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ABSTRACT

The main aim of the project to understand the the Riesz-Thorin interpo-

lation theorem. This is a result about interpolation of bounded linear oper-

ators. This theorem can be used, for example, to prove the Hausdorff-Young

inequality, which establishes that the Fourier transform can be extended in

a unique way as a continuous linear map from Lp to Lq, where p and q are

conjugate integers and 1 ≤ p ≤ 2.
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Chapter 1

INTRODUCTION

Before discuss Riesz-Thorin interpolation theorem, we discuss the important

results and ideas which help us to understand it. We shall start with measure

theory,then discuss some basic of dual of Lp space and after that we shall

discuss Riesz-Thorin interpolation theorem.
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Chapter 2

MEASURE THEORY AND

LIMIT THEOREMS

2.1 Introduction

In this chapter, our main aim is to establish the limits theorems for integral.

However, we take a quick review of some important basic notion, definitions

and results measure theory.

In the very initial section, we shall define Measure and Outer measure and

distinguish them by giving examples. Then we go to measurable function.

After that we precisely establish the notion of integration and finally we end

the chapter by discussing two limit theorems: monotone convergence theorem

and Fatou’s lemma.
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2.2 σ-Algebra

Suppose X be an arbitary set and A be a collection of subsets of X. Then A

is said to be σ-algebra if the following conditions holds:

1. X ∈ A

2. A ∈ A→ Ac ∈ A

3. If A1, A2, . . . be a sequence in A. Then
⋃∞
i=1 Ai ∈ A.

2.2.1 Examples.

Let X be an uncountable set. Then A = {A ⊆ X: A or Ac is countable}

Then A is a σ-algebra.

2.3 Measures

Let A be a σ- algebra on X. A measure µ : A → [0,+∞] is a function such

that

• µ(φ) = 0 and

• µ(
⋃n
i=1 Ai) =

∑n
1 µ(Ai), for any disjoint sequence {A1, A2, ....An} in A.

Hence measure is countably additive.
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2.3.1 Measure space

Let A be a σ-algebra on X and µ be a measure on X. The triplet (X,A, µ)

is called measure space. If from the context there is no ambiguity about the

σ-algebra, we simply say µ is a measure on X.

Examples.

Suppose (X,A, µ) is a measure space.

1.

µ(A) =

0 if A = φ

∞ if A 6= φ ,

(2.1)

where µ is a measure on X.

2.

µ(A) =

0 if A = φ

1 if A 6= φ ,

(2.2)

where µ is not a measure on X, since countable additivity fails to hold.

2.3.2 Outer Measures

Let X be a nonempty set. An outer measure µ∗ : 2X −→ [0,+∞] is function

such that

1. µ(φ) = 0

2. if A ⊆ B ⊆ X,then µ∗(A) ≤ µ∗(B)

4



3. µ(
⋃∞
i=1 Ai) ≤

∑∞
1 µ(Ai), for each sequence {A1, A2, . . .} in 2X .

Thus an outer measure is monotone and countably subadditive. Notice

that an outer measure is countably subadditive and may not be countable

additive, whereas measure must be countably additive. So an outer measure

may not be a measure. But since countably additivity implies monotonocity

and countably subadditivity, a measure is an outer measure if and only if

domain of the measure is 2X .

Examples.

suppose (X,A, µ) is a measure space and µ : A −→ [0,+∞] is a function.

Let us consider A = 2X .

1.

µ(A) =

0 if A = φ

∞ if A 6= φ ,

(2.3)

where µ is a measure,as well as an outer measure X.

2.

µ(A) =

0 if A = φ

1 if A 6= φ

(2.4)

Here µ is an outer measure X. But not a measure since countable ad-

ditive fails.
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3.

µ(A) =

0 if A is finite

1 if A is not finite

(2.5)

Here µ is neither an outer measure nor a measure since countable sub-

additivity fails.

4. Consider A 6= 2X

µ(A) =

0 if A = φ

∞ if A 6= φ

(2.6)

Here µ is a measure, but not an outer measure since domain of µ is a

proper subset of 2X .

2.3.3 Lebesgue outer measures on Rd

Suppose A ⊆ Rd and CA be the collection of all sequence (Ri) of bounded

and open d− dimensional intervals such that A ⊆
⋃∞
i=1 Ri. Then Lebesgue

outer measure of A is denoted by λ∗(A) and defined by the infimum of the

set {
∑∞

i=1 vol(Ri) : (Ri) ∈ CA}.

For d = 1 , we take A ⊆ R,subintervals and (Ri) = (ai, bi), bounded and

open subintervals of R. So
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λ∗(A) = inf

{
∞∑
i=1

(bi − ai) : (Ri) ∈ CA

}
.

We can verify that Lebesgue outer measures satisfies all the property of outer

measure as well as measure.

2.3.4 Finite, σ-finite, semi-finite measures

Suppose (X,A, µ) is a measure space.

1. µ is said to be finite if µ(X) < +∞

2. µ is said to be σ- finite if A1, A2, . . . be a sequence in A and
⋃∞
i=1Ai = X

such that for µ(Ai) < +∞ , for each Ai.

Note that if µ σ-finite, we can choose a disjoint sequence B1, B2, . . . in A

such that
⋃∞
i=1 Bi = X and µ(Bi) < +∞. If A1, A2, . . . is a sequence in A

such that
⋃∞
i=1Ai = X and µ(Ai) < +∞ , for each Ai, then consider the

sequence (Bn) given by B1 = A1 and Bn = An −
⋃n−1
i=1 Ai.

