possesses a left Haar mea-

sure.

Proof. Suppose Xf be the interval [(f0 : f)−1, (f : f0)] for every f ∈ C+
c G,

suppose X =
∏

f∈C+
c
Xf . Then by Tychonoff’s theorem, X is compact

Hausdorff space and by lemma 2.2.5, every Iφ is an element of X . Sup-

pose for every compact neighbourhood V of e, K(V ) denotes the closure of

{Iφ : supp(φ) ⊂ V } in X . It is easy to see ∩n
i=1K(Vi) ⊃ K(∩n

i=1Vi), so by

finite intersection property of compact space, there is an element I in the

intersection of all the K(V ), such that for every neighbourhood V of e and

any g1, g2, . . . , gn and ε > 0, there exists φ ∈ C+
c (G) with supp(φ) ⊂ V such

that |I(gj)−Iφ(gj)| < ε for j = 1, 2, . . . , n. Therefore in view of Lemma 2.2.3

and Lemma 2.2.4, I is left invariant and satisfies I(af + bg) = aI(f) + bI(g)

∀ f, g ∈ C+
c (G) where a, b > 0. Now, if we extend I to Cc(G) by defining

I(f) = I(f+) − I(f−), then I is left invariant positive linear functional on

Cc(G). Therefore, by invoking the Riesz representation theorem, we get the

result.
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Chapter 3

Representation of Compact

Group

Throughout this chapter, by a group, we mean a topological group.

3.1 Representation of the topological groups

Suppose H is a Hilbert space over C. Let B(H) be the set of all bounded

linear operator on H and GL(H) denotes the group of all invertible members

of B(H).

Definition 3.1.1. A representation of a group G on H is a group homomor-

phism π : G → GL(H) such that for every v ∈ H , the map g 7−→ π(g)v from

G into H is continuous.

For given π, we called H to be representation space and denotes group

representation by (π,H). The dimension of H is called the dimension of the

representation.

19



Definition 3.1.2. A representation (π,H) of G is said to be unitary repre-

sentation if π(g) is unitary operator on H for every g ∈ G, that is, if 〈·, ·〉
is an inner product on H , then 〈π(g)v, π(g)w〉 = 〈v, w〉, ∀ v, w ∈ H and

∀ g ∈ G.

Definition 3.1.3. Suppose (π,H) and (ρ,M) are two representations of the

group G. Then π and ρ are called equivalent if there exists a continuous

linear isomorphism T : H → M such that Tπ(g) = ρ(g)T , for all g ∈ G.

Definition 3.1.4. Suppose (π,H) be a representation of group G on fi-

nite dimensional Hilbert space H . Suppose H∗ denotes the dual of H . We

define contragredient representation by πc : G → GL(H∗) by πc(g)γ(v) =

γ(π(g−1)v), ∀ γ ∈ H∗ and ∀ v ∈ H .

The above definition make sense because,

1. πc(e)γ(v) = γ(v), ∀ γ ∈ H∗ and ∀ v ∈ H , which gives πc(e) = I on H∗.

2. πc(gh)γ(v) = γ(π((gh)−1)v)πc(h)(γ(π(g−1)v)) = πc(g)πc(h)(γ(v)), ∀ g ∈
G and ∀ v ∈ H .

Definition 3.1.5. Suppose (π,H) be a representation of G. A closed sub-

spaceM of H is said to be invariant subspace of π if π(g)v ∈M for all v ∈M

and ∀ g ∈ G. If M is an invariant subspace of π, then g 7−→ π|M(g) is group

representation and called subrepresentation of π and denoted by (π|M ,M).

Remark 3.1.6. If M is a closed subspace of H and T ∈ B(H), then M is

invariant under T if and only if TP = PTP , where P is orthogonal projection

on M . This is because, if M is invariant under T , then TP (x) ∈ M for
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all x ∈ H , which in turn implies that TP (X) = PTP (x). Conversely, if

TP = PTP and x ∈M , then T (x) = TP (x) = PTP (x) ∈M , which implies

that T (x) ∈M . Hence M is invariant under T .

