DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA746: Fourier Analysis Instructor: Rajesh Srivastava Time duration: Three hours End Semester Exam May 9, 2019 Maximum Marks: 40

3

 $\mathbf{2}$

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Is it necessary that the Fourier transform of every compactly supported function in $L^1(\mathbb{R})$ is real analytic ?
 - (b) What is the distributional support of the function $\chi_{\mathbb{Q}}$, where \mathbb{Q} is the set of rational numbers ?
 - (c) For $n \in \mathbb{N}$, let δ_n denote the Dirac delta distribution at n. Does $\delta_n \to 0$ in the weak^{*} topology of $C_o(\mathbb{R})$ (the space of all continuous functions vanishing at infinity)? 1
 - (d) What is the order of $\Lambda \in \mathcal{D}'(\mathbb{R})$ which is given by $\Lambda(\varphi) = \int_{|x|>1} \log x \,\varphi(x) dx$? 1
- 2. Find all those functions $f, g \in C^{\infty}(\mathbb{R})$ which are satisfying $f \delta_o + g \delta'_o = 0$. 3
- 3. Suppose $f \in L^{\infty}(\mathbb{R})$ is satisfying $\int_{\mathbb{R}} f(y) e^{-y^2} e^{2xy} dy = 0$ for all $x \in \mathbb{R}$. Prove that f = 0.
- 4. Let

$$f(x) = \left\{ \begin{array}{ll} e^{-x} & \text{if } x \ge 0, \\ 1 & \text{if } x < 0. \end{array} \right.$$

Show that the Fourier transform of f satisfies $(1 - ix)\hat{f} = \hat{H}$ in the sense of tempered distribution, where $H = \chi_{(-\infty,0)}$.

- 5. Find the distributional derivative of function $f(x) = e^{x^2} \chi_{[0,1]}(x)$.
- 6. Let Λ be a distribution on \mathbb{R} such that $x^2 \Lambda = 0$ for each $x \in \mathbb{R}$. Show that $\Lambda = c \,\delta_o + d \,\delta'_o$ for some constants c and d.
- 7. For $n \in \mathbb{N}$, let $f_n = \chi_{[0,n]}$. Find $\lim_{n \to \infty} f'_n$ in the weak^{*} topology of $\mathcal{D}(\mathbb{R})$.
- 8. Give an example of function $f \in L^{\infty}[(0,\infty)]$ whose derivative f' is a well defined function on $(0,\infty)$ but $f' \notin L^{\infty}[(0,\infty)]$.
- 9. For $f \in L^1(\mathbb{R}^n)$ and $g \in L^p(\mathbb{R}^n)$, $1 , show that <math>f * g \in L^p(\mathbb{R}^n)$. Further derive that $\widehat{f * g} = \widehat{f}\widehat{g}$. (Hint: use Hausdorff Young inequality). 5
- 10. Suppose $f \in L^2(\mathbb{R}^n)$ is such that $\{\tau_x f : x \in \mathbb{R}^n\}$ is dense in $L^2(\mathbb{R}^n)$. Show that f cannot be zero on a set of positive measure in \mathbb{R}^n .
- 11. Classify all those continuous functions on \mathbb{R} which are tempered distributions on \mathbb{R} .