DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA746: Fourier Analysis Instructor: Rajesh Srivastava Time duration: Two hours Mid Semester Exam February 24, 2019 Maximum Marks: 30

1

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Let $f \in C_c^{\infty}(\mathbb{R})$ be a non-zero function and P be a polynomial of degree $n \ge 1$. Whether $P\hat{f}$ is a bounded function on \mathbb{R} ?
 - (b) Does the space $\{f \in L^2(\mathbb{R}) : \operatorname{supp} \hat{f} \text{ is compact}\}$ dense in $L^2(\mathbb{R})$?
- 2. For $n \in \mathbb{N}$, define $F_n(x) = \chi_{[-1,1]} * \chi_{[-n,n]}(x)$. Verify that $F_2 \in C_c(\mathbb{R})$ and $||F_2||_u = 2$. Does $F_n(x) \to 2$ uniformaly?
- 3. Let $f \in C^1(S^1)$. Show that there exists M > 0 such that $\sum_{n=-\infty}^{\infty} |\hat{f}(n)| \le ||f||_1 + M ||f'||_2$. 2
- 4. Let $f \in L^1(S^1)$ and $S_n(f)$ denotes the *n*th partial sum of the Fourier series of f. Show that $\left\|\frac{S_n(f)}{n}\right\|_1 \to 0 \text{ as } n \to \infty.$
- 5. Let f be a Riemann integrable function on $[-\pi,\pi]$. If f is differentiable at $t_o \in [\pi,\pi]$ then show that $S_n(f;t_o) \to f(t_o)$ as $n \to \infty$.
- 6. Suppose $f \in C^1(S^1)$ is satisfying [f * (1 + f)](t) = f'(t) for all $t \in S^1$. Show that f is constant.
- 7. Let $f \in L^1(\mathbb{R})$ and f(x) > 0 for all $x \in \mathbb{R}$. Prove that there exists $\delta > 0$ such that the strict inequality $|\hat{f}(\xi)| < \hat{f}(0)$ holds, whenever $|\xi| > \delta$. 3
- 8. Let $f, g \in L^2(\mathbb{R})$. Show that f * g is a bounded continuous function on \mathbb{R} . Further, prove that $\lim_{|x|\to\infty} f * g(x) = 0$.
- 9. For $f \in L^1(\mathbb{R})$, let $g(t) = 2\pi \sum_{n=-\infty}^{\infty} f(t+2\pi n)$, then show that g is periodic and satisfying $\|g\|_{L^1(S^1)} \leq \|f\|_{L^1(\mathbb{R})}$.

END