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ABSTRACT

The main aim of the project to understand the the Riesz-Thorin interpo-
lation theorem. This is a result about interpolation of bounded linear oper-
ators. This theorem can be used, for example, to prove the Hausdorff-Young
inequality, which establishes that the Fourier transform can be extended in
a unique way as a continuous linear map from L” to LY, where p and ¢ are

conjugate integers and 1 < p < 2.
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Chapter 1

INTRODUCTION

Before discuss Riesz-Thorin interpolation theorem, we discuss the important
results and ideas which help us to understand it. We shall start with measure
theory,then discuss some basic of dual of L” space and after that we shall

discuss Riesz-Thorin interpolation theorem.



Chapter 2

MEASURE THEORY AND
LIMIT THEOREMS

2.1 Introduction

In this chapter, our main aim is to establish the limits theorems for integral.
However, we take a quick review of some important basic notion, definitions

and results measure theory.

In the very initial section, we shall define Measure and Outer measure and
distinguish them by giving examples. Then we go to measurable function.
After that we precisely establish the notion of integration and finally we end
the chapter by discussing two limit theorems: monotone convergence theorem

and Fatou’s lemma.



2.2 o0-Algebra

Suppose X be an arbitary set and A be a collection of subsets of X. Then A

is said to be g-algebra if the following conditions holds:

1. XeAd
2. Aec A— A°c A

3. If Ay, Ay, ... be a sequence in A. Then |J;=, A; € A.

2.2.1 Examples.

Let X be an uncountable set. Then A = {A C X: A or A° is countable}
Then A is a o-algebra.

2.3 Measures

Let A be a o- algebra on X. A measure u : A — [0,400] is a function such

that

e u(¢p) =0 and
o u(Ui; Ai) =7 n(A;), for any disjoint sequence {A;, A, ... A, } in A.

Hence measure is countably additive.



2.3.1 Measure space

Let A be a o-algebra on X and p be a measure on X. The triplet (X, A, i)

is called measure space. If from the context there is no ambiguity about the

o-algebra, we simply say p is a measure on X.

Examples.

Suppose (X, A, i) is a measure space.

1.
0
u(A) =
00
where g is a measure on X.
2.
0
n(A) =
1

if A=¢ o)
ifA#¢,
if A=¢ 22)
it A# o,

where p is not a measure on X, since countable additivity fails to hold.

2.3.2 QOuter Measures

Let X be a nonempty set. An outer measure u* : 2% — [0, +-00] is function

such that

L pu(¢) =0

2. if AC B C X,then pu*(A4) < p*(B)



3. u(Uiz, 4i) < -7 u(4;), for each sequence {A;, As, ...} in 2%,

Thus an outer measure is monotone and countably subadditive. Notice
that an outer measure is countably subadditive and may not be countable
additive, whereas measure must be countably additive. So an outer measure
may not be a measure. But since countably additivity implies monotonocity
and countably subadditivity, a measure is an outer measure if and only if
domain of the measure is 2%.

Examples.
suppose (X, A, u) is a measure space and p : A — [0, +0o0] is a function.

Let us consider A = 2X.

0 if A=¢
pu(A) = (2.3)
oo ifA#¢,

where g is a measure,as well as an outer measure X.

0 ifA=¢
p(A) = (2.4)
1 ifA£e

Here 1 is an outer measure X. But not a measure since countable ad-

ditive fails.



0 if A is finite
(A) = (2.5)
1 if A is not finite

Here p is neither an outer measure nor a measure since countable sub-

additivity fails.

4. Consider A # 2%

0 if A=¢
u(A) = 2.6)
oo ifA#£P

Here p is a measure, but not an outer measure since domain of p is a

proper subset of 2X.

2.3.3 Lebesgue outer measures on R

Suppose A C R? and €4 be the collection of all sequence (R;) of bounded
and open d — dimensional intervals such that A C U;’il R;. Then Lebesgue
outer measure of A is denoted by A*(A) and defined by the infimum of the
set {d oo, vol(R;) : (R;) € Cy4}.

For d =1, we take A C R subintervals and (R;) = (a;, b;), bounded and

open subintervals of R. So



A*(A) = inf {i(bl —a;): (R;) € GA} :

=1

We can verify that Lebesgue outer measures satisfies all the property of outer

measure as well as measure.

