DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA746: Fourier Analysis
Instructor: Rajesh Srivastava
Time duration: Two hours
Mid Semester Exam
February 24, 2019
Maximum Marks: 30
N.B. Answer without proper justification will attract zero mark.

1. (a) Let $f \in C_{c}^{\infty}(\mathbb{R})$ be a non-zero function and P be a polynomial of degree $n \geq 1$. Whether $P \hat{f}$ is a bounded function on \mathbb{R} ?
(b) Does the space $\left\{f \in L^{2}(\mathbb{R}): \operatorname{supp} \hat{f}\right.$ is compact $\}$ dense in $L^{2}(\mathbb{R})$?
2. For $n \in \mathbb{N}$, define $F_{n}(x)=\chi_{[-1,1]} * \chi_{[-n, n]}(x)$. Verify that $F_{2} \in C_{c}(\mathbb{R})$ and $\left\|F_{2}\right\|_{u}=2$. Does $F_{n}(x) \rightarrow 2$ uniformaly?
3. Let $f \in C^{1}\left(S^{1}\right)$. Show that there exists $M>0$ such that $\sum_{n=-\infty}^{\infty}|\hat{f}(n)| \leq\|f\|_{1}+M\left\|f^{\prime}\right\|_{2}$.
4. Let $f \in L^{1}\left(S^{1}\right)$ and $S_{n}(f)$ denotes the nth partial sum of the Fourier series of f. Show that $\left\|\frac{S_{n}(f)}{n}\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$.
5. Let f be a Riemann integrable function on $[-\pi, \pi]$. If f is differentiable at $t_{o} \in[\pi, \pi]$ then show that $S_{n}\left(f ; t_{o}\right) \rightarrow f\left(t_{o}\right)$ as $n \rightarrow \infty$.
6. Suppose $f \in C^{1}\left(S^{1}\right)$ is satisfying $[f *(1+f)](t)=f^{\prime}(t)$ for all $t \in S^{1}$. Show that f is
constant.
7. Let $f \in L^{1}(\mathbb{R})$ and $f(x)>0$ for all $x \in \mathbb{R}$. Prove that there exists $\delta>0$ such that the strict inequality $|\hat{f}(\xi)|<\hat{f}(0)$ holds, whenever $|\xi|>\delta$.
8. Let $f, g \in L^{2}(\mathbb{R})$. Show that $f * g$ is a bounded continuous function on \mathbb{R}. Further, prove that $\lim _{|x| \rightarrow \infty} f * g(x)=0$.
9. For $f \in L^{1}(\mathbb{R})$, let $g(t)=2 \pi \sum_{n=-\infty}^{\infty} f(t+2 \pi n)$, then show that g is periodic and satisfying $\|g\|_{L^{1}\left(S^{1}\right)} \leq\|f\|_{L^{1}(\mathbb{R})}$.
