DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA746: Fourier Analysis

Quiz I

 $|\mathbf{2}|$

Instructor: Rajesh Srivastava Time Allowed: 1.5 hours

September 4, 2025 Maximum Marks: 10

Note: Answers must be accompanied by rigorous justification; unsupported answers will not be credited.

- 1. (a) Does there exist a series that is not summable in the usual sense, but which is Abel summable and not Cesàro summable?
 - (b) Consider the series $\sum_{n=-\infty}^{\infty} \frac{(-1)^n i e^{-int}}{n}$. Is this series uniformly convergent on the interval $[-\pi, \pi]$?
- 2. Determine the Fourier series expansion of the function $f(t) = |t \pi|$ defined on the interval $0 \le t \le 2\pi$. Does the Fourier series of f converge uniformly almost everywhere on $[0, 2\pi]$?
- 3. Let $G_n: [-\pi, \pi] \to \mathbb{C}$ be defined by

$$G_n(x) = \frac{1}{n} \left(\frac{\sin \frac{nx}{2}}{\sin \frac{x}{2}} \right)^2$$
 for $x \neq 0$, and $G_n(0) = 1$.

For any $\delta > 0$ such that $0 < \delta < \pi$, prove that

$$\lim_{n \to \infty} \frac{1}{2\pi} \int_{-\delta}^{\delta} G_n(x) \, dx = 1.$$

Is this result valid for every family of good kernels $K_n \in L^1(S^1)$?

- 4. Given a continuous function $f: \mathbb{C} \to \mathbb{C}$ and parameter r > 0, define $f_r(z) = f(rz)$. Determine the Fourier series of f_r on the unit circle S^1 . If f is analytic, does the Fourier series of f_r coincide with the power series expansion in a neighborhood of $[-\pi, \pi]$?
- 5. Let μ be a finite measure on $[-\pi, \pi]$ and $n \in \mathbb{Z}$. Define the Fourier coefficient of μ by

$$\hat{\mu}(n) = \int_{-\pi}^{\pi} e^{-int} d\mu(t).$$

Also, for $f \in L^1([-\pi, \pi])$, define the convolution

$$f * \mu(x) = \int_{-\pi}^{\pi} f(x - y) d\mu(y).$$

Show that the Dirac delta measure δ_0 at 0 satisfies $f * \delta_0(x) = f(x)$. Further, find $\hat{\delta}_0(n)$.