2.3.4 Finite, o-finite, semi-finite measures
Suppose (X, A, i) is a measure space.
1. p is said to be finite if u(X) < +oo

2. pissaid to be o- finite if Ay, Ay, ... be asequencein A and | J;~, A; = X
such that for u(A;) < 400 , for each A;.

Note that if pu o-finite, we can choose a disjoint sequence By, Bs,... in A
such that |J;2, B, = X and u(B;) < +oo. If Ay, Ay, ... is a sequence in A
such that (J;=; A; = X and p(A;) < +oo , for each A;, then consider the
sequence (B,,) given by B; = A; and B, = A,, — ?;11 A;.

A measure p is said to be semi-finite if for each such A, u(A) = oo, there

exists a set B C A such that p(B) < oo.

Examples.



1. X ={1,2,3}, A={¢, X,{1},{2,3}}

n if A has n elements
w(A) = (2.7)
oo if A is infinte,

where p is finite since p(X) =3 < oo.

2. X = R, A = 2% and u = )\*, the Lebesgue outer measures. Write
A, = (—n,—n+ 1]U[n — 1,n). Here i is both o-finite and semi-finite

measures but not finite.

3. X = R, A = B(R), the borel set on R and p=counting measures
defined by

n if A has n elements
(A) = (2.8)

oo if A is infinte,

Here p neither of finite, o-finite or semi-finite measures.

2.3.5 pu Almost Everywhere

Let (X, A, ) be measure space.Let P be a property of points of X. Let F
be the set of all points of X at each of P fails to hold. Then P said to be

pu — Almost Everywhere in X if u(F) = 0.



If the measure is clearly understood, we simply say P is almost everywhere
(a.e.) in .
Examples.

For X =R, A = 2% and p = \*, the Lebesgue outer measures

2 freR-N
flx) =

rz ifzxzeN

Here f(z) = 2% a.e. on R.

2.4 Measurable set

Suppose u* : 2% — [0, +00] is an outer measure on X. A subset A of X is
said to be p*- measurable if for each B C X,

p'(B) = p* (AN B) 4+ p (AN BY).
1.e., A is measurable if the sum of measures of the portion of B bisected by

A returned back the measure of B, for each B C X.

Example. X = R, A = 2% and = \*. Then A = (a,b), open sub-

interval of R is measurable.



2.5 Simple functions

Let X be a set and s be real-valued function defined on X.If the range of s

is finite, we say s is a simple function. Let £ C X. Define

1 fzx el
Xe(x) = (2.9)
0 ifzxé¢kFE,

X is called the characteristic function of E. Let the range of s consists of the
n distinct numbers ay, as, ..., a,. Let E; = {x : s(x) = a;},i = 1,2,...,n.
Then s = )" | a;xg;, i.e., every simple function is a finite linear combination

of characteristic functions.

Theorem 2.5.1. Let (X, A, ) be measure space and A C X such that A €
A. Suppose f : A — [0,+00] be a A- measurable function.Then exist a

sequence of [0,00) A- measurable simple functions (s,) such that
1. s1(x) < sg(x) < - -

2. f(x) = lim s,(z), for all z € A.

n—oo

Proof. Define

and

foralln = 1,2,... and i = 1,2,...,n2". Now we define a sequence (s,,) of

10



functions from A by

n2" .

sul@) = 3 L () + e ().

2n
=1

For each n, the function s,, defined above are simple and satisfy conditions

1 and 2. This completes the proof. O

Corollary 2.5.2. The result also holds for if the function f is of [—o0, +0]
valued instead of [0, +oo] valued function.In this case decompose [ as [ =
fr=f",whereft =max{f,0}, f~ = —min{f,0} and apply the the preceding
construction to fT and f~ separately since then f+ and f~ both are [0, +0o0]

valued function.

2.6 Integral

Let (X, A, 1) be a measure space and X% be the collection of all non-negative

simple function in X. Let f € X%, then we can write

f=Yaixa,
=1

where ay, as, ..., a, are non-negative real numbers and Aq, As, ..., A, are dis-
joint subsets of X that belong to A. We denote the integral of f on X by
[ fdp and defined by

/X fdu =Y a4

Lemma 2.6.1. Let (X, A, ) be measure space and f,g € X% suich that

11



f(z) < g(x) holds at each x in X. Then

/X fdu < /X gdp.