Example 3.1.7. Suppose G be a compact group and let µ be a Haar measure

on G. Let H = L2(G). Define,

(R(g)f)(s) = f(sg), g ∈ G, f ∈ H.

Then g 7−→ R(g) is a unitary representation and is called right regular repre-

sentation. Analogously we define left regular representation as (L(g)f)(s) =

f(g−1s), g ∈ G, f ∈ H.

Lemma 3.1.8. Suppose (π,H) be a unitary representation of a group G.

(a) If M is an invariant subspace of π, then the subspace M⊥ is also in-

variant subspace of π.

(b) Let M be a closed subspace of H and let P be the orthogonal projection

of H on M . Then M is invariant for π if and only if Pπ(g) = π(g)P

for all g ∈ G.

Proof. (a) Suppose m ∈M and u ∈M⊥ and g ∈ G.

〈π(g)u,m〉 = 〈u, π∗(g)m〉

= 〈u, π(g−1)m〉, since π is unitary

= 0, since M is invariant under π

and hence π(g)u ∈M⊥.
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(b) Suppose Pπ(g) = π(g)P , and let m ∈ M then π(g)(m) = π(g)P (m) =

Pπ(g)(m) ∈ M , and hence M is invariant for π. Conversely, suppose

M is invariant for π, then by Remark 3.1.6, π(g)P = Pπ(g)P , which in

turn implies that π(g)∗P = Pπ(g)∗P (as P is self adjoint). Which gives

(π(g)∗P )∗ = (Pπ(g)∗P )∗, which in turn implies Pπ(g) = Pπ(g)P .

Direct Sum

Suppose {Hi}i∈Λ be a collection of Hilbert spaces. Consider the set

H = {u = (ui) : ui ∈ Hi and
∑

i

‖ui‖2 < ∞}. Then H is vector space

with coordinate-wise addition and scalar multiplication. Suppose v = (vi)

and u = (ui), define 〈u, v〉 =
∑

i

〈ui, vi〉, with this inner product H become

Hilbert space. This Hilbert space H is called the direct sum of the collection

{Hi}i∈Λ and is denoted by
⊕

i∈ΛHi. Suppose {(πi, Hi)}i∈Λ be a family of

unitary representations of a group G. Then for each g ∈ G, consider the

map π(g) defined on H by

π(g)v = (πi(g)vi) for all v ∈ H.

Then π is a unitary representation of G on H . This representation is called

the direct sum of family {πi}i∈Λ of unitary representations of G and denoted

by
⊕

πi.

Definition 3.1.9. Suppose (π,H) be a group representation of group G.

Then (π,H) is said to be irreducible if there is no non trivial π-invariant
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closed subspace of H .

Definition 3.1.10. Suppose (π,H) be a unitary representation of G, then it

is said to be completely reducible if there exists a family {Hi} of closed mutu-

ally orthogonal invariant subspaces of π such that each (π,Hi) is irreducible

and H =
⊕

Hi.

Notation: Suppose (π,H) be unitary representation of G. We will denote

Iπ = {T ∈ B(H) : Tπ(g) = π(g)T ∀ g ∈ G}, the space of intertwining

operators.

Theorem 3.1.11. (Schur’s Lemma) Suppose (π,H) is a unitary repre-

sentation of a group G, then π is irreducible if and only if Iπ = {λI : λ ∈ C},
where I is identity operator.

Proof. Suppose Iπ = {λI : λ ∈ C}. If π is reducible, then there exists a

proper closed subspace M of H , which is invariant under π. Suppose P is

the orthogonal projection onM . Clearly P 6= cI for any scalar c. By Lemma

3.1.8, Pπ(g) = π(g)P for all g ∈ G, which is a contradiction. Hence π is

irreducible.

Converse part can be proved using the spectral theorem for the self-adjoint

compact operators. We omit the proof here.

Corollary 3.1.12. Suppose (π,H) is an irreducible unitary representation

of an abelian group G, then the dimension of H is one.

Proof. Since the group G is abelian, π(gh) = π(g)π(h) = π(h)π(g) ∀ g, h ∈
G. Hence π(h) ∈ Iπ ∀ h ∈ G. Thus, by Schur’s lemma, each π(g) is a scalar
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multiple of identity operator. Therefore every subspace of H is invariant

under π. This proves the result.

