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Chapter 1

Fourier Series

Fourier series provide a canonical way to represent periodic functions as superpositions of the
basic characters of the circle group, namely the complex exponentials einx, n ∈ Z. Beyond
their striking applications to boundary–value problems in physics, Fourier series form a central
tool of analysis: they convert questions about a function into questions about its frequency
spectrum {f̂(n)}n∈Z.

Learning objectives.

• See how separation of variables in classical PDE produces trigonometric eigenfunctions.

• Define Fourier coefficients on S1 ≃ R/2πZ and interpret partial sums as convolutions with
the Dirichlet kernel.

• Distinguish pointwise, uniform, and L2 convergence; understand why summability kernels
(Abel, Fejér) are useful.

1.1 Motivation: eigenfunction expansions in PDE

A guiding principle of Fourier analysis is that translation-invariant linear problems diagonalize
in a basis of exponential functions. On R/2πZ these exponentials are precisely einx, n ∈ Z. One
classical route to this conclusion is separation of variables in boundary–value problems.

The vibrating string on an interval

Consider the one-dimensional wave equation on the interval (0, π) with Dirichlet boundary
conditions,

utt(x, t) = uxx(x, t), u(0, t) = u(π, t) = 0. (1.1.1)
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MA746: Fourier Analysis 1. Fourier Series

Seeking separable solutions u(x, t) = X(x)T (t) and dividing by XT yields

T ′′(t)
T (t) = X ′′(x)

X(x) = −λ

for some constant λ ∈ R, hence

X ′′ + λX = 0, T ′′ + λT = 0.

The boundary conditions force X(0) = X(π) = 0, so nontrivial solutions occur exactly for λ = n2

with n ∈ N, with eigenfunctions

Xn(x) = sin(nx), n ∈ N.

By linearity, one is led to expansions of the form

f(x) ∼
∞∑

n=1
An sin(nx), (1.1.2)

where f(x) = u(x, 0) is the initial displacement and the coefficients are determined using
orthogonality:

An = 2
π

∫ π

0
f(x) sin(nx) dx.

A second initial condition ut(x, 0) = g(x) determines the coefficients in front of sin(nx) sin(nt)
(or sin(nx) cos(nt)), and it already hints at a central theme: regularity of the data controls decay
of the coefficients.

The Dirichlet problem on the disc

A second motivation comes from the Laplace equation on the unit disc

∆u = 0 on D = {(r, θ) : 0 ≤ r < 1, 0 ≤ θ < 2π}, u(1, θ) = f(θ),

the classical Dirichlet problem. Writing u(r, θ) = F (r)G(θ) leads to

G′′ + λG = 0, r2F ′′ + rF ′ − λF = 0.

Periodicity in θ forces λ = n2 with n ∈ Z, so G(θ) = einθ, and boundedness at r = 0 selects the
radial solutions F (r) = r|n|. Thus a bounded harmonic function admits an expansion

u(r, θ) =
∑
n∈Z

an r
|n|einθ, so that f(θ) = u(1, θ) ∼

∑
n∈Z

ane
inθ.

Question 1.1.1 (Central question). Given a function f on the circle (for instance f ∈ L1(S1)
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MA746: Fourier Analysis 1. Fourier Series

or f ∈ C(S1)), in what sense does the Fourier series

∑
n∈Z

f̂(n)einθ, f̂(n) = 1
2π

∫ 2π

0
f(θ)e−inθ dθ,

recover f?

We now formalize the identification of functions on the unit circle with 2π-periodic functions
on R, and then develop the basic tools needed to answer the question above.

1.2 Functions on the circle

Throughout these notes we identify the unit circle

S1 := {eit : t ∈ R}

with the quotient group R/2πZ via the map t 7→ eit. Under this identification, a function
f : S1 → C may be viewed as a 2π-periodic function (again denoted by f) on R.

The Lebesgue measure on S1 corresponds to the usual Lebesgue measure dt on [0, 2π) and
is the (unique) translation-invariant probability measure up to scaling (Haar measure) on the
circle. We use the normalization∫

S1
f(t) dt :=

∫ 2π

0
f(t) dt, so that

∫
S1

1 dt = 2π.

In particular, for every t0 ∈ S1 and every integrable f we have the translation invariance∫
S1
f(t− t0) dt =

∫
S1
f(t) dt,

which follows immediately from the substitution s = t− t0 and 2π-periodicity.

A trigonometric polynomialnomial of degree at most N is an expression

PN (t) =
N∑

k=−N

ake
ikt,

and a trigonometric series is a formal sum ∑
k∈Z ake

ikt.

Definition 1.2.1. For n ∈ Z, and f ∈ L1(S1), the nth Fourier coefficient of f is defined by

f̂(n) = 1
2π

∫ 2π

0
e−intf(t) dt

5
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Definition 1.2.2. The Fourier Series of f ∈ L1(S1) is the expression of

S(f) ∼
∞∑

n=−∞
f̂(n)eint

Hence, the n’th partial sum of the Fourier Series (FS) is

Sn(t) =
n∑

k=−n

f̂(k)eikt

is a trigonometric polynomialnomial of degree n.

Lemma 1.2.3. Let f, g ∈ L1(S1), then

(i) f̂ + g(n) = f̂(n) + ĝ(n),

(ii) α̂f(n) = αf̂(n), α ∈ C,

(iii) f̂(n) = f̂(−n),

(iv) If τt0f(t) = f(t− t0), t0 ∈ S1, then (τt0f)∧ (n) = e−int0 f̂(n)

(v) |f̂(n)| ≤ 1
2π

∫
|f(t)|dt = ∥f∥1

Corollary 1.2.4. If fn ∈ L1(S1) and ∥fj − f∥1 → 0, then f̂j(n) → f̂(n) absolutely (or even
uniformly).

Theorem 1.2.5. Let f : [0, 2π] → C ⊂ R. Then f is absolutely continuous if and only if f ′

exists a.e. and
f(x) = f(0) +

∫ x

0
f ′(t) dt.

(For a proof, see Carothers p.374.)

Theorem 1.2.6. Let f ∈ L1(S1) and f̂(0) = 0. Define

F (t) =
∫ t

0
f(s) ds.

Then F is continuous 2π-periodic function and

F̂ (n) = f̂(n)
in

, n ̸= 0.

Proof. For tk → t0

F (tk) − F (t0) =
∫ 2π

0
χ[t0,tk)(s)f(s) ds.

Since χ[t0,tk)(s)f(s) → 0 point wise a.e. and f ∈ L1(S1), by DCT, it follows that

F (tk) − F (t0) → 0 as k → ∞.
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Hence, F is continuous on S1.
Notice that

l∑
k=1

|F (tk) − F (tk−1)| ≤
l∑

k=1

∫ 2π

0
χ[tk−1,tk)(s)|f(s)|ds.

Hence, RHS tends to “0" when l → ∞. This implies that F is absolutely continuous. Thus, F is
differentiable a.e. Also

F (t+ 2π) − F (t) =
∫ t+2π

t
f(s)ds = f̂(0) = 0.

Now, integrating by parts, we get

F̂ (n) = 1
2π

∫ 2π

0
e−intF (t)dt = − 1

2π

∫ 2π

0
F ′(t)

(
e−int

−in

)
dt = 1

in
f̂(n).

Example 1.2.7. Let f(θ) = θ, −π ≤ θ < π. Then

f̂(n) = 1
2π

∫ π

−π
θe−inθdθ = (−1)n+1

in
, n ̸= 0.

f̂(0) = 0. Thus,

f(θ) ∼
∑ (−1)n+1

in
einθ = 2

∑ (−1)n+1 sin θ
n

It’s easy to see that Series on RHS is pointwise convergent, but showing it converges to f(θ)
is not easy, as we see later!