Proof. Clearly g — f € X% and g = f + (g — f). It follows that

/nguz/xfdwr/x(g—f)duZ/deu

This completes the proof. O

Theorem 2.6.2. Let (X, A, 1) be measure space. and f € X% be a function.
Let (f,) be a sequence of [0, co]-valued A-measurable simple functions on X

such that
1. fi(x) < faw) < - -

2. f(z) =lim f,(x), at each x in X. Then

/X fdu = lim /X fm

Proof. By Lemma 2.6.1, it follows that

/XfldMS/XdeMS“-S/deu.

Hence lim [ f,dp exists and satisfies

lim /X Fudp < /X fdy.

. : k
Since f € Y%, we can write f = Y7 | a;xa,, where ay,as, ..., a; are non-

12



negative real numbers and Ay, A,, ..., Ay are disjoint subsets of X that belong
A. Lete >0 and A,,; = {z € A; : fo(x) > (1 — €)a;}, for each n. For each n,
define g, = S2F (1 - €)aixa,,- Then g, < f, for each n and

gndp = (1—¢) [ fdp.
/, /,

Since this holds for each e > 0, therefore, [, g du = [ fdu. Hence the result
follows. O

Definition 2.6.3. Let (X, A, p) be measure space. We define the integral of

an arbitrary [0, oo]-valued A- measurable f on X as

/fd,u:sup{/ gd,u:gEZ}andggf}. (2.10)
b b

We can define the integral of an arbitrary [—oo, +00]- valued A- measur-
able f on X by decomposing f as f = f*— f~,wheref™ = max{f,0}, f~ =
—min{f,0} and apply (2.10) to f* and f~ separately since then f* and f~

both are [0, +00] valued function.

Lemma 2.6.4. Let (X, A, 1) be measure space and f,g are [0, 0o]-valued A-
measurable on X such that f(z) < g(x) holds at each x in X. Then

/X fdu < /X gd.

Proof. Any class of functions h in X% that satisfy h < f also satisfy h < g.

Hence the above definition readily gives the result. O

Lemma 2.6.5. Let (X, A, ) be measure space and f,g are [—o0, +00]- val-

ued A- measurable function on X such that f(x) < g(x) holds at each x in

13



X. Then

/deMS/ngu-

Proof. Clearly g — f >0 and g = f + (g — f). This implies that

/ngMZ/dequ/X(g_f)duz/deM

This completes the proof. O

Theorem 2.6.6. Let (X, A, u) be measure space and f be [0,400]- valued
A- measurable function on X. Let (f,) be a sequence of non-negative A-

measurable simple functions such that

1. filz) < fala) <o

2. f(z) = lim f,(x), for each x in X. Then

/X fdu = lim /X jm

Proof. By Lemma 2.6.4, it follows that

/XflduS/deué“-S/de,u.

Hence lim [ f,dp exists and satisfies

lim /X Fodp < /X fdp.

14



Now we have to show the reverse inequality

lim /X Fudp > /X i

Recalling the above definition of integral, it is enough to show that any

g € I% that satisfies g < f also satisfies

/ gdp < lim / Jndp.
X X

Let any g € X%. Then (min{g, f,}) is a non-decreasing sequence of [0, 00)-

valued simple function such that ¢ = lim min{g, f,}. By Theorem 2.6.2, we
n—oo

have [, gdu = TLILHQO [ min{g, f,, }dp. Since [, min{g, f,} < [, fadp for each
n, it follows that

/ gdp < lim [ fodu.
b'e n—oo b'e

This completes the proof. n

2.7 Limit theorems

2.7.1 Monotone convergence theorem

Theorem 2.7.1. Let (X, A, u) be measure space.Let f and fi, fo,... are

0, o] -valued A- measurable function on X s.t.

1 fi(x) < folz) <o

15



2. f(z) =1lim f,(x), hold at a.e. in X.

Then
/ fd,u:lim/ fndpe. (2.11)
X X

Proof. First we suppose that the conditions 1 and 2 hold at each z in X.
By Lemma 2.6.4, it follows from the condition 1 that

/XfldMS/XdeMS'“S/deu

Hence lim [ f,dp exists and satisfies

lim /X Fodp < /X fdp.