Cyclic representation

Suppose (π,H) is a representation of G. Let v( 6= 0) ∈ H , define Mv =

span{π(g)v : g ∈ G}. Then Mv is a closed invariant subspace of π, and is

called cyclic space generated by v. If there exists v 6= 0 such that Mv = H ,

then v is called cyclic vector for π.

Proposition 3.1.13. (a) A representation (π,H) is irreducible if and only

if every non zero v ∈ H is a cyclic vector for π.

(b) Any unitary representation of a group is a direct sum of cyclic repre-

sentations.

Proof. (a) Suppose π is irreducible. Let v( 6= 0) ∈ H , thenMv is non trivial

invariant subspace for π. Hence Mv = H .

Conversely, suppose π is not irreducible. Then there exists a non trivial

invariant closed subspace M for π. Let v( 6= 0) ∈ M , then Mv ⊂ M (

H , which is a contradiction.

(b) This proposition can be proved with the help of Zorn’s lemma on the

family of mutually orthogonal cyclic subspaces of H , where partial

order is the set inclusion.

Lemma 3.1.14. Suppose H and K are two Hilbert spaces and let T : H → K
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be a bounded linear map. Suppose f : G → H is a continuous map, then

T

(
∫

G

f(y)dµ(y)

)

=

∫

G

Tf(y)dµ(y)

Proof. Suppose u ∈ K,

〈
∫

G

f(y)dµ(y), T ∗u〉 =
∫

G

〈Tf(y), u〉dµ(y)

= 〈
∫

G

Tf(y)dµ(y), u〉.

Since U is unitary, it follows that T

(

∫

G
f(y)dµ(y)

)

=
∫

G
Tf(y)dµ(y)

Lemma 3.1.15. Suppose (π,H) is a cyclic unitary representation of G with

x ∈ H, x 6= 0 a cyclic vector. Then the operator defined by

Ky =

∫

G

〈y, π(g)x〉π(g)xdµ(g) (3.1)

is bounded, strictly positive compact on H such that Kπ(g) = π(g)K for all

g ∈ G.

Proof. Suppose (hα) is a net in G converging to h ∈ G. Since the inner

product is continuous, we get 〈y, π(hα)x〉π(hα)x −→ 〈y, π(h)x〉π(h)x. Now
to show K is bounded, consider

‖Ky‖2 = |〈Ky,Ky〉| = |
∫

G
〈y, π(g)x〉〈π(g)x,Ky〉dµ(g)|

≤
∫

G
|〈y, π(g)x〉||〈π(g)x,Ky〉|dµ(g)≤ ‖y‖‖x‖2‖Ky‖.

That gives ‖Ky‖ ≤ ‖y‖‖x‖2 and hence K is bounded. Now consider,

〈y, y〉 = 〈
∫

G
〈y, π(g)x〉π(g)xdµ(g), y〉 =

∫

G
|〈y, π(g)x〉|2dµ(g) ≥ 0. If possible

suppose 〈Ky, y〉 = 0, then < y, π(g)x >= 0 a.e. But g 7−→ 〈y, π(g)x〉 is a

25



continuous map, and support of µ is G, it follows 〈y, π(g)x〉 = 0 for all g ∈ G.

That is, y = 0, since x was cyclic vector. Thus K is positive.

To prove K is compact, suppose zn
w−→ z, then

〈Kzn, Kz〉 = 〈zn, K∗Kz〉 → ‖Kz‖2 and

‖Kzn −Kz‖2 = ‖Kzn‖2 + ‖Kz‖2 − 2Re〈Kzn, Kz〉.
‖Kzn‖2 =

∫

G
〈zn, π(g)x〉〈π(g)x,Kzn〉dµ(g)

=
∫

G
〈zn, π(g)x〉〈Kπ(g)x, zn〉dµ(g) →

∫

G
〈z, π(g)x〉〈kπ(g)x, z〉dµ(g)

=
∫

G
〈z, π(g)x〉〈π(g)x,Kz〉dµ(g) =‖Kz‖2. Hence K is compact.