Example 1.2.8. f(θ) = (π−θ)2

4 , 0 ≤ θ ≤ 2π

f(θ) ∼ π2

12 +
∞∑

n=1

cosnθ
n2

The Fourier Series is uniformly convergent, but it converges to f(θ) is not easy.

Theorem 1.2.9. For f, g ∈ L1(S1). Define convolution of f and g by

h(t) = f ∗ g(t) = 1
2π

∫ 2π

0
f(t− s)g(s)ds.

Then h ∈ L1(S1) and ∥h∥1 ≤ ∥f∥1∥g∥1,
moreover, ĥ(n) = f̂(n)ĝ(n).

7
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Proof. ∫
|h(t)|dt ≤ 1

2π

∫ (∫
|f(t− s)||g(s)|ds

)
dt

= 1
2π

∫
(
∫

|f(t− s)|dt)|g(s)|ds (by Fubini’s theorem)

= 1
2π

∫
∥f∥1|g(s)|ds = ∥f∥1∥g∥1

Further,

ĥ(n) = 1
2π

∫
h(t)e−intdt

= 1
4π2

∫ (∫
f(t− s)e−in(t−s)dt

)
g(s)e−insds

= 1
2π

∫
f̂(n)g(s)e−insds

= f̂(n)ĝ(n).

Question 1.2.10. Does there exists f, g ∈ L1(S1) such that f ∗ g(s) = 1?

Let f ∈ L1(S1) and φ(t) = eint, then

φ ∗ f(t) = 1
2π

∫
f(s)ein(t−s)ds = eintf̂(n).

Hence, if

PN (t) =
N∑

n=−N

cne
int,

then

PN ∗ f(t) =
N∑

n=−N

cnf̂(n)eint.

that is convolution of a trigonometric polynomialnomial with any function is a trigonometric
polynomialnomialnomial. Now, consider the Fourier series of f ∈ L1(S1) as

f(t) ∼
∞∑

n=−∞
f̂(n)eint.

Let

DN (t) =
N∑

n=−N

eint and SN (f)(t) =
N∑

n=−N

f̂(n)eint.

Then
SN (f)(t) = DN ∗ f(t).

8
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The function DN is known as Dirichlet kernel. Further,

DN (t) =
sin
(
(N + 1

2)t
)

sin(t/2) , t ̸= 0

and DN (0) = 2N + 1. (Hint: put ω = eit, then DN (t) is the sum of two geometric series, etc.)
Hence, the earlier question of convergence of Fourier series can be rephrased as:

Question 1.2.11. Whether the partial sum of the sequence SN (f) converges to f point wise.
That is,

lim
N→∞

DN ∗ f(t) = f(t) ? (4)

Recall back the heat-equation (steady-state):

∆U = 0, U(r, θ) =
∑

amr
|m|eimθ

Let
Pr(θ) =

∞∑
m=−∞

r|m|eimθ, 0 ≤ r < 1, θ ∈ [−π, π]

Then the series on RHS converges absolutely and uniformly. Hence,

P̂r(m) = r|m| and we have

Pr ∗ f(θ) =
∞∑

m=−∞
f̂(m)r|m|eimθ

The function Pr(θ) is known as Poisson kernel and can be represented as

Pr(θ) = 1 − r2

1 − 2r cos θ + r2

(Hint: Series for Pr(θ) in terms of two geometric series, etc.)
Thus, we can ask when

lim
r→1

Pr ∗ f(θ) = f(θ) ?

The function Pr ∗ f is called the Abel mean of Fourier series S(f).
Now, the question is, does there exist a family of “good kernels" (i.e., weight functions or

averaging functions) for the Fourier series that leads the series to the given function?
That is, if f ∈ L1(S1), can we find a sequence Kn ∈ L1(S1) such that f ∗Kn → f?

Definition 1.2.12. A sequence of functions {Kn}∞
n=1 is “good kernels" if

(i) 1
2π

∫ π
−π Kn(t)dt = 1, for all n ≥ 1.

(ii) There exists M > 0 such that 1
2π

∫ π
−π |Kn(t)|dt ≤ M , for all n ≥ 1.

9
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(iii) For each δ > 0,
∫

δ<|t|≤π |Kn(t)|dt → 0 as n → ∞.

Theorem 1.2.13. Let {Kn}∞
n=1 be a sequence of good kernels on [−π, π] and f ∈ R([−π, π])

(Riemann integrable).
Then (f ∗Kn)(x) → f(x) if x is a point of continuity of f , and the above limit is uniform if

f is continuous on [−π, π].

Proof. Since f is continuous at x, for ϵ > 0, there exists δ > 0 such that |f(x − y) − f(x)| <
ϵ, for all |y| < δ. Now

f ∗Kn(x) − f(x) = 1
2π

∫ π

−π
Kn(y)[f(x− y) − f(x)]dy (by property (i) of Kn)

⇒ |f ∗Kn(x) − f(x)| ≤ 1
2π

∫
|y|<δ

|Kn(y)||f(x− y) − f(x)|dy

+ 1
2π

∫
δ≤|y|≤π

|Kn(y)||f(x− y) − f(x)|dy

≤ ϵ

2π

∫
|y|<δ

|Kn(y)|dy + 2B
2π

∫
δ≤|y|≤π

|Kn(y)|dy,

where |f(x)| ≤ B, for all x ∈ [−π, π]. This implies

|f ∗Kn(x) − f(x)| < Cϵ for large n.

If f is continuous on [−π, π], then we can find one δ > 0 that serves for each x. Hence f ∗Kn → f

uniformly in this case.

Corollary 1.2.14. If {Kn}∞
n=1 is a sequence of good kernels in L1(S1) and f ∈ L1(S1), then

f ∗Kn → f in L1(S1).

Proof. Since C([−π, π]) = L1([−π, π]), for f ∈ L1 and ϵ > 0, there exists g continuous such that
|f(x) − g(x)| < ϵ for all x ∈ [−π, π]. That is,

∥f − g∥1 < 2πϵ.

From the above result g ∗Kn(x) → g uniformly, that is

|g ∗Kn(x) − g(x)| < ϵ for large n, and for all x

⇒ ∥g ∗Kn − g∥1 < 2πϵ (2)

10
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This implies,

∥f ∗Kn − f∥1 ≤ ∥(f − g) ∗Kn∥1 + ∥g ∗Kn − g∥1 + ∥f − g∥1

≤ ∥f − g∥1∥Kn∥1 + 4πϵ

≤ ϵ.1 + 4πϵ

for large n.

Remark 1.2.15. Dirichlet Kernel is not a good kernel for Fourier series.

Dn(t) =
sin
(
(n+ 1

2)t
)

sin
(

t
2
) , t ̸= 0,

Since | sin x| < |x|, it follows that∫ π

−π
|Dn(t)|dt ≥ 2

π

∫ π

0

∣∣∣∣sin((n+ 1
2)t
)∣∣∣∣ dtt

= 2
π

∫ (n+ 1
2 )π

0
| sin t|dt

t

≥ 2
π

n∑
k=1

∫ kπ

(k−1)π

| sin t|
t

dt

≥ 2
π

n∑
k=1

1
kπ

∫ kπ

(k−1)π
| sin t|dt

= 4
π2

n∑
k=1

1
k

→ ∞

as n → ∞. That is, Dirichlet Kernel Dn fails to satisfy property of a good kernel.

In fact, it is also clear from the above calculation that∫
δ≤|t|≤π

|Dn(t)| dt ̸→ 0 as n → ∞.

However,
1
π

∫ π

−π
Dn(t)dt = 1.

Thus, if we write
Fn(t) = D0(t) +D1(t) + . . .+Dn−1(t)

n
,

where

Dk(t) =
k∑

l=−k

eilt,

then we can show that {Fn}∞
n=1 is a family of good Kernel. This is known as Fejer Kernels,

11
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and Fn ∗ f is known as Cesàro sum of the Fourier series for f .