Now we need to show the reverse inequality

lim /X Fodp > /X fdp.

For each n, choose a non-decreasing sequence (gmk)zozl in X% such that

fn = kim gni- For each n, write h, = max{gin,92n,---+Gnn}. Then (h,)
— 00

is a non-decreasing sequence of [0, oo]- valued A- measurable function on X

such that h,, < f, and f = klim h,. Now by Lemma 2.6.4 and Theorem 2.6.6,
—00
it follows that

/ fdu = lim/ hndp < lim/ frndpt.
X X X

This established the result when condition 1 and 2 at each x in X.

Now suppose that the conditions 1 and 2 hold a.e. z in X. Also suppose

16



that the conditions 1 and 2 fail to hold at N € A. Then u(N) = 0. Since the
conditions 1 and 2 hold at N€¢ by the above argument, it follows that

/ Frowedp = lim / Foxnedp.
X X

Hence the result follows.

2.7.2 Fatou’s Lemma

Let (X, A, ) be measure space.Let fi, fo, ... are [0, co]-valued A- measurable

function on X. Then

/liminf fndp < liminf /fnd,u. (2.12)
X X

Proof. For each k > 1, we have inf,>, fn < f;, for each j > k. This implies

for each 7 > k. Hence we can write

/X il fudy < inf /X f dp. (2.13)

Now taking limit k& — oo of both the sides and apply monotone convergence

theorem (see Theorem 2.7.1), we have

/X lim inf f, du = ]}1_>r£10 Xirgc fndp

k—oon>k

17



That is,

/liminffnd,ug lim inf/ fnduzliminf/ fndp
X X X

k—rocon>k
Hence the proof is completed. O

Corollary 2.7.2. If f,, — f then liminf f, = lim f, = f. Hence Fatou’s

Lemma 2.7.2 gives,

/fd,ugliminf /fndu. (2.14)
X X

18



Chapter 3

Basic of LP theory

3.1 Introduction

In this chapter we define the notion of norm of a function in dual of L?
and study some of its properties. We start with defining L” space, then we
quickly move to the dual space of LP space and discuss some results of L”

space and on its dual.

3.2 Definition of L” space

3.21 Forl<p<x

Let (X, A, u) is a measure space and f : X — C is a measurable function.

For 1 < p < oo, the space LP(X, A, ) is a set defined by

19



LP(X, A, pn) = {f : X — C: f is measurable function and / |f|Pdu < oo} :
b

1/p
If f € LP(X, A, p1), we define LP- norm of f by || f|| (x40 = (fx |f(z)P d,u) .
If there is no ambiguity about the measure space, we simply denote the

LP —norm of f by || ]|, instead of || f||ze(x.a,

3.2.2 For p=oc

Let (X, A, ) is a measure space and f : X — C is a measurable function.

Then we define the space L>(X, A, 1) as
L=(X,A,u) ={f: X — C:fis measurable function and IM > 0 such that |f(z)| < M a.e. on X

If fel>*(X,A, ), we define L*-norm to be the infimum of all such M

in the above definition, i.e.,
[l e (x ) = Inf{M =02 pla: | f(x)] > M) =0}

| fll Lo (x,4,) is also called essential supremum of f.

If there is no ambiguity about the measure space, we simply denote the

L>-norm of f by || f|le instead of || f||ree(x.a,)-

20



3.3 Results-I:

Conjugate Exponent:
Let 1 < p,g < oo be such that 1—17 + % = 1.Then p, q are called conjugate
exponent to each other.
Holder’s Inequality:
R1:
For A,B>0and 0 < # <1, we have

AB'0 <9A+ (1 -0)B (3.1)

The equality holds if and only if A = B for 0 < # < 1. For § = 0 or 1, the
equality holds trivially.
Proof. Assume that B # 0, otherwise the inequality readily follows. Replac-

ing A by AB in equation (3.1), we get

A93179

IN

A+ (1-6)B
A'B'B'Y < 9AB+ (1-6)B

A < A+ (1-0).

This implies that
A —9A—(1-0) <0. (3.2)

Let f(r) = 2% — 0z — (1 —0)

21



>0 ifx>1
fix)=0@""1-1)= (3.3)

<0 ifo<z<1

Therefore, f(z) is increasing for z > 1 and decreasing for 0 < z < 1, Hence
f(1) is maximum. But as f(1) = 0, f(z) < 0,Vz. We can assume A = z.