A measure µ is said to be semi-finite if for each such A, µ(A) =∞, there

exists a set B ⊆ A such that µ(B) <∞.

Examples.
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1. X = {1, 2, 3}, A={φ,X, {1}, {2, 3}}

µ(A) =

n if A has n elements

∞ if A is infinte,

(2.7)

where µ is finite since µ(X) = 3 <∞.

2. X = R, A = 2X and µ = λ∗, the Lebesgue outer measures. Write

An = (−n,−n + 1]
⋃

[n− 1, n). Here µ is both σ-finite and semi-finite

measures but not finite.

3. X = R, A = B(R), the borel set on R and µ=counting measures

defined by

µ(A) =

n if A has n elements

∞ if A is infinte,

(2.8)

Here µ neither of finite, σ-finite or semi-finite measures.

2.3.5 µ Almost Everywhere

Let (X,A, µ) be measure space.Let P be a property of points of X. Let F

be the set of all points of X at each of P fails to hold. Then P said to be

µ− Almost Everywhere in X if µ(F ) = 0.
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If the measure is clearly understood, we simply say P is almost everywhere

(a.e.) in x.

Examples.

For X = R, A = 2R and µ = λ∗, the Lebesgue outer measures

f(x) =

x
2 if x ∈ R− N

x if x ∈ N

Here f(x) = x2 a.e. on R.

2.4 Measurable set

Suppose µ∗ : 2X −→ [0,+∞] is an outer measure on X. A subset A of X is

said to be µ∗- measurable if for each B ⊆ X,

µ∗(B) = µ∗(A ∩B) + µ∗(A ∩Bc).

i.e., A is measurable if the sum of measures of the portion of B bisected by

A returned back the measure of B, for each B ⊆ X.

Example. X = R, A = 2X and µ = λ∗. Then A = (a, b), open sub-

interval of R is measurable.
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2.5 Simple functions

Let X be a set and s be real-valued function defined on X.If the range of s

is finite, we say s is a simple function. Let E ⊂ X. Define

χE(x) =

1 if x ∈ E

0 if x /∈ E,
(2.9)

χE is called the characteristic function of E. Let the range of s consists of the

n distinct numbers a1, a2, . . . , an. Let Ei = {x : s(x) = ai}, i = 1, 2, . . . , n.

Then s =
∑n

i=1 aiχEi , i.e., every simple function is a finite linear combination

of characteristic functions.

Theorem 2.5.1. Let (X,A, µ) be measure space and A ⊆ X such that A ∈

A. Suppose f : A −→ [0,+∞] be a A- measurable function.Then exist a

sequence of [0,∞) A- measurable simple functions (sn) such that

1. s1(x) ≤ s2(x) ≤ · · · ,

2. f(x) = lim
n→∞

sn(x), for all x ∈ A.

Proof. Define

En,i =

{
x :

i− 1

2n
≤ f(x) <

i

2n

}
,

and

Fn = {x : f(x) ≥ n}

for all n = 1, 2, . . . and i = 1, 2, . . . , n2n. Now we define a sequence (sn) of
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functions from A by

sn(x) =
n2n∑
i=1

i− 1

2n
χEn,i(x) + nχFn(x).

For each n, the function sn, defined above are simple and satisfy conditions

1 and 2. This completes the proof.

Corollary 2.5.2. The result also holds for if the function f is of [−∞,+∞]

valued instead of [0,+∞] valued function.In this case decompose f as f =

f+−f−, wheref+ = max{f, 0}, f− = −min{f, 0} and apply the the preceding

construction to f+ and f− separately since then f+ and f− both are [0,+∞]

valued function.

2.6 Integral

Let (X,A, µ) be a measure space and Σ+
X be the collection of all non-negative

simple function in X. Let f ∈ Σ+
X , then we can write

f =
n∑
i=1

aiχAi ,

where a1, a2, ..., an are non-negative real numbers and A1, A2, . . . , An are dis-

joint subsets of X that belong to A. We denote the integral of f on X by∫
X
fdµ and defined by ∫

X

fdµ =
n∑
i=1

aiµ(Ai)

Lemma 2.6.1. Let (X,A, µ) be measure space and f, g ∈ Σ+
X suich that
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f(x) ≤ g(x) holds at each x in X. Then

∫
X

fdµ ≤
∫
X

gdµ.

Proof. Clearly g − f ∈ Σ+
X and g = f + (g − f). It follows that

∫
X

gdµ =

∫
X

fdµ+

∫
X

(g − f)dµ ≥
∫
X

fdµ

This completes the proof.

Theorem 2.6.2. Let (X,A, µ) be measure space. and f ∈ Σ+
X be a function.

Let (fn) be a sequence of [0,∞]-valued A-measurable simple functions on X

such that

1. f1(x) ≤ f2(x) ≤ · · · ,

2. f(x) = lim fn(x), at each x in X. Then

∫
X

fdµ = lim

∫
X

fndµ.

Proof. By Lemma 2.6.1, it follows that

∫
X

f1dµ ≤
∫
X

f2dµ ≤ · · · ≤
∫
X

fdµ.

Hence lim
∫
X
fndµ exists and satisfies

lim

∫
X

fndµ ≤
∫
X

fdµ.