Suppose g ∈ G and u, v ∈ H , then 〈Kπ(g)u, v〉 =
∫

G
〈π(g)u, π(h)x〉〈π(h)x, v〉dµ(h)

=
∫

G
〈u, π(g−1h)x〉〈π(g−1h)x, π(g−1)v〉dµ(h) =

∫

G
〈u, π(h)x〉〈π(h)x, π(g−1v)dµ(h)〉

= 〈Ku, π(g−1)v〉 = 〈π(g)u, v〉. Hence Kπ(g) = π(g)K ∀ g ∈ G.

Corollary 3.1.16. Suppose (π,H) is a unitary representation of group G.

Then there exists a non-trivial finite dimensional subspace of H which is

invariant under π.

Proof. By Proposition 3.1.13, every unitary representation is nothing but

the direct sum of cyclic representations, therefore, without loss of generality,

we may assume (π,H) is a cyclic representation. By the spectral theorem

for the self-adjoint compact operators, there exists γ 6= 0 such that Hγ =

ker(K − γI) 6= {0} and finite dimensional, where K is defined by (3.1).

Suppose v ∈ Hγ, then Kπ(g)v = π(g)Kv = π(g)γv = γπ(g)v and hence Hγ

is invariant subspace.

Suppose (π,H) is an irreducible unitary representation of a compact

group, then by the previous corollary, there exists a finite dimensional non

trivial invariant subspace, and hence we have the following results.
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Corollary 3.1.17. Every irreducible unitary representation of a compact

group is finite dimensional.

Lemma 3.1.18. Any finite dimensional unitary representation of a group is

completely reducible.

Proof. We shall prove this theorem by using the induction hypothesis on the

degree of representation. Suppose (π,H) be a finite degree representation of

G. If the degree of representation is one, then π is irreducible. Suppose degree

of representation of π, i.e deg(π,H) = n, n∈ N. Now, suppose the theorem

holds for all representations of degree less than n. If π is irreducible, we

are done. Otherwise, there exists proper nontrivial invariant closed subspace

M of H . Since π is unitary, which gives M⊥ is also invariant under π and

dimension ofM andM⊥ is less than the dimension of H . Hence by induction

hypothesis we get the results.

Theorem 3.1.19. Every unitary representation of a compact group is a di-

rect sum of irreducible finite dimensional unitary representations.

Proof. Suppose (π,H) is a unitary representation of compact group G and

let F = {Hi : i ∈ I}, where Hi’s are pairwise disjoint orthogonal finite

dimensional irreducible subrepresentations of π. By the Corollary 3.1.16

and Lemma 3.1.18, F is non empty, and set inclusion is partial order on F .

Suppose O = {{Hi}i∈Ij : j ∈ Λ} be a chain in F , and let K = ∪j∈Λ{Hi}i∈Ij .
Since O is chain it follows that K is an upper bound of O, so by the Zorn’s

lemma, there exists a maximal element {Hj}j∈J .
Claim: H =

⊕

j∈J Hj

Suppose H 6=
⊕

j∈J Hj and let Hα =
⊕

j∈J Hj , then by Corollary 3.1.16 and
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Lemma 3.1.18, there exists non trivial finite dimensional irreducible subspace

H ′. ThenH ′ ⊥ Hj j ∈ J , which contradicts the maximality ofHj, j ∈ J .

Notation

1. Let Ĝ be the set of equivalence classes of irreducible unitary represen-

tations of G.

2. If (π,H) is a finite dimensional unitary representation ofG and {e1, . . . , en}
is an orthonormal basis of H , we define φij = 〈π(g)ej, ei〉, 1 ≤ i, j ≤ n.

Then, φij’s are continuous functions on G and are called matrix coeffi-

cient of the representation of π.

Proposition 3.1.20. Suppose (π,H) and (ρ,K) are two finite dimensional

representations of G, and let T : K → H be a linear map such that π(g)T =

Tπ(g), ∀ g ∈ G. Then ker(T ) and Im(T ) are invariant subspaces of K and

H respectively. Also if π and ρ are irreducible and inequivalent, then T = 0.