This completes the proof. Clearly for A = B, the equality holds.

R2: (Holder’s Inequality)
Suppose 1 < p,q < oo such that %—i—% =1 (i.e. p,q are conjugate exponent).
If fe L? and g € L9 then fg € L! and

19l < [[fllzellgllze (3-4)

The equality holds if and only if af|P = 5|g|?, some constant «, 5 € C with
af # 0.

Proof. If we take 6 = % then 1 — 0 =

1-0= 5 in equation (3.1), we have

Lfl gl L|flP 1 gl
<= o9 (3.5)
[ fllze lgllze = 2lIfIT.  allgllle

Integrating both sides, we get

ol 1 1
gle LYy < el (3.6)
Florlolee =7 g : o

Clearly the equality condition A = B give rises to a|f[P = B|g|? and «, § are
constants with a8 # 0. Hence the proof is completed. ]

22



3.4 Linear functional

3.4.1 Definition

Let (X, ||.||) be a normed linear space over a field K. A linear functional on

X is a linear mapping from X to K, i.e., [ : X — K such that
lax+y) =al(z) + (y);Vr,y € z,a € K.

3.4.2 Norm of a linear functional

Let (X]||. ||) be a normed linear space over a field K and [ : X — K be linear
functional on X. A linear functional [ on X is called bounded if there exists
a M > 0 such that |I(z)] < M|jz||, Yz € X. The norm of a linear functional
[ on X is denoted by ||I|| and defined as the infimum of all such M > 0 such
that |I(z)| < M||z||, Yz € X. That is,

]| =inf {M >0: |l(x)| < M|z||,Vz € X}
It can be seen that
()| < [[ll][=]|, Vo € X.

This implies that
()| < [[7]], for [lz]| < 1.

11 = sup {Jic)] - ll=l} < 13 (3.7)

23



3.5 Dual Space of a Normed Linear Space

Let (X||.|l) be a normed linear space over a field K. The collection of all
bounded linear functionals on X is denoted by BL(X, K). This space is a
Banach space with operator norm. Norm of f € BL(X, K) can be expressed

as

171l = sup {f(2)] - [l=]f = 1}

3.6 Dualof L7, 1<p< o0

Let (X, A, 1) be a measure space and p, ¢ are conjugate exponent. For each

g € L%, we define ¢, : LP — C by

%mzémw (3.8)

Linearity of integration asserts that ¢, is linear. Hence ¢, is a linear

functional and

1]l = Jfélg{ld)g(f)l Sl = 13 (3.9)

By equation (3.4), we have | [ fg du| = [[fgllr < |fllzrllgllza. There-
fore, ¢4 is bounded.

See that for any g € L9, the map given by (3.9) is a bounded linear
functional on LP. It is of interest that can any bounded linear functional
onl? be expressed in the form (3.9). Riesz representation theorem gives a
affirmative answer to it . Thus the linear functional of the form (3.8) are the
all bounded linear functional on LP. This collection of all such ¢, with norm

given by (3.9) forms a normed linear space.This normed linear space is the

24



dual space of L? and it is denoted by (LP)*.

(LP)" = {cbg rg€ L% and ¢,4(f) = /X fgduVfe L”}

Since each g € L9 gives rise a bounded linear functional in (LP)* of the form
(3.8) and to each bounded linear functional in (LP)*there exists a g € L

that satisfies (3.8),(LP)* is isomorphic to L4.

3.7 Results-I1

R-3: Let (X, A, 1) measure space.Suppose p, ¢ be conjugate exponent with
1< g < oo If g e L9then

lgllg = Nl = ;élﬁjﬂ%(f)l e =13 (3.10)

the result also holds for ¢ = oo if p is semi-finite (where ¢,, bears the same

meaning as in section (3.6).

Proof. Recall from equation 3.9,

H%II:SUP{\%(J”)I:||f||Lp=1}=Sup{ [ 50 du‘rllfllmzl} (3.11)
ferp rerr || Jx

For 1 < ¢ < 00, using the equation 3.4

] [ 50 du‘ — fgller < 1l lglloe, for all f € L,.
X

25



This implies

|64()] < llgllg, for all f € L, such that || f||z» = 1.