Since f ∈ Σ+
X , we can write f =

∑k
i=1 aiχAi , where a1, a2, ..., ak are non-

12



negative real numbers and A1, A2, ..., Ak are disjoint subsets of X that belong

A. Letε > 0 and An,i = {x ∈ Ai : fn(x) ≥ (1− ε)ai}, for each n. For each n,

define gn =
∑k

i=1 (1− ε)aiχAn,i . Then gn ≤ fn for each n and

∫
X

gndµ = (1− ε)
∫
X

fdµ.

Since this holds for each ε > 0, therefore,
∫
X
gndµ =

∫
X
fdµ. Hence the result

follows.

Definition 2.6.3. Let (X,A, µ) be measure space. We define the integral of

an arbitrary [0,∞]-valued A- measurable f on X as

∫
X

fdµ = sup

{∫
X

gdµ : g ∈ Σ+
X and g ≤ f

}
. (2.10)

We can define the integral of an arbitrary [−∞,+∞]- valued A- measur-

able f on X by decomposing f as f = f+− f−, wheref+ = max{f, 0}, f− =

−min{f, 0} and apply (2.10) to f+ and f− separately since then f+ and f−

both are [0,+∞] valued function.

Lemma 2.6.4. Let (X,A, µ) be measure space and f, g are [0,∞]-valued A-

measurable on X such that f(x) ≤ g(x) holds at each x in X. Then

∫
X

fdµ ≤
∫
X

gdµ.

Proof. Any class of functions h in Σ+
X that satisfy h ≤ f also satisfy h ≤ g.

Hence the above definition readily gives the result.

Lemma 2.6.5. Let (X,A, µ) be measure space and f, g are [−∞,+∞]- val-

ued A- measurable function on X such that f(x) ≤ g(x) holds at each x in

13



X. Then ∫
X

fdµ ≤
∫
X

gdµ.

Proof. Clearly g − f ≥ 0 and g = f + (g − f). This implies that

∫
X

gdµ =

∫
X

fdµ+

∫
X

(g − f)dµ ≥
∫
X

fdµ.

This completes the proof.

Theorem 2.6.6. Let (X,A, µ) be measure space and f be [0,+∞]- valued

A- measurable function on X. Let (fn) be a sequence of non-negative A-

measurable simple functions such that

1. f1(x) ≤ f2(x) ≤ · · · ,

2. f(x) = lim fn(x), for each x in X. Then

∫
X

fdµ = lim

∫
X

fndµ.

Proof. By Lemma 2.6.4, it follows that

∫
X

f1dµ ≤
∫
X

f2dµ ≤ · · · ≤
∫
X

fdµ.

Hence lim
∫
X
fndµ exists and satisfies

lim

∫
X

fndµ ≤
∫
X

fdµ.

14



Now we have to show the reverse inequality

lim

∫
X

fndµ ≥
∫
X

fdµ.

Recalling the above definition of integral, it is enough to show that any

g ∈ Σ+
X that satisfies g ≤ f also satisfies

∫
X

gdµ ≤ lim

∫
X

fndµ.

Let any g ∈ Σ+
X . Then (min{g, fn}) is a non-decreasing sequence of [0,∞)-

valued simple function such that g = lim
n→∞

min{g, fn}. By Theorem 2.6.2, we

have
∫
X
gdµ = lim

n→∞

∫
X

min{g, fn}dµ. Since
∫
X

min{g, fn} ≤
∫
X
fndµ for each

n, it follows that ∫
X

gdµ ≤ lim
n→∞

∫
X

fndµ.

This completes the proof.

2.7 Limit theorems

2.7.1 Monotone convergence theorem

Theorem 2.7.1. Let (X,A, µ) be measure space.Let f and f1, f2, . . . are

[0,∞]-valued A- measurable function on X s.t.

1. f1(x) ≤ f2(x) ≤ · · · ,

15



2. f(x) = lim fn(x), hold at a.e. in X.

Then ∫
X

fdµ = lim

∫
X

fndµ. (2.11)

Proof. First we suppose that the conditions 1 and 2 hold at each x in X.

By Lemma 2.6.4, it follows from the condition 1 that

∫
X

f1dµ ≤
∫
X

f2dµ ≤ · · · ≤
∫
X

fdµ

Hence lim
∫
X
fndµ exists and satisfies

lim

∫
X

fndµ ≤
∫
X

fdµ.

Now we need to show the reverse inequality

lim

∫
X

fndµ ≥
∫
X

fdµ.

For each n, choose a non-decreasing sequence (gn,k)
∞
k=1 in Σ+

X such that

fn = lim
k→∞

gn,k. For each n, write hn = max {g1,n, g2,n, . . . , gn,n} . Then (hn)

is a non-decreasing sequence of [0,∞]- valued A- measurable function on X

such that hn ≤ fn and f = lim
k→∞

hn. Now by Lemma 2.6.4 and Theorem 2.6.6,

it follows that

∫
X

fdµ = lim

∫
X

hndµ ≤ lim

∫
X

fndµ.

This established the result when condition 1 and 2 at each x in X.

Now suppose that the conditions 1 and 2 hold a.e. x in X. Also suppose

16



that the conditions 1 and 2 fail to hold at N ∈ A. Then µ(N) = 0. Since the

conditions 1 and 2 hold at N c, by the above argument, it follows that

∫
X

fχNcdµ = lim

∫
X

fnχNcdµ.