In general, for a sequence {an}∞
n=0 of complex numbers, let Sn = a1 + . . . + an. Then the

series ∑ an is said to be Cesàro summable if

σn = S1 + · · · + Sn

n

is convergent.

Example 1.2.16.

1 − 1 + 1 − 1 + · · · =
∞∑

n=0
(−1)n

then Sn = 0 (if n even), Sn = 1 (if n odd), and hence σn = [n/2]±1
n → 1

2 .

Let
σn(f)(x) = S0(f)(x) + · · · + Sn−1(f)(x)

n
.

Since Sn(f) = f ∗Dn, it follows that σn(f) = f ∗ Fn, where

Fn = D0 +D1 + . . .+Dn−1
n

.

Exercise 1.2.17. (i) Fn(x) = 1
n

sin2( nx
2 )

sin2( x
2 ) , if n ̸= 0.

(ii) Fn(0) = 1 (since Fn continuous at x = 0).

(iii) 1
2π

∫ π
−π Fn(t) dt = 1.

Notice that for δ > 0, there exists cδ > 0 such that

sin2
(
x

2

)
> cδ, δ ≤ |x| ≤ π.

Hence, Fn(x) ≤ 1
ncδ
, ∀x ≥ δ. Therefore,

∫
δ≤|x|≤π

Fn(x) dx ≤ (π − δ)
cδ

1
n

→ 0 as n → ∞.

Hence {Fn}∞
n=1 is a family of good kernels.

Thus, if f ∈ R[−π, π], then the Fourier series is Cesáro summable to f at the point of
continuity of f , and uniformly Cesáro summable if f is continuous.

Remark 1.2.18. If f ∈ R[−π, π] and f̂(n) = 0 for all n ∈ Z, then f = 0 at all points of continuity
of f . Since

Sn(f)(t) =
n∑

k=−n

f̂(k)eikt = 0,

12
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f ∗ Fn(t) ≡ 0 =⇒ f(t) = 0,

if f is continuous at t.

1.3 Uniqueness Theorem

Theorem 1.3.1. If f ∈ L1(S1) is such that f̂(m) = 0 for all m ∈ Z, then f = 0 on S1 a.e.

Proof. For f ∈ L(S1) and ε > 0, there exists g ∈ C(S1) such that ∥f − g∥1 < ϵ. Now

∥f∥1 ≤ ∥f ∗ Fn − f∥1

≤ ∥f ∗ Fn − g ∗ Fn∥1 + ∥g ∗ Fn − g∥1 + ∥g − f∥1

≤ ∥f − g∥1 · 1 + ∥g ∗ Fn − g∥1 + ∥g − f∥1.

Since g is continuous, for ε > 0, ∥g ∗ Fn − g∥1 < ϵ for n ≥ N0. Hence,

∥f∥1 < 3ϵ for all ϵ > 0.

Thus, ∥f∥1 = 0 ⇐⇒ f = 0 a.e.

Remark 1.3.2. A continuous function on S1 can be uniformly approximated by trigonometric
polynomialnomials. That is, if f ∈ C[−π, π] and f(−π) = f(π), then σn(f) = f ∗ Fn is a
trigonometric polynomialnomialnomial and we know that f ∗ Fn → f uniformly. That is,
{f ∗ Fn : n ∈ N} is dense in {f ∈ C[−π, π] : f(π) = f(−π)}.

We also mention that if f ∈ L1(S1), then for ϵ > 0, there exists N0 ∈ N such that

∥f ∗ Fn − f∥1 < ϵ, n ≥ N0.

Hence, trigonometric polynomialnomials are dense in L1(S1).

1.4 Riemann-Lebesgue Lemma

Lemma 1.4.1. If f ∈ L1(S1), then lim|n|→∞ f̂(n) = 0.

Proof. For ϵ > 0, there exists a trigonometric polynomialnomial P such that ∥f − P∥1 < ϵ (
where P = f ∗ Fn etc.). Let |n| > degP . Then

|f̂(n)| = |f̂(n) − P̂ (n)| ≤ ∥f − P∥1 < ϵ, if |n| > degP.

That is, |f̂(n)| < ϵ for large n. Hence, lim|n|→∞ f̂(n) = 0.

13
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1.5 Abel Means Summability

A series ∑∞
n=0 an is said to be Abel summable to s if the series

A(r) =
∞∑

n=0
anr

n

is convergent for each 0 ≤ r < 1, and limr→1A(r) = s.

Example 1.5.1. Every convergent series is Abel summable. Consider

1 − 2 + 3 − 4 + 5 − · · · =
∞∑

n=0
(−1)n(n+ 1).

Then
A(r) =

∞∑
n=0

(−1)n(n+ 1)rn = 1
(1 + r)2 → 1

4

Show that the above series is not Cesaro summable.

Now, consider the Fourier series of f ∈ R[−π, π] as

f(t) ∼
∞∑

n=−∞
f̂(n)eint

Let
Arf(θ) =

∞∑
n=−∞

r|n|f̂(n)einθ

then
Arf(θ) = (f ∗ Pr)(θ)

where
Pr(θ) =

∞∑
n=−∞

r|n|einθ = 1 − r2

1 − 2r cos θ + r2 (∗)

Lemma 1.5.2. Pr(θ) is a good kernel in the following sense:

(i) 1
2π

∫
Pr(θ) dθ = 1

(ii) limr→1
∫

δ≤|θ|≤π Pr(θ) dθ = 0, for all δ > 0.

Proof. (i) easily follows from (∗), since the series converges uniformly for each 0 ≤ r < 1.
To prove (ii), let 1

2 ≤ r < 1. Then

1 − 2r cos θ + r2 = (1 − r)2 + 2r(1 − cos θ)

14



MA746: Fourier Analysis 1. Fourier Series

For 0 < δ < |θ| ≤ π, 1 − 2r cos θ + r2 > cδ. Hence,

Pr(θ) < 1 − r2

cδ
for all δ > 0.

⇒ 1
2π

∫
δ<|θ|≤π

Pr(θ) dθ ≤ 1 − r2

cδ
→ 0 as r → 1.

Theorem 1.5.3. Let f ∈ R[−π, π]. Then

(i) Arf(θ) = (Pr ∗ f)(θ) → f(θ), if θ is a point of continuity of f .

(ii) Arf → f uniformly if f is continuous.

Proof. Proof of this result is same as for the Fejer kernel when we consider continuous parameter
r ∈ (0, 1).

Corollary 1.5.4. Since C(S1) = L1(S1), it follows that

∥Pr ∗ f − f∥1 → 0 as r → 1 for f ∈ L1(S1)

Theorem 1.5.5. Let U(r, θ) = f ∗ Pr(θ). Then

(ii) U is twice differentiable on the unit disc D = {reiθ : 0 ≤ r < 1,−π ≤ θ < π}

(iii) If θ is a point of continuity of f , then U(r, θ) → f(θ) as r → 1, and the limit is uniform if
f is continuous on E = [−π, π].

(iii) If f is continuous on E = [−π, π], then U(r, θ) is the unique solution of ∆U = 0 with
limr→1 U(r, θ) = f(θ).

Proof. (i)

U(r, θ) =
∞∑

n=−∞
r|n|f̂(n)einθ

Since the series and its derivative (with respect to r and θ), both are uniformly convergent,
term-by-term differentiation is allowed. In fact, U(r, θ) ∈ C∞-function on D. Since

∆U = ∂2U

∂r2 + 1
r

∂U

∂r
+ 1
r2
∂2U

∂θ2

it is easy to verify ∆U = 0, if U = Pr ∗ f . A proof for (i) is followed by the previous result.
(iii) Let v(r, θ) be another solution of ∆U = 0 with limr→1 v(r, θ) = f(θ). Then

v(r, θ) =
∞∑

n=−∞
an(r)einθ (∵ ∆v = 0)

15
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where
an(r) = 1

2π

∫ π

−π
e−inθv(r, θ) dθ

Since v is two times differentiable,

1
2π

∫ π

−π

∂2

∂v2 v(r, θ)e−inθdθ = −n2an(r).