This implies

‘Uiup 19 (f) < llgllg, for all f € L.
p=1

This implies

16gll < llgll

For ¢ =1, for all f € L, such that ||f|p~ =1,

|64 (f)] = / fg du‘ < / [fgl dp < ||f||oo/ gl dpe = [ fllsollglls = llglls
X X X
Similarly,
166l < llglloo-
So we have,
[6g]l < llgllg, T < g < o0. (3.12)

Now for the reverse inequality of equation 3.12,we go through the following
cases. Here the trick is to find out one f € L, such that || f|L~ = 1 and
10(f)] = | [x fg du| > |lgllq- If we can do this we are done.

For 1 < ¢ < oo,take
MWI

lglld
|g(a—DP lglls P
||f||z=/ P dMZ/ LA L
X x [gllse P J|g]f%-DP

26
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and

gl ot g, Noll
N1 =1 [ tadul = [ signto) oo = [ I d = -t~ ol

lglla x |lgllg lglla™

Hence

19gll = llgllgy 1 < g < oo

For q=1, take f =sign(g). Then by the above argument we can show that

1flloe = 1 and |6,(f)] = | /X fg dpal = lglls.

So [|ggll > |lgll1- For ¢ = oo, take € > 0 and A = {z : [g(z)| > ||g]lcc — €} -
Then by definition of ||g||, #(A) > 0. Since p(A) is semi-finite, there exists
B C A such that 0 < u(B) < oo. Take,

Then,
1
I£lle = Vand lég()l =1 | fg dul =75 | 1ol di = lglloc =€
w(B) Js
Since € > 0 is arbitrary, we have ||¢,| > ||¢]/cc- Thus we have
[dgll = Mlgllg; 1 < g < o0 (3.13)
Therefore, from equation (3.12) and (3.13), we have

109l = llgllgs 1 < ¢ < 00 (3.14)
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Thus the proof is completed. O

R-4: Let (X, A, u) measure space. Suppose p,q be conjugate exponent

with 1 < ¢ < co. Also Suppose g : X — C is measurable on z. If

sup {

and S, = {z : g(x) # 0} is o- finite or p is semi-finite. Then g € L7. Also

/ngd/":f62X7||f||LP:1}:M<OO

lglle =

Proof. If u(S,) = 0, there is nothing to do, the result follows readily. Con-
sider the case p(S,) # 0. For 1 < ¢ < oco. Choose a sequence of simple
functions g, such that |g,(z)| < g(x), g, — g and ||g,||; # 0. For 1 < ¢ < o0,

take
\%Pl

lgnll

f = sign(g)

Then,

[9a] lonlls™™ _ llgnllg
Ifally = [ 1l el = [ 2 ap = O S

g5 lgalls7 llgnllg
and
a7 |gnl? 1912
[ ool = [ siento) P o i = [ B dp = St gl
X ga4 % |[gnlld gn/4
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Now, by Fatou’s Lemma

lglly < liminf lgnll, = limint / gl di
X

< liminf/ | fng| dp
X

= liminf/ fng du < M.
b's

Therefore g € L? and also ||g||, < M, for 1 < g < co. For q= 1, take

fu(x) = sign(g(z))

Then by preceding argument we can show that g € L' and also [|g|[; < M.
For ¢ = oo, let € > 0. Suppose A = {z : |g(x)] > M + €} has positive
measure (otherwise the result follows trivially). SinceS, is o-finite (or p(A)
is semi-finite), there exists B C A such that 0 < p(B) < 0.

Take,
XB
u(B)

f = sign(g)

Then f is simple and

1
||f||1=m/31 du=1.

1
fgdu‘:—/ gl du > M +e.
/. w8 )y

If g(z) > M on B then
/ g(x)dp > / M dpu.
B B

29




It implies that
1

(B /B g(x) dpu > M.

This not possible. Hence p(A) cannot be greater than 0 and consequently
lg(x)] < M + €. Since € > 0 is arbitary, |g(z)| < M, a.e. in z. This implies
llgllc < M. Therefore, g € L*> and also ||g||cc < M. We prove that ||g||, = M.
From above discussion, we have ||g||, < M. For 1 < g < oo. The reverse
inequality follows readily by Holder’s inequality for 1 < ¢ < oo and for
q = oo is trivial (see proof of 1st part of R-3 for ¢ = co. Hence ||g||, = M.
Thus the proof is completed.