Hence the result follows.

2.7.2 Fatou’s Lemma

Let (X,A, µ) be measure space.Let f1, f2, ... are [0,∞]-valued A- measurable

function on X. Then

∫
X

lim inf fndµ ≤ lim inf

∫
X

fndµ. (2.12)

Proof. For each k ≥ 1, we have infn≥k fn ≤ fj, for each j ≥ k. This implies

that ∫
X

inf
n≥k

fndµ ≤
∫
X

fj dµ,

for each j ≥ k. Hence we can write

∫
X

inf
n≥k

fndµ ≤ inf
j≥k

∫
X

fj dµ. (2.13)

Now taking limit k →∞ of both the sides and apply monotone convergence

theorem (see Theorem 2.7.1), we have

∫
X

lim
k→∞

inf
n≥k

fn dµ = lim
k→∞

∫
X

inf
n≥k

fndµ

17



That is,

∫
X

lim inf fndµ ≤ lim
k−→∞

inf
n≥k

∫
X

fndµ = lim inf

∫
X

fndµ

Hence the proof is completed.

Corollary 2.7.2. If fn → f then lim inf fn = lim fn = f. Hence Fatou’s

Lemma 2.7.2 gives,

∫
X

fdµ ≤ lim inf

∫
X

fndµ. (2.14)

18



Chapter 3

Basic of Lp theory

3.1 Introduction

In this chapter we define the notion of norm of a function in dual of Lp

and study some of its properties. We start with defining Lp space, then we

quickly move to the dual space of Lp space and discuss some results of Lp

space and on its dual.

3.2 Definition of Lp space

3.2.1 For 1 ≤ p <∞

Let (X,A, µ) is a measure space and f : X → C is a measurable function.

For 1 ≤ p <∞, the space Lp(X,A, µ) is a set defined by

19



Lp(X,A, µ) =

{
f : X → C : f is measurable function and

∫
X

|f |pdµ <∞
}
.

If f ∈ Lp(X,A, µ), we define Lp- norm of f by ‖f‖Lp(X,A,µ) =

(∫
X
|f(x)|p dµ

)1/p

.

If there is no ambiguity about the measure space, we simply denote the

Lp − norm of f by ‖f‖p instead of ‖f‖Lp(X,A,µ)

3.2.2 For p =∞

Let (X,A, µ) is a measure space and f : X −→ C is a measurable function.

Then we define the space L∞(X,A, µ) as

L∞(X,A, µ) = {f : X → C : f is measurable function and ∃M > 0 such that |f(x)| < M a.e. on X}

If f ∈ L∞(X,A, µ), we define L∞-norm to be the infimum of all such M

in the above definition, i.e.,

‖f‖L∞(X,A,µ) = inf {M ≥ 0 : µ(x : |f(x)| > M) = 0} .

‖f‖L∞(X,A,µ) is also called essential supremum of f.

If there is no ambiguity about the measure space, we simply denote the

L∞-norm of f by ‖f‖∞ instead of ‖f‖L∞(X,A,µ).
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3.3 Results-I:

Conjugate Exponent:

Let 1 ≤ p, q ≤ ∞ be such that 1
p

+ 1
q

= 1.Then p, q are called conjugate

exponent to each other.

Holder’s Inequality:

R1:

For A,B ≥ 0 and 0 ≤ θ ≤ 1, we have

AθB1−θ ≤ θA+ (1− θ)B (3.1)

The equality holds if and only if A = B for 0 < θ < 1. For θ = 0 or 1, the

equality holds trivially.

Proof. Assume that B 6= 0, otherwise the inequality readily follows. Replac-

ing A by AB in equation (3.1), we get

AθB1−θ ≤ θA+ (1− θ)B

AθBθB1−θ ≤ θAB + (1− θ)B

Aθ ≤ θA+ (1− θ).

This implies that

Aθ − θA− (1− θ) ≤ 0. (3.2)

Let f(x) = xθ − θx− (1− θ)

21



f
′
(x) = θ(xθ−1 − 1) =

≥ 0 if x ≥ 1

≤ 0 if 0 ≤ x ≤ 1

(3.3)

Therefore, f(x) is increasing for x ≥ 1 and decreasing for 0 ≤ x ≤ 1, Hence

f(1) is maximum. But as f(1) = 0, f(x) ≤ 0,∀x. We can assume A = x.

This completes the proof. Clearly for A = B, the equality holds.

R2: (Holder’s Inequality)

Suppose 1 < p, q <∞ such that 1
p

+ 1
q

= 1 (i.e. p, q are conjugate exponent).

If f ∈ Lp and g ∈ Lq,then fg ∈ L1 and

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq (3.4)

The equality holds if and only if α|f |p = β|g|q, some constant α, β ∈ C with

αβ 6= 0.

Proof. If we take θ = 1
p

then 1 − θ = 1
q
. Put A = |f |p

‖f‖Lp
, A = |f |p

‖f‖Lp
, θ = 1

p
,

1− θ = 1
q

in equation (3.1), we have

|f |
‖f‖Lp

|g|
‖g‖Lq

≤ 1

p

|f |p

‖f‖pLp
+

1

q

|g|q

‖g‖qLq
. (3.5)

Integrating both sides, we get

‖fg‖L1

‖f‖Lp‖g‖Lq
≤ 1

p
+

1

q
= 1→ ‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq (3.6)

Clearly the equality condition A = B give rises to α|f |p = β|g|q and α, β are

constants with αβ 6= 0. Hence the proof is completed.
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3.4 Linear functional

3.4.1 Definition

Let (X, ‖.‖) be a normed linear space over a field K. A linear functional on

X is a linear mapping from X to K, i.e., l : X → K such that

l(αx+ y) = αl(x) + l(y);∀x, y ∈ x, α ∈ K.