Hence, from

∆v = ∂2v

∂r2 + 1
r

∂v

∂r
+ 1
r2
∂2v

∂θ2 = 0,

it follows that
a′′

n(r) + 1
r
a′

n(r) − n2

r2 an(r) = 0.

This gives
an(r) = Anr

n +Bnr
−n, if n ̸= 0.

Since v is bounded on D, letting r → 0 implies Bn = 0. That is,

v(r, θ) =
∑

Anr
neinθ uniform−−−−−→ f(θ)

=⇒ An = 1
2π

∫
f(θ)e−inθ dθ.

For n = 0, A0(r) = A0 = 1
2π

∫ π
−π f(t)dt. Thus for each 0 ≤ r < 1, Fourier series of v is same as

for u. By uniqueness it follows that u = v.

Exercise 1.5.6. If {Jn}∞
n=1 and {Kn}∞

n=1 are two families of good kernels for L1(S1), then
{Jn ∗Kn}∞

n=1 is a good kernel for L1(S1).

(i)

1
2π

∫ π

−π
Jn ∗ kn(t)dt = 1

2π

∫ π

−π

1
2π

∫ π

−π
Jn(t− s)kn(s)dsdt

= 1
2π

∫ π

−π

1
2π

( 1
2π

∫ π

−π
Jn(t− s)dt

)
kn(s)ds

= 1
2π

∫ π

−π
1 · kn(s)ds ( since L1(S1) is translation invariant)

= 1

(ii)
1

2π

∫ π

−π
|Jn ∗ kn(t)|dt ≤ 1

2π

∫ π

−π
M |kn(s)|ds ≤ MN < ∞

16
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(iii) Let δ > 0, then

∫
δ<|t|≤π

|Kn ∗ Jn(t)|dt ≤
∫ π

s=−π

(∫
δ<|t|≤π

|Kn(t− s)|dt
)

|Jn(s)|ds

Let |s| < δ/2, then r = t− s ∈ (−δ/2, δ/2). Now

(∗∗)
∫

|s|<δ/2

(∫
δ/2<|r|<π

|Kn(r)|dr
)

|Jn(s)|ds → 0 as n → ∞,

since
∫

δ/2<|s−t|<π |Kn(t− s)|dt → 0 as n → ∞. (Exercise)

Since |s| < δ/2, (use the fact that τxf → f is continuous on L1(S1)). That is, if∫
δ<|t|≤π

|Kn(t)|dt → 0 for all δ > 0,

then ∣∣∣∣∣
∫

δ<|t|≤π
(τsKn(t) −Kn(t))dt

∣∣∣∣∣ <
∫

δ<|t|≤π
|(τsKn(t) −Kn(t))| dt ≤ ϵ

For ϵ > 0, there exists n0 ∈ N, such that
∫

|t|>δ |Kn(t)|dt < ϵ for all n ≥ n0 and for small |s| < δ1.
However, ∫

|s|>δ/2

∫
|t|>δ

|Kn(t− s)||Jn(s)|ds dt ≤
∫

|s|>δ/2
M |Jn(s)|ds → 0 as n → ∞.

Lemma 1.5.7. Let f : [−π, π] → C be such that

|f(x) − f(y)| ≤ M |x− y| for all x, y ∈ [−π, π]

for some M > 0. Then Sn(f) → f uniformly. Note that |x − y| = min{|x − y|, |x − y ± 2π|},
that is, the distance between x and y modulo 2π.

Proof. Calculate
Sn(f)(x) − f(x) = 1

2π

∫ π

−π
(f(x− t) − f(x))Dn(t)dt.

Since
Dn(t) =

sin((n+ 1
2)t)

sin(t/2) , t ̸= 0,

|Sn(f)(x) − f(x)| ≤ 1
2π

∣∣∣∣∫ π

−π
(f(x− t) − f(x))cos t/2

sin t/2 sinnt dt
∣∣∣∣

+ 1
2π

∣∣∣∣∫ π

−π
(f(x− t) − f(x)) cosnt dt

∣∣∣∣ .

17
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Let
g(t) = f(x+ t) − f(x)

t/2 cos t2 , t ̸= 0.

Then |g(t)| ≤ 2M | t/2
sin t/2 |, if t ̸= 0.

Since limt→0
t/2

sin(t/2) = 1, it follows that g is a bounded function on [−π, π] and continuous on
[−π, π] \ {0}. Hence, g ∈ R[−π, π].

Let h(t) = f(x− t) − f(x). Then

|Sn(f)(x) − f(x)| ≤ 1
2π |

∫ π

−π
g(t) sin(nt)dt| + 1

2π |
∫ π

−π
h(t) cos(nt)dt|

= 1
2 |ĝ(n) − ĝ(−n)| + 1

2 |ĥ(n) + ĥ(−n)| → 0 (by R-L Lemma)

whenever x ∈ [−π, π].

Corollary 1.5.8. If f ∈ R[−π, π] and f is differentiable at x0, then Sn(f)(x0) → f(x0).

Define g(t) =


f(x0−t)−f(x0)

t , t ̸= 0;

−f ′(x0), otherwise

Corollary 1.5.9. If f ∈ C ′[−π, π], then Sn(f) → f uniformly. (Hint: Use MVT.)

Notice that if f is piecewise C1-function, then Sn(f) → f uniformly too.

Question 1.5.10. Does every continuous function f on S1 have a Fourier series which converges
to f at each point of S1?

To discuss this, we need the following lemma.

Lemma 1.5.11. Let f ∈ R[−π, π] and f is bounded on [−π, π] by M . Then there exists a
sequence fn of continuous functions on [−π, π] such that

(i) |fn(x)| ≤ M for all n ∈ N, x ∈ [−π, π].

(ii)
∫ π

−π |fn(x) − f(x)|dx → 0 as n → ∞.

Proof. First consider f as a real-valued function. For ϵ > 0, there exists a partition P of [−π, π]
such that

U(P, f) − L(P, f) < ϵ, (1)

where
P = {−π = x0 < x1 < · · · < xi < xi+1 < · · · < xN = π}

For x ∈ [xi−1, xi], define g(x) = sup{f(y) : xi−1 ≤ y ≤ xi}. Then g is bounded by M .∫ π

−π
|g(x) − f(x)|dx =

∫ π

−π
(g(x) − f(x))dx < ϵ (by (1))

18
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Let δ > 0 and x ∈ (xi − δ, xi + δ), define g̃(x) be the linear function joining g(x− δ) and g(x+ δ),
and g̃ = 0 near −π and π. Then g̃ is a continuous periodic function which differs with g on N

many intervals, each of length less than 2δ surrounding the partitioning points. Hence,∫ π

−π
|g(x) − g̃(x)| dx ≤ (2M)N(2δ).

For δ sufficiently small, ∫ π

−π
|g(x) − g̃(x)| dx < ϵ.

=⇒
∫ π

−π
|f(x) − g̃(x)| dx < 2ϵ.

For 2ϵ = 1
n , take g̃ = fn. Thus∫ π

−π
|f(x) − fn(x)|dx → 0 as n → ∞.

Remark 1.5.12. If f ∈ R[−π, π] has only finitely many points of discontinuity, then g̃n(x) → f(x)
point-wise.

Now, let X = C(S1) and define Λn : X → X by

Λn(f) = Sn(f)(0).