Proof. Proof of this theorem is easy.

Schur’s orthogonality relations

Let π and % be two irreducible representations of G and (φij(g)) and (ψkl(g))

are the corresponding matrix coefficients of π and % respectively with respect

to some fixed orthonormal bases in the respective Hilbert spaces. Then,

(a) 〈φij, ψkl〉L2(G) = 0, if π and % are not equivalent.

(b) 〈φij, ψkl〉L2(G) =
1

dim(Hπ)
δikδjl.
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3.2 Character of representation

Definition 3.2.1. Suppose (π,Hπ) is a finite dimensional representation of

a group G. The character of π is the function χπ(g) = Tr(π(g)), where Tr

denotes trace.

Proposition 3.2.2. (a) If π and % are equivalent, then χπ = χ%.

(b) χπ(g) = χπ(hgh
−1), g, h ∈ G.

(c) χπ
⊕

% = χπ + χ%.

(d) χπ(e) = dπ, where dπ is dimension of Hπ

(e) χπ is continuous function on G.

(f) If π is unitary, then for all g ∈ G, χπ(g
−1) = χπ(g).

Proof. We will prove (e) only, others are easy to see. Suppose (hα) is a net

in G converging to h ∈ G. Then, φii(hα) → φii(h), where 1 ≤ i ≤ dim(π).

This, in turn, implies

dim(π)
∑

i=1

φii(hα) →
dim(π)
∑

i=1

φii(h). Hence χπ(hα) → χπ(h).

Thus χπ is continuous.

Proposition 3.2.3. Suppose (π,Hπ) and (%,H%) are two irreducible unitary

representations of a compact group G.

(a) If π and % are equivalent, then 〈χπ, χ%〉L2(G) = 1.

(b) If π and % are inequivalent, then 〈χπ, χ%〉L2(G) = 0.

Proof. Suppose φij and νij are matrix coefficient of π and % respectively.

Then 〈χπ, χ%〉L2(G) =
∫

G
χπ(g)χ%(g)dµ(g) =

∫

G
Tr(π(g))Tr(π(g))dµ(g). By
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Schur’s orthogonality relation (b), we get
∑

i,j

〈φii, φj〉L2(G) = 1. Similarly

using Schur’s orthogonality relation (a) we get (b).

3.3 Peter-Weyl Theorem

we shall state and prove this theorem in five related assertions, PW1-PW5.

PW1

Every irreducible unitary representation of a compact group is equivalent to

a subrepresentation of the right regular representation.

Proof. Suppose (π,H) is an irreducible unitary representation of group G.

Then by Corollary 3.1.17, the dimension ofH is finite, say n. Let {e1, e2, . . . , en}
be an orthonormal basis of H and let φlj(g) = 〈π(g)ej, el〉. Fix l (say

l=1), and suppose ψj(g) =
√
nφ1j(g). Then, by Schur’s orthogonality re-

lations, {ψ1, ψ2, . . . , ψn} is an orthonormal set in L2(G). Suppose E1 =

span{ψ1, ψ2, . . . , ψn}. Then,

R(h)ψj(g) = ψj(gh) =
√
nφ1j(gh) =

√
n〈π(gh)ej.e1〉

=
√
n〈π(g)(

n
∑

l=1

〈π(h)ej, el〉l), e1〉

=
√
n

n
∑

l=1

〈π(h)ej, el〉〈π(g)el, e1〉

=
√
n

n
∑

l=1

φlj(h)φ1l(g)

=
n

∑

l=1

φlj(h)ψl(g).
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Thus subspace E1 is invariant with respect to right regular representation

and R(g)|E1
has matrix entries (φlj(g)) with respect to orthonormal basis

{ψ1, ψ2, . . . , ψn}. Thus, (R(h)|E1
, E1) is equivalent to (π,H).

Remark 3.3.1. Let ψi
j(g) =

√
nφij(g), and Ei = span{ψi

1, . . . , ψ
i
n} ⊆ L2(G).