3.4.2 Norm of a linear functional

Let (X‖. ‖) be a normed linear space over a field K and l : X → K be linear

functional on X. A linear functional l on X is called bounded if there exists

a M > 0 such that |l(x)| ≤ M‖x‖,∀x ∈ X. The norm of a linear functional

l on X is denoted by ‖l‖ and defined as the infimum of all such M > 0 such

that |l(x)| ≤M‖x‖, ∀x ∈ X. That is,

‖l‖ = inf {M ≥ 0 : |l(x)| ≤M‖x‖,∀x ∈ X}

It can be seen that

|l(x)| ≤ ‖l‖‖x‖,∀x ∈ X.

This implies that

|l(x)| < ‖l‖, for ‖x‖ ≤ 1.

‖l‖ = sup
x∈X
{|l(x)| : ‖x‖ ≤ 1} (3.7)
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3.5 Dual Space of a Normed Linear Space

Let (X‖.‖) be a normed linear space over a field K. The collection of all

bounded linear functionals on X is denoted by BL(X,K). This space is a

Banach space with operator norm. Norm of f ∈ BL(X,K) can be expressed

as

‖f‖ = sup
x∈X
{|f(x)| : ‖x‖ = 1}

3.6 Dual of Lp, 1 ≤ p <∞

Let (X,A, µ) be a measure space and p, q are conjugate exponent. For each

g ∈ Lq, we define φg : Lp → C by

φg(f) =

∫
X

fg dµ (3.8)

Linearity of integration asserts that φg is linear. Hence φg is a linear

functional and

‖φg‖ = sup
f∈Lp
{|φg(f)| : ‖f‖Lp = 1} (3.9)

By equation (3.4), we have |
∫
X
fg dµ| = ‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq . There-

fore, φg is bounded.

See that for any g ∈ Lq, the map given by (3.9) is a bounded linear

functional on Lp. It is of interest that can any bounded linear functional

onLp be expressed in the form (3.9). Riesz representation theorem gives a

affirmative answer to it . Thus the linear functional of the form (3.8) are the

all bounded linear functional on Lp. This collection of all such φg with norm

given by (3.9) forms a normed linear space.This normed linear space is the
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dual space of Lp and it is denoted by (Lp)∗.

(Lp)∗ =

{
φg : g ∈ Lq and φg(f) =

∫
X

fg dµ, ∀f ∈ Lp
}

Since each g ∈ Lq gives rise a bounded linear functional in (Lp)∗ of the form

(3.8) and to each bounded linear functional in (Lp)∗,there exists a g ∈ Lq

that satisfies (3.8),(Lp)∗ is isomorphic to Lq.

3.7 Results-II

R-3: Let (X,A, µ) measure space.Suppose p, q be conjugate exponent with

1 ≤ q <∞. If g ∈ Lq,then

‖g‖q = ‖φg‖ = sup
f∈Lp
{|φg(f)| : ‖f‖Lp = 1} (3.10)

the result also holds for q =∞ if µ is semi-finite (where φg, bears the same

meaning as in section (3.6).

Proof. Recall from equation 3.9,

‖φg‖ = sup
f∈Lp
{|φg(f)| : ‖f‖Lp = 1} = sup

f∈Lp

{∣∣∣∣∫
X

fg dµ

∣∣∣∣ : ‖f‖Lp = 1

}
(3.11)

For 1 < q <∞, using the equation 3.4∣∣∣∣∫
X

fg dµ

∣∣∣∣ = ‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq , for all f ∈ Lp.
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This implies

|φg(f)| ≤ ‖g‖q, for all f ∈ Lp such that ‖f‖Lp = 1.

This implies

sup
‖f‖Lp=1

|φg(f)| ≤ ‖g‖q, for all f ∈ Lp.

This implies

‖φg‖ ≤ ‖g‖q

For q = 1, for all f ∈ Lp such that ‖f‖L∞ = 1,

|φg(f)| =
∣∣∣∣∫
X

fg dµ

∣∣∣∣ ≤ ∫
X

|fg| dµ ≤ ‖f‖∞
∫
X

|g| dµ = ‖f‖∞‖g‖1 = ‖g‖1

Similarly,

‖φg‖ ≤ ‖g‖∞.

So we have,

‖φg‖ ≤ ‖g‖q, 1 ≤ q ≤ ∞. (3.12)

Now for the reverse inequality of equation 3.12,we go through the following

cases. Here the trick is to find out one f ∈ Lp such that ‖f‖L∞ = 1 and

|φg(f)| = |
∫
X
fg dµ| ≥ ‖g‖q. If we can do this we are done.

For 1 < q <∞,take

f = sign(g)
|g|q−1

‖g‖q−1
q

.