Then {Λn} is a sequence of linear functionals on X and

|Λn(f)| ≤ ∥Dn∥1∥f∥∞ =⇒ ∥Λn∥ ≤ ∥Dn∥1.

We claim that ∥Λn∥ = ∥Dn∥1 that is ∥Λn∥ =
∫ π

−π |Dn(t)| dt.
For this, let g(t) = signDn(t). Then for each fixed n, g has only finitely many points of

discontinuity. Hence, there exists gn ∈ C[−π, π] such that |gn(t)| ≤ 1 and gn(t) → g(t) as n → ∞
for each t ∈ [−π, π] (by previous lemma). Therefore

lim
m→∞

Λn(gm) = lim
m→∞

∫ π

−π
gm(−t)Dn(t) dt

=
∫ π

−π
g(−t)Dn(t) dt (by DCT)

=
∫ π

−π
|Dn(t)| dt = ∥Dn∥1

Thus,
∥Λn∥ = ∥Dn∥1 → ∞ as n → ∞.

19



MA746: Fourier Analysis 1. Fourier Series

That is, {Λn}∞
n=1 is not a uniformly bounded sequence in B(X,D), hence by Uniform Boundedness

Principle (UBP), there exists f ∈ C([−π, π]) such that Λn(f) = Sn(f)(0) is not bounded.
Therefore, the F.S. (Fourier Series) of f at 0 does not converge to f(0).

Notice that by translation we can show that for each x ∈ [−π, π], there exists a function
f ∈ C[−π, π] whosee Fourier series does not converge to f(x) at x. In fact, for each x ∈ [−π, π],
we can create a dense class of continuous functions say Ex such that Sn(f)(x) → ∞ (see Rudin,
Real & Complex).

1.6 Convergence of Fourier Series in L2(S1)

We have seen that the Fourier series of f ∈ C(S1) need not converge to f uniformly. Similarly,
we can also see that the Fourier series of f ∈ L1(S1) need not converge to f in L1-norm. ( For
this, define Λn(f) = Sn(f), f ∈ L1(S1) and use ∥Fn∥1 = 1). However, because of the self-duality
of the space L2(S1), for f ∈ L2(S1), we shall see that Sn(f) → f in L2-norm.

For f, g ∈ L2(S1), define an inner product by

⟨f, g⟩ = 1
2π

∫ 2π

0
f(θ)g(θ) dθ

and
∥f∥2

2 = 1
2π

∫ 2π

0
|f(θ)|2 dθ

Let en(θ) = einθ. Then {en : n ∈ Z} forms an orthonormal system (ONS) in L2(S1), because

⟨en, em⟩ =

0, m ̸= n

1, m = n

Let
⟨f, en⟩ = 1

2π

∫ 2π

0
f(t)e−intdt = an.

Then
SN (f) =

∑
|n|≤N

anen.

Note that
f −

∑
|n|≤N

anen ⊥ en for all |n| ≤ N

Hence, f −
∑

|n|≤N

anen

 ⊥
∑

|n|≤N

bnen

whenever bn ∈ C.
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By the Pythagorean theorem,

f = f −
∑

|n|≤N

anen +
∑

|n|≤N

anen,

it follows that
∥f∥2

2 = ∥f −
∑

|n|≤N

anen∥2
2 +

∑
|n|≤N

|an|2

or
∥f∥2

2 = ∥f − SN (f)∥2
2 +

∑
|n|≤N

|an|2 (1)

Since f ∈ L2(S1), we get ∑|n|≤N |an|2 ≤ ∥f∥2
2 for each N ∈ N (Bessel’s inequality).

1.7 Best Approximation Lemma

Lemma 1.7.1. Let f ∈ L2[0, 2π] and an = f̂(n). Then

∥f − SN (f)∥2 ≤ ∥f −
∑

|n|≤N

cnen∥2

for any sequence (cn) ⊂ C. Moreover, equality holds if cn = an for all |n| ≤ N .

Proof.
f −

∑
|n|≤N

cnen = f − SN (f) +
∑

|n|≤N

(an − cn)en

Let an − cn = bn. Then by orthogonality,∥∥∥∥∥∥f −
∑

|n|≤N

cnen

∥∥∥∥∥∥
2

2

= ∥f − SN (f)∥2
2 +

∥∥∥∥∥∥
∑

|n|≤N

bnen

∥∥∥∥∥∥
2

2

(1)

So,
∥f − SN (f)∥2 ≤

∥∥∥f −
∑

cnen

∥∥∥
2
.

But equality holds if and only if ∥
∑
bnen∥2

2 = 0, if and only if bn = 0. That is, Fourier
approximation is best among any other approximation of the form ∑

|n|≤N cnen.

1.8 Mean Square Convergence

Theorem 1.8.1. If f ∈ R[−π, π], then

1
2π

∫ π

−π
|f(x) − SN (f)(x)|2dx → 0 as N → ∞
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(i.e. ∥f − SN (f)∥2 → 0).

Proof. First, we suppose f is continuous. Then for ϵ > 0, there exists a trigonometric polynomi-
alnomial P such that

|f(x) − P (x)| < ϵ for all x ∈ [−π, π].

Let degP = k. Then ⟨P, en⟩ ̸= 0 for |n| = k, and by the best approximation lemma,

∥f − SN (f)∥2
2 ≤ 1

2π

∫ π

−π
|f(x) − P (x)|2dx ≤ ϵ for all N > k

Now, if f ∈ R[−π, π], then for ϵ > 0, there exists g ∈ C[−π, π] such that

sup |g(x)| ≤ sup |f(x)| ≤ M

and ∫
|f(x) − g(x)|dx < ϵ2

Hence,
∥f − g∥2

2 = 1
2π

∫ π

−π
|f(x) − g(x)||f(x) − g(x)|dx < 2M

2π ϵ
2 (2)

Since
∥g − SN (g)∥2 < ϵ for all N > k, (3)

from (2) and (3), we get

∥f − SN (f)∥2 ≤ ∥f − g∥2 + ∥g − SN (g)∥2 + ∥SN (g − f)∥2

≤

√
2M
2π ϵ+ ϵ+

∑
|n|≤M

|(f − g)∧(n)|2

≤

√
M

ϵ
ϵ+ ϵ+ ∥f − g∥2

2

≤

√
M

π
ϵ+ 2ϵ for all N > k.

Corollary 1.8.2. If f ∈ L2(S1), then ∥f − SN (f)∥2 → 0.

Since
R[−π, π] = L2[−π, π]

Further,
∥f∥2

2 = ∥f − SN (f)∥2
2 +

∑
|n|≤N

|an|2
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implies

∥f∥2
2 = lim

N→∞

∑
|n|≤N

|an|2 =
∞∑

n=−∞
|f̂(n)|2 (Parseval’s Identity).

The set {en : n ∈ Z} is a complete orthonormal system (ONS). For this, let f ∈ L2(S1) and
⟨f, en⟩ = 0, for all n ∈ N. Then, f = 0 by uniqueness of Fourier series, since L2(S1) ⊂ L2(S1).

Now, for f, g ∈ L2(S1)

⟨f, g⟩ =
〈

lim
N→∞

∑
|n|≤N

⟨f, en⟩en, g

〉
= lim

N→∞

∑
⟨f, en⟩⟨en, g⟩ =

∑
⟨f, en⟩⟨g, en⟩

that is
⟨f, g⟩ =

∞∑
n=−∞

f̂(n)ĝ(n)

Exercise 1.8.3. Let ∑∞
n=−∞ |an|2 < ∞. Then there exists a unique f ∈ L2(S1) such that

f̂(n) = an.

Proof. Consider ∑
anen(t) =

∑
ane

int

then ∑∣∣∣ane
int
∣∣∣2 =

∑
|an|2 · 1 < ∞.