[]

R-5: Let 1 < p < co. The set of simple functions f = >_7 a;xg,, where

u(E;) < oo, foralli=1,2,...,n is dense in LP.

Proof. Let f € LP. Choose sequence (f,)s°, of simple functions such that
|fnl < |f|] and f, — f. Therefore |f, — f| — 0 as n — oo. Now,

[fo = I < 2max(|fu], [f]) = 2f].

This implies |f, — f|P < 2P|f|P € L'. Hence, by dominated convergence

i [ 1= = [ tmlf = 7P = [ 0=0.

That is || f, — f|l, = 0. For p = oo, since |f,, — f| — 0 as n — oo, it follows

theorem,

that there exists a N € N such that |f, — f| < ¢, whenever n > N. Hence

Il fn — flloo = 0 as m — oo. This completes the proof. O
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R-6-:
If0<po<p<p <oo,then LN LY C LP and

11l < 1F 1l “IF 115 (3.15)

where t satisfies
1 1—1t t
= -

b Po D1 .

Proof. For t = 0 or 1, the result follows readily. So we consider the case

€ (0,1). Case-I. First we consider the case p; = 0co. Now p; = 0o gives

p=1-2

p

For p; = oo,we see that
IF1P = 1FP7P0Lf o < ILFIE 116
Integrating both sides, we get
115 < WP ILf 115

This implies
11l < NFNE Fllpe

For p; < 0o, we take conjugate exponents (1]2);) and f—;. Now,

fIP = | f|00P) )P
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Taking integration on both sides

LA = AP0 o A1z = [1F Il 11

(1-t)p

This completes the proof.
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Chapter 4

RIESZ-THORIN
INTERPOLATION
THEOREM

4.1 Introduction

Let 1 <p < g <r < oo. A linear operator T on LP+ L" is bounded on L? and
L". Now it is interesting to ask that is it bounded on L7 Riesz-Thorin gives
a positive response to this question. Here first we establish a familiar result
of complex analysis, called Three-line lemma and then we prove Riesz-Thorin

interpolation theorem
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4.2 The Three-Line Lemma

Lemma 4.2.1. Suppose S = {z € C: 0 < Rez < 1}. Let ¢ be continuous

and bounded function on S and analytic on S. If

sup |¢(iy)| = My and sup |p(1 +iy)| = M,

y€eR yeR
then
sup [p(t +ay)| = My~ My, 0<t < 1. (4.1)
yeR

Proof. Fort =0 or t = 1, the result follows by the given conditions. We first
proof the result in some special situation. Let ¢ satisfies the hypothesis of
the lemma for My = M; = 1 and also suppose |¢(x + iy)| — 0 as |y| — oo,

where z = x + iy. Since ¢ is bounded on S, let

M = sup |(2)].

z€8

Clearly 0 < M < oo. If M = 0, the result is obvious. Hence we consider the
case 0 < M < oo. Since |¢(z)| — 0 as |y| — oo, for € > 0,3 a k > o such that
l|6(2)| — 0] <€ V |y| > k. That is, |¢(2)] <€, V |y| > R, for each R > k.
So, by maximum modulus principle, ¢ attains M at Re z = 0 or 1. Hence
M =1 and so

sup|6(2)] < 1= MM,

z€eS

Let
der(2) = B(2) exp™ 7
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Then

$er(z) = oz +iy) exp ™V HRmI A )

= o(x+1y) exp“”%”\(””) eXp_ey2 exp!(2zyFAY) (4.2)
Therefore,
[ben(2)] = |d(z + iy)| exp™ A exp™¥ = 0, as |y| — .

Also,
|Ber(iy)| = |o(iy)| exp™* < M,
|Ger(1+y)| = |6(1 +iy)| exp exp™¥” < M as (e, \) — (0,0)
Finally, let

¢(Z) eXpEZQJ“\Z

Pe(2) = M1==M?

We see that,

|MI 2 M7| = M MP < max{1, M,} max{1, M, }.
Hence ¢, (z) is bounded. Also
MM = Mol MM = M

and

[ MY MY = M| My ™||My?| = M.