Then,

‖f‖pp =

∫
X

|f |p dµ =

∫
X

|g|(q−1)p

‖g‖(q−1)p
q

dµ =
‖g‖(q−1)p

q

‖g‖(q−1)p
q

= 1
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and

|φg(f)| = |
∫
X

fg dµ| =
∫
X

sign(g)
|g|q−1

‖g‖q−1
q

g dµ =

∫
X

|g|q

‖g‖q−1
q

dµ =
‖g‖qq
‖g‖q−1

q

= ‖g‖q.

Hence

‖φg‖ ≥ ‖g‖q, 1 < q <∞.

For q=1, take f = sign(g). Then by the above argument we can show that

‖f‖∞ = 1 and |φg(f)| = |
∫
X

fg dµ| = ‖g‖1.

So ‖φg‖ ≥ ‖g‖1. For q = ∞, take ε > 0 and A = {x : |g(x)| > ‖g‖∞ − ε} .

Then by definition of ‖g‖∞, µ(A) > 0. Since µ(A) is semi-finite, there exists

B ⊆ A such that 0 < µ(B) <∞. Take,

f = sign(g)
χB
µ(B)

.

Then,

‖f‖1 = 1 and |φg(f)| = |
∫
X

fg dµ| = 1

µ(B)

∫
B

|g| dµ ≥ ‖g‖∞ − ε

Since ε > 0 is arbitrary, we have ‖φg‖ ≥ ‖g‖∞. Thus we have

‖φg‖ ≥ ‖g‖q, 1 ≤ q ≤ ∞ (3.13)

Therefore, from equation (3.12) and (3.13), we have

‖φg‖ = ‖g‖q; 1 ≤ q ≤ ∞ (3.14)
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Thus the proof is completed.

R-4: Let (X,A, µ) measure space. Suppose p, q be conjugate exponent

with 1 ≤ q <∞. Also Suppose g : X → C is measurable on x. If

sup

{∣∣∣∣∫
X

fg dµ

∣∣∣∣ : f ∈ ΣX , ‖f‖Lp = 1

}
= M <∞

and Sg = {x : g(x) 6= 0} is σ- finite or µ is semi-finite. Then g ∈ Lq. Also

‖g‖q = M.

Proof. If µ(Sg) = 0, there is nothing to do, the result follows readily. Con-

sider the case µ(Sg) 6= 0. For 1 < q < ∞. Choose a sequence of simple

functions gn such that |gn(x)| < g(x), gn → g and ‖gn‖q 6= 0. For 1 < q <∞,

take

f = sign(g)
|gn|q−1

‖gn‖q−1
q

.

Then,

‖fn‖pp =

∫
X

|fn|p dµ| =
∫
X

|gn|(q−1)p

‖gn‖(q−1)p
q

dµ =
‖gn‖(q−1)p

q

‖gn‖(q−1)p
q

=
‖gn‖qq
‖gn‖qq

= 1

and

|
∫
X

fngn dµ| =
∫
X

sign(g)
|gn|q−1

‖gn‖q−1
q

gn dµ =

∫
X

|gn|q

‖gn‖q−1
q

dµ =
‖gn‖qq
‖gn‖q−1

q

= ‖gn‖q.
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Now, by Fatou’s Lemma

‖g‖q ≤ lim inf ‖gn‖q = lim inf

∫
X

|fngn| dµ

≤ lim inf

∫
X

|fng| dµ

= lim inf

∫
X

fng dµ < M.

Therefore g ∈ Lq and also ‖g‖q < M, for 1 < q <∞. For q= 1, take

fn(x) = sign(g(x))

Then by preceding argument we can show that g ∈ L1 and also ‖g‖1 < M.

For q = ∞, let ε > 0. Suppose A = {x : |g(x)| > M + ε} has positive

measure (otherwise the result follows trivially). SinceSg is σ-finite (or µ(A)

is semi-finite), there exists B ⊆ A such that 0 < µ(B) <∞.

Take,

f = sign(g)
χB
µ(B)

.

Then f is simple and

‖f‖1 =
1

µ(B)

∫
B

1 dµ = 1.

∣∣∣∣∫
X

fg dµ

∣∣∣∣ =
1

µ(B)

∫
B

|g| dµ > M + ε.

If g(x) > M on B then

∫
B

g(x)dµ >

∫
B

M dµ.
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It implies that
1

µ(B)

∫
B

g(x) dµ > M.

This not possible. Hence µ(A) cannot be greater than 0 and consequently

|g(x)| ≤ M + ε. Since ε > 0 is arbitary, |g(x)| ≤ M, a.e. in x. This implies

‖g‖∞ ≤M. Therefore, g ∈ L∞ and also ‖g‖∞ < M. We prove that ‖g‖q = M.

From above discussion, we have ‖g‖q < M. For 1 ≤ q ≤ ∞. The reverse

inequality follows readily by Holder’s inequality for 1 ≤ q < ∞ and for

q = ∞ is trivial (see proof of 1st part of R-3 for q = ∞. Hence ‖g‖q = M.

Thus the proof is completed.

R-5: Let 1 ≤ p ≤ ∞. The set of simple functions f =
∑n

1 ajχEi , where

µ(Ej) <∞, for all i = 1, 2, . . . , n is dense in Lp.

Proof. Let f ∈ Lp. Choose sequence (fn)∞n=1 of simple functions such that

|fn| < |f | and fn → f. Therefore |fn − f | → 0 as n→∞. Now,

|fn − f | ≤ 2 max(|fn|, |f |) = 2|f |.