That is, ∑ ane
int is absolutely summable in L2(S1). Set f = ∑

ane
int. Then f ∈ L2(S1) and

⟨f, en⟩ = an = f̂(n). Since the Fourier series of any L2 function is unique, it follows that f must
be unique.

Now we end the topic of Fourier series by the following optimal result about the convergence
of the Fourier series.

Theorem 1.8.4. Let f ∈ R[−π, π] and f̂(n) = O(1/n). Then Sn(f)(t) → f(t) if t is a point of
continuity of f ; and the limit is uniform if f is continuous on [−π, π].

Proof. We know that

σn(f ; t) =
n∑

j=−n

(
1 − |j|

n+ 1

)
f̂(j)eijt = Sn(f)(t) −

∑
|j|≤n

|j|
n+ 1 f̂(j)eijt

Since σn(f ; t) → f(t) at the point of continuity of f , we need to show that the residual in the
RHS is negligible. For 0 ≤ n < m, define

σm,n(f ; t) = Sm+1(f)(t) + · · · + Sn(f)(t)
n−m

= (n+ 1)σn+1(f ; t) − (m+ 1)σm+1(f ; t)
n−m

(1)
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Thus,
σm,n = Sm +

∑
m<|j|≤n

n+ 1 − |j|
n−m

f̂(j)ej ,

where ej(t) = eijt. For each fixed k ∈ N, from (1),

σkn,(k+1)n(f ; t) =
{(k + 1)n+ 1}σ(k+1)n+1(f ; t) − (kn+ 1)σkn+1(f ; t)

n

→ (k + 1)f(t) − kf(t) = f(t) as n → ∞.

Further, if nk ≤ m < (k + 1)n, then

|σkn,(k+1)n(f ; t) − Sm(f ; t)| ≤
∑

kn<|j|≤(k+1)n
|f̂(j)| ≤ 2

(k+1)n∑
j=nk+1

A

j
≤ 2nA

kn
= 2A

k
.

Now, for fixed k0, choose n0 ≥ k0 such that for all n ≥ n0

|σk0n,(k0+1)n(f ; t) − f(t)| < ϵ/2 (3)

For ϵ > 0, select k0 so large that 2A/k0 < ϵ/2. Then for m > k0n0, and for some n ≥ n0,
k0n0 ≤ k0n ≤ m < (k0 + 1)n,

|σk0n,(k0+1)n(f ; t) − Sm(f)(t)| < 2A
k0

<
ϵ

2 (4)

From (3) and (4), for m ≥ k0n0 = N0 (say), we get |Sm(f)(t) − f(t)| < ϵ.

1.9 Isoperimetric problem

Theorem 1.9.1. Let γ be a simple closed curve in R2 of length l, and it encloses the area A.
Then A ≤ l2

4π . Equality holds if and only if γ is a circle.

Proof. By using dilation, we can assume that l = 2π. Then A ≤ π. Let γ : [0, 2π] C1
−−→ R2 be

given by γ(t) = (x(t), y(t)), such that

(x′(t))2 + (y′(t))2 = 1.

(i.e. γ was traced by a particle with constant speed). Then

1
2π

∫ 2π

0

(
(x′(t))2 + (y′(t))2)dt = 1 (1)
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Since γ is closed, x(t) and y(t) are 2π-periodic. Hence,

x(t) ∼
∑

ane
int, y(t) ∼

∑
bne

int.

As γ is given smooth, γ can be considered to be a continuously differentiable curve, i.e. γ ∈
C1([0, 2π]), and

x′(t) ∼
∑

(in)ane
int, y′(t) ∼

∑
(in)bne

int

By the Parseval identity, (1) gives

∞∑
n=−∞

n2(|an|2 + |bn|2) = 1 (2)

Since x(t) and y(t) are real-valued, we have an = a−n and bn = b−n. Now, by bilinear form of
the Parseval identity,

A = 1
2

∣∣∣∣∫ 2π

0
(x(t)y′(t) − x′(t)y(t))dt

∣∣∣∣ = π

∣∣∣∣∣
∞∑

n=−∞
n(anbn − bnan)

∣∣∣∣∣ (3)

Here,
|anbn − bnan| ≤ 2|an||bn| ≤ |an|2 + |bn|2

Since |n| ≤ n2, from (3) we get:

A ≤ π
∑

|n|2(|an|2 + |bn|2) = π (by (2))

When A = π, it follows that

x(t) = a−1e
−it + a0 + a1e

it and y(t) = b−1e
−it + b0 + b1e

it (from (3))

From (2),
2(|a1|2 + |b1|2) = 1, ( since a−1 = a1, b−1 = b1)

that is
a1 = 1

2e
iα , b1 = 1

2e
iβ

The fact that 1 = 2|a1b1 − b1a1|, we get

| sin(α− β)| = 1 =⇒ α = β = kπ/2

⇒ x(t) = a0 ± cos(α+ t), y(t) = b0 ± sin(α+ t).
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1.10 Exercise

1. Determine whether each of the following statements is TRUE or FALSE, providing
rigorous justification in each case.

(a) Let Dn denote the Dirichlet kernel on S1. Does the identity Dn ∗Dn = Dn necessarily
hold?

(b) Does there exist a function f ∈ L1(S1) such that
∞∑

n=−∞
|nf̂(n)|2 = ∞?

2. Suppose f is continuously differentiable on S1. Show that

f̂ ′(n) = inf̂(n) for all n ∈ Z.

Deduce that there exists a constant C > 0 such that

|f̂(n)| ≤ C

|n|
.

Does this conclusion remain valid if f is absolutely continuous?

3. Let f be of bounded variation on [−π, π]. Prove that

|f̂(n)| ≤ Var(f)
2π|n|

for all n ∈ Z.

4. For f ∈ L1(S1), establish that

f̂(n) = 1
4π

∫ π

−π

[
f(x) − f

(
x+ π

n

)]
e−inx dx.

Use this identity to prove the Riemann–Lebesgue lemma.

5. Let f ∈ L1(S1) satisfy the Hölder condition

|f(x+ h) − f(x)| ≤ M |h|α

for all x, h ∈ S1, where 0 < α < 1 and M > 0. Show that

f̂(n) = O

( 1
|n|α

)
.
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6. Demonstrate that Fejér’s kernel Fn can be expressed as

Fn(t) =
n∑

j=−n

(
1 − |j|

n

)
eijt.

7. Given f ∈ L1(S1) and m ∈ N, define fm(t) = f(mt). Prove that

f̂m(n) =

f̂
(

n
m

)
, if m | n,

0, otherwise.

8. For f : S1 → C, and for x, y ∈ S1, define the translation operator τxf(y) = f(x− y). Prove
that the map x 7→ τxf is continuous in Lp(S1) for 1 ≤ p < ∞. That is,

∥τxf − f∥p → 0 as |x| → 0.

Does this continuity hold for p = ∞?

9. Let f ∈ L1(S1) and g ∈ L∞(S1). Show that

lim
n→∞

1
2π

∫ π

−π
f(t)g(nt) dt = f̂(0)ĝ(0).

10. Given f ∈ L1(S1), define the convolution operator Tf : L1(S1) → L1(S1) by Tf (g) = f ∗ g.
Prove that Tf is a bounded operator and that its operator norm satisfies

∥Tf ∥ = ∥f∥1.

11. Let P be a trigonometric polynomialnomial of degree n on S1. Show that

∥P ′∥∞ ≤ 2n∥P∥∞.

12. For 1 ≤ p ≤ ∞ with p−1 +q−1 = 1, and f ∈ Lp(S1), g ∈ Lq(S1), prove that the convolution
f ∗ g is continuous on S1.

13. Suppose f ∈ L∞(S1) satisfies
|f̂(n)| ≤ k

|n|

for some constant k > 0 and all n ∈ Z \ {0}. Prove that

|Sn(f)(t)| ≤ ∥f∥∞ + 2k,

where Sn(f) = Dn ∗ f.
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14. If f is a bounded monotone function on S1, show that

f̂(n) = O

( 1
|n|

)
.