Hence ¢ »(z) will satisfy all the conditions that ¢(z) satisfies in the first part
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of the proof, when (e, A\) — (0,0). So, we have

sup[dea()| < 1, as (6, A) = (0,0).

ZES

This implies,

sup| ¢(2) |
2€5 M(}_ZMf o
Thus,
sup [6(2)] < M, || ME| = [M, || My | = M, "My
sup |p(t +iy)| < MML, for t € (0,1).
yeR
Hence the proof is completed. O

4.3 Riesz-Thorin Interpolation

Theorem 4.3.1. Let (X, M, u) and (X, N,v) be two measures spaces. Let
P05 P1,q0, 1 € [1,00]. Also let if qo = g1 = 00, then v is semi-finite. Suppose
a linear map

T:LP0+ [P — [T 4 [

such that T : LP* — L% and T : LP* — L% are bounded, i.e.,

HTfHqu S MonHLpo

and

||TfHL‘11 S M1Hf”[,p1.
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Then
1T f|poe < My~ M| f|| 1o (4.3)

where,

1 1—1¢ t 1 1—1¢ t
= +— and — = +—; te[0,1].
Dt Do 4! qt q0 qQ1

Proof. For t =0 or 1, the result follows readily. So we fix our attention now

onte (0,1).

37



Case-I:
First we consider the case pg = p1. For pg = p1, we have pg = p1 = p;. So, by

equation (3.15), we have

ITflloe < NT Ao llT oo < Mo~ I F N oo Mill Fllm < Mo~ My f

Case-1I: Now we consider the case when py # p1. As pg # p1,p: cannot be oo.
Aim:
T fllpa < My™" M|\ £l o

To show the above inequality it is enough to show that
|Tflpae < Ma—" M, for || f|lzee = 1.

We first prove the result for simple function, after that we shall extent it.

By R-4, we can write,

1Tl = sup{ 19 €Sy and |gll, = 1} ,

/Y (Tf)gdv

where ¢, is the conjugate exponent of ¢.

Let f =" ¢jxg, and g = >, dyxr, be two arbitrary simple function,
where the E)s and Fys are disjoint in X and Y and ¢;s and d}s are non-zero

such that
1l =1 and gl =1 (4.4)
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Let us write,

1-— 1—
a(z) = 1% and B(z) = FL 2
Do D1 Do D1

We write ¢;’s and d’s in polar for as;
¢; = |e;j| exp(ib;) and dy, = |d| exp(ithy).

Since for pg # p1, py cannot be oo, and a(t) > 0. For a(t) > 0, let us define

m a(z)
o= legl o0 expl(ib;)xe

Jj=1

and for f(t) < 1, we define
1-8(z)
Z | =70 explithi) xr,

For 5(t) = 1. We define g, = g and shall proceed as we shall proceeds now
for 5(t) < 1. Now our concentration is only on g(t) < 1. Clearly f; = f and

g: = g. Let us define

o) = [ (Th. du (45)
y
Therefore,
UL alz) | 1-B(2)
=S 1ol D 4,
j=1 k=1
where

A = exp(if; + upk)/ (T'xg,)XF,dp.
Y

39



Notice that

o(t) = / (TH)(0)g(t) dp.

We see that ¢ is analytic and bounded on (.S). So by Three-Line Lemma, it is
suffice to prove that |¢(z)| < My at Re(z) = 0 and |¢(z)| < M; at Re(z) = 1,

aliy) = — + iy (l - l)

Po pP1 Do

we have

and

1—5(@):1—1—@@(1—1).

o g 9
For y € R, we have
il = 1R = 171 (3)

and /
1 5(iy) <qf>
lgas] = lg " C56) = g\
So, by Holder’s inequality, we have

lp(iy)| = ”Tfinqo”ginqé < MO”finpnginqé - MOHfz‘y”ptHginq; = M.

Calculating in an analogous way, we can show that |¢(1 + iy)| < M;. Thus

by Three-Line Lemma, we can say that
T fllzoe < My~ M| flps, for f € D

Let f € LP is arbitary. Since Xy is dense in LP, we can choose a sequence
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(fn) in Xx such that |f,| <|f| and f, — f satisfying
lim 7(f,) = T(f).
Hence, by Fatou’s Lemma, we have
1T fllq < liminf [T f,llq < liminf My=Mi|| fullp, = Mo~ My fllp.-

This completes the proof.
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