Thus, by Schur’s orthogonality relations, Ei’s are mutually orthogonal. Sup-

pose Eπ =
⊕dπ

i=1Ei, where dπ is the dimension of π. Thus dim(Eπ) = d2π.

Proposition 3.3.2. (a) Define, πy,x(g) = 〈π(g)x, y〉 for all g ∈ G, then

πy,x ∈ L2(G) and called matrix coefficient functions. Then,

Eπ = span({πy,x : y, x ∈ H}).

(b) If π and % are equivalent representations, then Eπ and E% are identical

with dim(Eπ) = d2π.

Proof. (a) Obviously, Eπ ⊂ span{πy,x : y, x ∈ H}. Suppose y, x ∈ H and

{e1, e2, . . . , en} is an orthonormal basis for H and g ∈ G, then

πy,x(g)〈π(g)
( n
∑

i=1

〈x, ei〉ei
)

,

n
∑

j=1

〈y, ej〉ej〉

=
n

∑

i=1

n
∑

j=1

〈x, ei〉〈y, ej〉〈π(g)ei, ej〉

=

n
∑

i=1

n
∑

j=1

〈x, ei〉〈y, ej〉φij(g).

Hence πy,x ∈ Eπ.

(b) Since π and % are equivalent, there exists an isomorphisms U of π and

% such that Uπ(g) = ρ(g)%.

πy,x = 〈π(g)x, y〉 = 〈U−1%(g)Ux, 〉 = 〈%(g)Ux, (U−1)∗y〉.

31



This implies πy,x = %(U−1)∗y,Ux. Since U is an isomorphism, it follows

that Eπ and E% are identical.

For λ ∈ G, suppose Eλ is a finite dimensional space that spanned by the

matrix coefficient functions of the representation π in the equivalence class

λ. Then, by the previous lemma, Eα = Eβ for α, β ∈ λ.

PW2

(a) Each Eλ is invariant under the right regular representation of G.

(b) If π is an irreducible unitary representation in the equivalence class

λ, then R|Eλ
is equivalent to the direct sum of dπ copies of π and

consequently, dim(Eλ) = d2π.

(c) L2(G) =
⊕

λ∈ĜEλ.

Proof. (a) It is directly followed from PW1 and remark after PW1.

(b) Since each Ei is invariant under R and by remark after PW1 implies

that R|Ei
is equivalent to π. Hence proves (b).

(c) Suppose M =
⊕

λ∈Ĝ. Then M and M⊥ are invariant under right regu-

lar representation R. Suppose U ⊂M⊥ be an invariant subspace such

that R|K is irreducible and it is in the equivalence class λ ∈ Ĝ. For

f ∈ K, suppose F (h) = 〈R(h)f, f〉, where h ∈ G. Clearly F is contin-

uous function, F ∈ Eλ ⊂M and F (e) = ‖f‖2.
Suppose {φλ

ij} is matrix coefficient functions of some representation
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(πλ, Hλ) ∈ λ, i.e. φλ
ij(g) = 〈πλ(gej), ei〉 with respect to some orthonor-

mal basis {e1, e2, . . . , edλ}, where dλ is dimension of Hλ.Then,

〈F, φλ
ij〉L2(G) =

∫

G

F (h)φλ
ij(h)dµh

=

∫

G

∫

G

f(gh)f(g)φλ
ij(h)dµ(g)dµ(h)

=

∫

G

∫

G

f(h)f(g)φλ
ij(g

−1)dµ(g)dµ(h).

Since µ is left invariant and by the Fubini’s theorem,

〈F, φλ
ij〉L2(G) =

∫

G

∫

G

f(gh)f(g)

dλ
∑

k=1

φλ
ik(g

−1)φλ
kj(h)dµ(g)dµ(h),

=

dλ
∑

k=1

∫

G

f(g)φλ
ik(g

−1)〈f, φλ
kj〉dµ(g),

= 0, since f ∈ M⊥ and φλ
ij ∈ Eλ.

Therefore, F ∈ E⊥
λ ∩ Eλ = {0}. Which gives f = 0. So M = L2(G).