15. Let f be Riemann integrable on [−π, π]. Prove that

∞∑
n=−∞

|f̂(n)|2 < ∞,

from which it follows that f̂(n) = o(1).

16. Prove that if the series ∑∞
n=0 an of complex numbers converges to s, then it is both Cesàro

and Abel summable to s.

17. Prove that if the series ∑∞
n=0 an is Cesàro summable to σ, then it is Abel summable to σ.

Show by counterexample that the converse need not hold.

18. Suppose the series ∑∞
n=0 an is Cesàro summable to l. Show that

lim
n→∞

an

n
= 0,

where sn = a1 + · · · + an.

19. Define u(r, θ) = ∂Pr
∂θ (θ), where Pr(θ) is the Poisson kernel on the open unit disk D = {reiθ :

0 ≤ r < 1, θ ∈ [−π, π)}. Prove that

∆u = 0 on D

and
lim
r→1

u(r, θ) = 0

for every θ ∈ [−π, π).

20. Let f be Riemann integrable on [−π, π] and define the Abel mean

Ar(f)(θ) = f ∗ Pr(θ), 0 ≤ r < 1.

If f has a jump discontinuity at θ, prove that

lim
r→1

Ar(f)(θ) = f(θ+) + f(θ−)
2 .

Provide justification for why
lim
r→1

Ar(f)(θ) ̸= f(θ)
2
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when f is continuous at θ.

21. Let f be Riemann integrable on [−π, π] and σn(f)(θ) = f ∗ Fn(θ), where Fn is Fejér’s
kernel. If f has a jump discontinuity at θ, prove that

lim
n→∞

σn(f)(θ) = f(θ+) + f(θ−)
2 .

22. Suppose f is Riemann integrable on [−π, π] such that

f̂(n) = O

( 1
|n|

)
for all n ∈ Z.

Prove the following assertions:

(a) If f is continuous at θ, then

SN (f)(θ) = DN ∗ f(θ) → f(θ) as N → ∞.

(b) If f has a jump discontinuity at θ, then

SN (f)(θ) → f(θ+) + f(θ−)
2 as N → ∞.

(c) If f is continuous on [−π, π], then the convergence

SN (f) → f

is uniform.

23. Assume f is a Lebesgue measurable function on S1 satisfying∫ 2π

0

|f(t)|
t

dt < ∞.

Show that
lim

n→∞
Sn(f ; 0) = 0.

24. For f ∈ L2(S1), prove that
1
n

n−1∑
k=0

f

(
x+ k

n

)
→ f̂(0)

in the L2-metric as n → ∞.
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25. Does there exist a function f ∈ L1(S1) such that

∞∑
n=−∞

|f̂(n)|2 = ∞?

26. Suppose f ∈ L1(S1) vanishes on a neighborhood of x = 0. Prove that

SN (f) → 0

uniformly near x = 0.

27. Let f be a function on [−π, π] satisfying the Lipschitz condition

|f(θ) − f(φ)| ≤ M |θ − φ|,

for some M > 0 and all θ, φ ∈ [−π, π].

(a) For
u(r, θ) = Pr ∗ f(θ),

show that ∂u
∂θ exists for all 0 ≤ r < 1 and that∣∣∣∣∂u∂θ

∣∣∣∣ ≤ M.

(b) Demonstrate that
∞∑

n=−∞
|f̂(n)| ≤ |f̂(0)| + 2M

√√√√ ∞∑
n=1

1
n2 .

28. If f is continuously differentiable on S1, show that

∞∑
n=−∞

(1 + |n|2)|f̂(n)|2 < ∞.

29. Let {Gn}∞
n=1 be a family of good kernels on S1. Prove that

lim
n→∞

Ĝn(k) = 1.

30. Let f and g be Riemann integrable on [−π, π]. Define g̃(x) = g(−x).

(a) Show that
1

2π

∫ π

−π
|g(t)|2 dt = (g ∗ g̃)(0).
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(b) Show that
1

2π

∫ π

−π
|(f ∗ g)(x)|2 dx = 1

2π

∫ π

−π
|(f ∗ g̃)(x)|2 dx.

31. Let f ∈ L1(S1) satisfy f̂(|n|) = −f̂(−|n|) ≥ 0 for all n ∈ Z. Show that

∑
n>0

f̂(n)
n

< ∞.

32. If {Kn}∞
n=1 and {Jn}∞

n=1 are families of good kernels on S1, show that {Kn ∗ Jn}∞
n=1 is also

a family of good kernels.

33. Suppose f is absolutely continuous on S1 with f ′ ∈ L2(S1). Prove that

∞∑
n=−∞

|f̂(n)| ≤ ∥f∥1 + 2

√√√√ ∞∑
n=1

1
n2 ∥f ′∥2.

34. Show that there exists a function f ∈ L1(S1) for which the partial sums Sn(f) of its Fourier
series fail to converge to f in the L1-norm.

35. Let f ∈ L1(S1) and Sn(f) denote the n-th partial sum of the Fourier series of f. Show that∥∥∥∥Sn(f)
n

∥∥∥∥
1

→ 0 as n → ∞.

36. If f is Riemann integrable on [−π, π] and differentiable at t0 ∈ [−π, π], prove that

Sn(f ; t0) → f(t0) as n → ∞.

37. Suppose f ∈ C1(S1) satisfies
(f ∗ (1 + f))(t) = f ′(t)

for all t ∈ S1. Prove that f is a trigonometric polynomialnomialnomial.
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Chapter 2

The Fourier Transform

On Rn, translations form a non-compact abelian group, so the Fourier expansion of a non-
periodic function is no longer discrete. The Fourier transform replaces the Fourier coefficients
{f̂(n)}n∈Z by a continuous frequency variable ξ ∈ Rn. It linearizes convolution, converts
differentiation into multiplication, and provides the natural L2 isometry (Plancherel).

Learning objectives.

• Understand characters of Rn and how they motivate the definition of the Fourier transform.

• Prove the basic identities: translation/modulation, scaling, convolution, and differentiation
rules.

• Establish inversion and the Plancherel theorem, and see how Lp estimates (Hausdorff–Young,
Young) fit into the picture.

Fourier analysis may be viewed as the systematic study of functions through the exploitation
of their underlying symmetries. In the case of Fourier series, we observed that when a function
is periodic on R, it suffices to restrict attention to a single fundamental period. Each period
contributes precisely one Fourier coefficient, so that the entire function is encoded by a countable
collection of complex numbers. By contrast, when f is not periodic, a different framework is
required, though the central idea remains the same: to understand how a function on Rn (or on
Tn) transforms under the action of translations.

Suppose the function f transforms under the translation by a multiplication of absolute value
1. That is,

f(x+ y) = φ(x)f(y), where |φ(x)| = 1.

Then
f(x) = φ(x)f(0).
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That is, f is completely determined by φ. Moreover,

φ(x)φ(y)f(0) = φ(x)f(y) = f(x+ y) = φ(x+ y)f(0)

=⇒ φ(x+ y) = φ(x)φ(y), f ̸≡ 0.

Hence, to determine all such f that transform as above, it is enough to find out those φ such that

φ(x+ y) = φ(x)φ(y).

Theorem 2.0.1 (Characters of Rn). Let φ : Rn → C be measurable and satisfy

φ(x+ y) = φ(x)φ(y), |φ(x)| = 1, x, y ∈ Rn.

Then there exists ξ ∈ Rn such that

φ(x) = e2πi x·ξ, x ∈ Rn.