This implies |fn − f |p ≤ 2p|f |p ∈ L1. Hence, by dominated convergence

theorem,

lim

∫
X

|fn − f |p =

∫
X

lim |fn − f |p =

∫
X

0 = 0.

That is ‖fn − f‖p → 0. For p =∞, since |fn − f | → 0 as n→∞, it follows

that there exists a N ∈ N such that |fn − f | < ε, whenever n > N. Hence

‖fn − f‖∞ → 0 as n→∞. This completes the proof.
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R-6-:

If 0 < p0 < p < p1 ≤ ∞, then Lp0 ∩ L
p
1 ⊆ Lp and

‖f‖p ≤ ‖f‖1−t
p0
‖f‖tr0 , (3.15)

where t satisfies
1

p
=

1− t
p0

+
t

p1

.

Proof. For t = 0 or 1, the result follows readily. So we consider the case

t ∈ (0, 1). Case-I. First we consider the case p1 =∞. Now p1 =∞ gives

t = 1− p0

p
.

For p1 =∞,we see that

|f |p = |f |p−p0 |f |p0 ≤ ‖f‖p−p0∞ |f |p0

Integrating both sides, we get

‖f‖pp ≤ ‖f‖p−p0∞ ‖f‖p0p0 .

This implies

‖f‖p ≤ ‖f‖t∞‖f‖1−t
p0

For p1 <∞, we take conjugate exponents p0
(1−t)p and p1

tp
. Now,

|f |p = |f |(1−t)p|f |tp
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Taking integration on both sides

‖f‖pp = ‖|f |(1−t)p‖ p0
(1−t)p
‖|f |tp‖ p1

tp
= ‖f‖1−t

p0
‖f‖tp1.

This completes the proof.
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Chapter 4

RIESZ-THORIN

INTERPOLATION

THEOREM

4.1 Introduction

Let 1 ≤ p < q < r ≤ ∞. A linear operator T on Lp+Lr is bounded on Lp and

Lr. Now it is interesting to ask that is it bounded on Lq? Riesz-Thorin gives

a positive response to this question. Here first we establish a familiar result

of complex analysis, called Three-line lemma and then we prove Riesz-Thorin

interpolation theorem
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4.2 The Three-Line Lemma

Lemma 4.2.1. Suppose S = {z ∈ C : 0 < Rez < 1}. Let φ be continuous

and bounded function on S̄ and analytic on S. If

sup
y∈R
|φ(iy)| = M0 and sup

y∈R
|φ(1 + iy)| = M1,

then

sup
y∈R
|φ(t+ iy)| = M1−t

0 M t
1, 0 ≤ t ≤ 1. (4.1)

Proof. For t = 0 or t = 1, the result follows by the given conditions. We first

proof the result in some special situation. Let φ satisfies the hypothesis of

the lemma for M0 = M1 = 1 and also suppose |φ(x + iy)| → 0 as |y| → ∞,

where z = x+ iy. Since φ is bounded on S̄, let

M = sup
z∈S̄
|φ(z)|.

Clearly 0 ≤M <∞. If M = 0, the result is obvious. Hence we consider the

case 0 < M <∞. Since |φ(z)| → 0 as |y| → ∞, for ε > 0,∃ a k > o such that

||φ(z)| − 0| < ε, ∀ |y| ≥ k. That is, |φ(z)| < ε, ∀ |y| ≥ R, for each R > k.

So, by maximum modulus principle, φ attains M at Re z = 0 or 1. Hence

M = 1 and so

sup
z∈S̄
|φ(z)| ≤ 1 = M1−t

0 M t
1.

Let

φε,λ(z) = φ(z) expεz
2+λz .
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Then

φε,λ(z) = φ(x+ iy) expε(x
2−y2+2ixy)+λ(x+iy)

= φ(x+ iy) expεx
2+λ(x) exp−εy

2

expi(ε2xy+λy) (4.2)

Therefore,

|φε,λ(z)| = |φ(x+ iy)| expεx
2+λx exp−εy

2 → 0, as |y| → ∞.

Also,

|φε,λ(iy)| = |φ(iy)| exp−εy
2 ≤M0

|φε,λ(1 + iy)| = |φ(1 + iy)| expε+λ exp−εy
2 ≤M1 as (ε, λ)→ (0, 0)

Finally, let

φ̃ε,λ(z) =
φ(z) expεz

2+λz

M1−z
o M z

1

.

We see that,

|M1−z
o M z

1 | = M1−x
o Mx

1 ≤ max{1,Mo}max{1,M1}.

Hence φ̃ε,λ(z) is bounded. Also

|M1−iy
o M iy

1 | = M0|M−iy
o ||M

iy
1 | = M0

and

|M iy
o M

1+iy
1 | = M1|M−iy

o ||M
iy
1 | = M1.

Hence φ̃ε,λ(z) will satisfy all the conditions that φ̃(z) satisfies in the first part
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of the proof, when (ε, λ)→ (0, 0). So, we have

sup
z∈s̄
|φ̃ε,λ(z)| ≤ 1, as (ε, λ)→ (0, 0).

This implies,

sup
z∈s̄
| φ(z)

M1−z
o M z

1

| ≤ 1.

Thus,

sup
z∈s̄
|φ(z)| ≤ |M1−z

o ||M z
1 | = |M1−x

o ||Mx
1 | = M1−x

o Mx
1 .

sup
y∈R
|φ(t+ iy)| ≤M1−t

o M t
1, for t ∈ (0, 1).