Remark 3.3.3. 1. By PW2, (R,L2(G)) is the direct sum of irreducible

representations of G and each λ ∈ Ĝ occurs in the decomposition dλ

times.

2. For any f ∈ L2(G) we have, f =
∑

λ∈Ĝ

dλ

dλ
∑

i=1

dλ
∑

j=1

〈f, φλ
ij〉φλ

ij and

‖f‖2L2 =
∑

λ∈Ĝ

dλ

dλ
∑

i=1

dλ
∑

j=1

|〈f, φλ
ij〉|2.
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Definition 3.3.4. Suppose f, g ∈ L1(G), then we define convolution of

f and g as f ∗ g(x) =
∫

G
f(y)g(y−1x)dµ(x).

Lemma 3.3.5. Suppose f ∈ L2(G), then f ∗ χλ =

dλ
∑

i=1

dλ
∑

j=1

〈f, φλ
ij〉φλ

ij. Con-

sequently, we have

f =
∑

λ∈Ĝ

dλf ∗ χλ,

where χλ is the character of the representation πλ. If f, g ∈ L2(G), then the

above series for the function f ∗ g converges to f ∗ g uniformly.

Proof. Suppose dimension of πλ is dλ and let g ∈ G, then

f ∗ χλ =

∫

G

f(x)χλ(x
−1g)dµ(x)

=

∫

G

f(x)Tr(πλ(x
−1)πλ(g))dµ(x)

=

∫

G

f(x)

dλ
∑

i,j=1

φλ
ij(x)φ

λ
ij(g)dµ(x), since πλ(x

−1) = πλ(h)
∗

=

dλ
∑

i,j=1

〈f, φλ
ij〉φλ

ij.

PW3

For f ∈ L2(G) and λ ∈ Ĝ, choose πλ ∈ λ. Define, ˆf(λ) =
∫

G
f(g)πλ(g

−1)dµ(g).

Then ˆf(λ) ∈ B(Hλ) and f(g) =
∑

λ∈Ĝ

dλTr( ˆf(λ)πλ(g)) and ‖f‖2
L2(G) =

∑

λ∈Ĝ

dλ‖f̂‖2HS,

where ‖A‖HS = Tr(AA∗).

Proof. It is easy to see that ˆf(λ)ij = 〈f, φλ
ji〉. Now consider

34



f(g) =
∑

λ∈Ĝ

dλ

dλ
∑

i=1

dλ
∑

j=1

〈f, φλ
ij〉φλ

ij(g) =
∑

λ∈Ĝ

dλ

dλ
∑

i=1

dλ
∑

j=1

ˆf(λ)jiφ
λ
ij(g) =

∑

λ∈Ĝ

dλTr( ˆf(λ)πλ(g)).

Then ‖f‖2
L2(G) =

∑

λ∈Ĝ

dλ

dλ
∑

i=1

dλ
∑

j=1

| ˆf(λ)ji|2 =
∑

λ∈Ĝ

dλ‖ ˆf(λ)‖2HS. Hence we get the

result.

Define L2(Ĝ) as the space of function Φ from Ĝ to the disjoint union
⋃

∞

i=1GL(n,C) that satisfies;

1. Φ(λ) ∈ GL(dλ,C) ∀ λ ∈ Ĝ.

2.
∑

λ∈Ĝ

dλ‖Φ(λ)‖2HS <∞.

Then L2(Ĝ) is a Hilbert space with inner product

〈Φ,Ψ〉 =
∑

λ∈Ĝ

dλTr(Φ(λ)Ψ(λ)∗).

PW4

The fourier transform F : f → f̂ is an isometry from L2(G) onto L2(G).

Proof. We have already proved that F is an isometry in PW3.