Hence the proof is completed.

4.3 Riesz-Thorin Interpolation

Theorem 4.3.1. Let (X,M, µ) and (X,N, ν) be two measures spaces. Let

p0, p1, q0, q1 ∈ [1,∞]. Also let if q0 = q1 = ∞, then ν is semi-finite. Suppose

a linear map

T : Lp0 + Lp1 → Lq0 + Lq1

such that T : Lp0 → Lq0 and T : Lp1 → Lq1 are bounded, i.e.,

‖Tf‖Lq0 ≤M0‖f‖Lp0

and

‖Tf‖Lq1 ≤M1‖f‖Lp1 .
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Then

‖Tf‖Lqt ≤M1−t
0 M t

1‖f‖Lpt (4.3)

where,
1

pt
=

1− t
p0

+
t

p1

and
1

qt
=

1− t
q0

+
t

q1

; t ∈ [0, 1].

Proof. For t = 0 or 1, the result follows readily. So we fix our attention now

on t ∈ (0, 1).
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Case-I:

First we consider the case p0 = p1. For p0 = p1, we have p0 = p1 = pt. So, by

equation (3.15), we have

‖Tf‖Lqt ≤ ‖Tf‖1−t
Lq0‖Tf‖

t
Lq1 ≤M1−t

0 ‖f‖1−t
Lp0M

t
1‖f‖tLp1 ≤M1−t

0 M t
1‖f‖Lpt

Case-II: Now we consider the case when p0 6= p1. As p0 6= p1,pt cannot be∞.

Aim:

‖Tf‖Lqt ≤M1−t
0 M t

1‖f‖Lpt .

To show the above inequality it is enough to show that

‖Tf‖Lqt ≤M1−t
0 M t

1, for ‖f‖Lpt = 1.

We first prove the result for simple function, after that we shall extent it.

By R-4, we can write,

‖Tf‖Lqt = sup

{∣∣∣∣∫
Y

(Tf)gdν

∣∣∣∣ : g ∈ ΣY and ‖g‖
Lq
′
t

= 1

}
,

where qt
′

is the conjugate exponent of qt.

Let f =
∑m

j=1 cjχEj and g =
∑n

k=1 dkχFk be two arbitrary simple function,

where the E ′js and F ′ks are disjoint in X and Y and c′js and d′ks are non-zero

such that

‖f‖pt = 1 and ‖g‖q′t = 1 (4.4)
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Let us write,

α(z) =
1− z
p0

+
z

p1

and β(z) =
1− z
p0

+
z

p1

.

We write cj’s and dk’s in polar for as;

cj = |cj| exp(iθj) and dk = |dk| exp(iψk).

Since for p0 6= p1, pt cannot be ∞, and α(t) > 0. For α(t) > 0, let us define

fz =
m∑
j=1

|cj|
α(z)
α(t) exp(iθj)χEj .

and for β(t) < 1, we define

gz =
n∑
k=1

|dk|
1−β(z)
1−β(t) exp(iψk)χFk

For β(t) = 1. We define gz = g and shall proceed as we shall proceeds now

for β(t) < 1. Now our concentration is only on β(t) < 1. Clearly ft = f and

gt = g. Let us define

φ(z) =

∫
Y

(Tfz)gz dµ. (4.5)

Therefore,

φ(z) =
m∑
j=1

n∑
k=1

|cj|
α(z)
α(t) |dk|

1−β(z)
1−β(t) Aj,k,

where

Aj,k = exp(iθj + iψk)

∫
Y

(TχEj)χFkdµ.
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Notice that

φ(t) =

∫
Y

(Tf)(t)g(t) dµ.

We see that φ is analytic and bounded on (̄S). So by Three-Line Lemma, it is

suffice to prove that |φ(z)| ≤M0 at Re(z) = 0 and |φ(z)| ≤M1 at Re(z) = 1,

we have

α(iy) =
1

p0

+ iy

(
1

p1

− 1

p0

)
and

1− β(iy) = 1− 1

q0

− iy
(

1

q1

− 1

q0

)
.

For y ∈ R, we have

|fiy| = |f |Re(α(iy)α(t) ) = |f |
(
pt
p0

)

and

|giy| = |g|Re( 1−β(iy)
1−β(t) ) = |g|

(
q
′
t

q
′
0

)
.

So, by Holder’s inequality, we have

|φ(iy)| = ‖Tfiy‖q0‖giy‖q′0 ≤M0‖fiy‖p0‖giy‖q′0 = M0‖fiy‖pt‖giy‖q′t = M0.

Calculating in an analogous way, we can show that |φ(1 + iy)| ≤ M1. Thus

by Three-Line Lemma, we can say that

‖Tf‖Lqt ≤M1−t
0 M t

1‖f‖pt , for f ∈ ΣX .

Let f ∈ Lp is arbitary. Since ΣX is dense in Lp, we can choose a sequence
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(fn) in ΣX such that |fn| ≤ |f | and fn → f satisfying

lim
n
T (fn) = T (f).

Hence, by Fatou’s Lemma, we have

‖Tf‖qt ≤ lim inf ‖Tfn‖qt ≤ lim inf M1−t
0 M t

1‖fn‖pt = M1−t
0 M t

1‖f‖pt .

This completes the proof.
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