Suppose Φ ∈ L2(Ĝ). Then,

∑

λ∈Ĝ

dλTr(Φ(λ)πλ(g)) =
∑

λ∈Ĝ

dλ

n
∑

i=1

n
∑

j=1

Φ(λ)ijφ
λ
ji(g)

converges in L2(G). By definition,
∑

λ∈Ĝ

dλ

n
∑

i=1

n
∑

j=1

|Φ(λ)ij |2 <∞ and suppose

it converges to f ∈ L2(G). Then by PW3 and Schur’s orthogonality relations,

we get ˆf(λ) = Φ(λ).
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SupposeR(G) be the linear space spanned by {πx,y : dim(π) <∞, and x, y ∈
H}. Elements belonging to R(G) are called representative function, and in

view of Proposition 3.3.2, R(G) is spanned by the orthogonal family of func-

tion {φλ
ij : λ ∈ Ĝ, 1 ≤ i, j ≤ dλ.

PW5

R(G) is dense in C(G), equipped with sup norm.

We skip the proof of PW5.

3.4 Irreducible Unitary Representation of SU(2)

Suppose G = SU(2), the special unitary group consists of all matrices A

of degree 2 satisfying A∗A = I and det(A) = 1. Suppose C2 = {(z1, z2) :

z1, z2 ∈ C} is the vector space of all row vector, then SU(2) act on C2 from

right, i.e if A ∈ SU(2) and z ∈ C2 then z 7−→ zA is group action.

Suppose S3 is the unit sphere in R4. Then the map φ : S3 → SU(2)

defined by,

φ(x1, x2, x3, x4) =





x1 + ix2 −x3 + ix4

x3 + ix4 x1 − ix2



 , (x1, x2, x3, x4) ∈ S3

is a homeomorphism of S3 onto SU(2). Let (x1, x2, x3, x4) ∈ S3. Then we
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can write

x1 = cos θ

x2 = sin θ cosφ

x3 = sin θ sinφ cosψ

x4 = sin θ sinφ sinψ

where 0 ≤ θ, φ ≤ π and 0 ≤ ψ ≤ 2π.

The normalised Haar measure of element dx on SU(2) is given by

ds =
1

2π2
sin2 θ sin φdθdφdψ.

For each n ≥ 0, let

Hn = {f(z1, z2) =
n

∑

k=0

αkz
k
1z

n−k
2 : αk ∈ C}.

Then Hn is vector space and the set of monomial φk(z1, z2) = zk1z
n−k
2 , 0 ≤

k ≤ n, form a basis for Hn and hence dimension of Hn is n + 1. Define an

inner product 〈, 〉 on Hn by 〈φk, φj〉 = 0 if j 6= k and

〈φk, φk〉 = k!(n− k)!, otherwise.

Then, for any g, h ∈ Hn, g(z) =

n
∑

k=0

αkz
k
1z

n−k
2 and h(z) =

n
∑

k=0

βkz
k
1z

n−k
2 ,

〈g, h〉 =
n

∑

k=0

k!(n− k)!αkβk.

Definition 3.4.1. For every n ≥ 0, suppose Hn is defined as above. If
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g ∈ SU(2), define a linear map πn(g) on Hn by,

πn(g)f(z) = f(zg), f ∈ Hn

Then the map g 7−→ πn(g) from SU(2) to B(Hn) is a representation of SU(2).

Proposition 3.4.2. For each n ≥ 0, the representation (πn, Hn) of SU(2)

is an irreducible unitary representation.

Proof. We will only prove the unitary part. To show (πn, Hn) is unitary,

consider the subset

U = {φa : φa(z) = (za)n, a ∈ C2} ⊆ Hn.

Then, πn(g)φa(z) = φ(zg) = (zga)n = φga(z), So if a, b ∈ C2, then,

〈πn(g)φa, πn(g)φb〉 = 〈φga, φgb〉, (3.2)

and 〈φa, φb〉 = n!〈a, b〉n, which in turn implies that

〈πn(g)φa, πn(g)φb〉 = n!〈ga, gb〉n = n!〈a, b〉n = 〈φa, φb〉.

So it remains to prove U contains a basis for Hn. Suppose ω be the primitive

nth root of unity. Then the following n + 1 polynomials (z1 + ωkz2)
n, where

0 ≤ k ≤ n − 1, and zn2 are linearly independent and contained in U , hence

πn is a unitary representation.

Remark 3.4.3. Suppose (π,H) be an irreducible unitary representation of

SU(2). Then π is equivalent to (πn, Hn) for some n.
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