Proof. We first treat the case n = 1. Since |φ| = 1, we have φ ∈ L1
loc(R). Choose a ∈ R such

that
∫ a

0
φ(t) dt ̸= 0 and set A−1 :=

∫ a
0 φ(t) dt. Using φ(x+ t) = φ(x)φ(t) we obtain

φ(x) = A

∫ a

0
φ(x+ t) dt = A

∫ x+a

x
φ(t) dt.

In particular, φ is continuous (as a translate of an absolutely continuous primitive of φ), hence
differentiable. Differentiating the identity above and using again the functional equation gives

φ′(x) = A
(
φ(x+ a) − φ(x)

)
= A

(
φ(a) − 1

)
φ(x) =: B φ(x).

Solving the ODE yields φ(x) = eBx, and the condition |φ(x)| = 1 forces B = 2πi ξ for some
ξ ∈ R.

For general n, let e1, . . . , en be the standard basis and define φj(t) := φ(tej). Each φj satisfies
the one-dimensional hypotheses, hence φj(t) = e2πi ξjt for some ξj ∈ R. Using the functional
equation repeatedly,

φ(x) = φ

 n∑
j=1

xjej

 =
n∏

j=1
φ(xjej) =

n∏
j=1

e2πi ξjxj = e2πi x·ξ,

where ξ = (ξ1, . . . , ξn).

Corollary 2.0.2. If φ : T → C measurable and φ(x + y) = φ(x)φ(y) with |φ(x)| = 1, then
φ(x) = e2πinx for some n ∈ Z.
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Proof. Notice that φ is periodic with period 1 if and only if φ(0) = φ(1), if and only if e2πiξ = 1
if and only if ξ ∈ Z. That is, φ(x) = e2πinx, n ∈ Z.

Exercise 2.0.3. If φ : Tn → C measurable and |φ(x)| = 1,

φ(s+ t) = φ(s)φ(t),

then show that
φ(t) = e2πit.α, α ∈ Zn

Thus, we conclude that those functions which transform as above, satisfying

f(x+ y) = e2πix·ξf(y), for some ξ ∈ Rn (or Zn).

For the time being, we keep in mind the model eigenfunctions x 7→ e2πix·ξ, which satisfy
f(x+ y) = e2πix·ξf(y).

2.1 Definition of the Fourier transform

Definition 2.1.1. Let f ∈ L1(R) ( or L1(Rn)), then we define its Fourier transform by

f̂(ξ) =
∫
R
e−ixξf(x) dx.

Lemma 2.1.2. Let f ∈ L1(Rn). Then

(i) (τyf)∧(ξ) = e−iξ·yf̂(ξ), where τyf(x) = f(x− y).

(ii) If g(x) = eiα·xf(x), then ĝ(ξ) = f̂(ξ − α) = (ταf̂)(ξ).

(iii) If g(x) = f(−x), then ĝ(ξ) = f̂(ξ).

(iv) If g(x) = f(x
λ), λ > 0 then ĝ(ξ) = λf̂(λξ)

(v) |f̂(ξ)| ≤ ∥f∥1 (uniformly bounded).

(vi) If f, g ∈ L1(Rn), then (f ∗ g)∧(ξ) = f̂(ξ)ĝ(ξ).
(Hint: use Fubini’s theorem and change of variable.)

Lemma 2.1.3. Let f ∈ L1(Rn), then f̂ is uniformly continuous on Rn.

Proof. Let xn, yn ∈ Rn, be such that |xn − yn| → 0. Then

|f̂(xn) − f̂(yn)| =
∣∣∣∣∫ f(ξ)(e−ixn·ξ − e−iyn·ξ)dξ

∣∣∣∣ ≤
∫

|f(ξ)||e−i(xn−yn)·ξ − 1|dξ
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For each fixed ξ, e−ix·ξ is uniformly continuous. It follows by Dominated Convergence Theorem
(DCT) that

|f̂(xn) − f̂(yn)| → 0 as n → ∞.

Hence f̂ is uniformly continuous on Rn.

Lemma 2.1.4. Let f ∈ L1(R) and f is uniformly continuous. Then

lim
|x|→∞

f(x) = 0.

Proof. Suppose lim|x|→∞ f(x) ̸= 0, then for some ϵ0 > 0, there exists x0 ∈ R such that |f(x0)| >
ϵ0, |x0| > δ for all δ > 0. By continuity at x0, there exists δ0 > 0 such that if |x−x0| < δ0 implies
|f(x) − f(x0)| < ϵ0

2 implies |f(x)| > ϵ0/2. By uniform continuity, |f(x)| > ϵ0/2 on each interval
of length 2δ0. Since y ∈ (x0 − 2δ0, x0 − δ0), |f(y)| > ϵ0/2 =⇒ |x0 − y| < δ0 =⇒ |f(y)| > ϵ0

2 .

Hence ∫
|y|>δ

|f(y)|dy =
∑∫ x0+(n+1)δ0

x0−nδ0
|f(y)|dy ≥

∑
n∈Z

δ · ϵ0/2 = ∞

We use this fact to prove the following result.

Theorem 2.1.5. Let f ∈ L1(R) and xf(x) ∈ L1(R), then f̂ is differentiable and

∂

∂ξ
f̂(ξ) = −(̂ixf)(ξ)

Proof.
f̂(ξ + h) − f̂(ξ)

h
=
∫
f(x)e−ixξ (e−ixh − 1)

h
dx

Notice that ∣∣∣∣∣e−ixh − 1
h

∣∣∣∣∣ ≤ |x|, e−ixh − 1
h

→ −ix as h → 0.

Hence, the integrand on the RHS is bounded by |xf(x)| ∈ L1(R). By DCT, it follows that

∂

∂ξ
f̂(ξ) =

∫
f(x)e−ixξ(−ix)dx = ̂(−ixf)(ξ).

Theorem 2.1.6. Let f ∈ L1(R), and F (x) =
∫ x

−∞ f(y)dy. If F ∈ L1(R) then F̂ (ξ) = 1
iξ f̂(ξ),

ξ ̸= 0.
Equivalently, if f, f ′ ∈ L1(R) then f̂ ′(ξ) = iξf̂(ξ) f ′ is the derivative of f .
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Proof. By Fundamental theorem of calculus (FTC), it follows that F ′ = f a.e. on R. Since
F ∈ L1(R), we have

∫ ∞

−∞
F (x)e−ix·ydx = F (x)e−ixy

−iy

∣∣∣∣∣
∞

−∞
−
∫ ∞

−∞
f(x)e−ixy dx

−iy

Since F (x)e−ixy ∈ L1(R) and uniformly continuous, by the previous Lemma 2.1.4,

F̂ (y) = 1
iy
f̂(y), y ̸= 0

or
f̂ ′(y) = iyf ′(y), if f, f ′ ∈ L1(R).

Lemma 2.1.7. Let C∞
c (R) be the space of all infinitely differentiable functions on R having

compact support. Then
C∞

c (R) = L1(R).

Proof. Let f ∈ L1(R). Since Cc(R) = L1(R), for ϵ > 0, there exists g ∈ Cc(R) such that
∥g − f∥1 < ϵ. Now, consider φ ∈ C∞

c (R) such that
∫
R φ = 1. For t > 0, let φt(x) = t−1φ(x/t).

Then
∫
φt = 1. Hence, g ∗ φt ∈ C∞

c (R) (exercise). Now

g ∗ φt(x) − g(x) =
∫

(g(x− y) − g(x))φt(y)dy =
∫

(g(x− tz) − g(x))φ(z)dz (2.1.1)

⇒ ∥g ∗ φt − g∥1 ≤
∫

∥τtzg − g∥|φ(z)|dz

For small t, ∥τtzg − g∥ < ϵ. By DCT it follows that ∥g ∗ φt − g∥1 < ϵ for all |t| < δ. So
∥g ∗ φt − f∥1 < 2ϵ for all |t| < δ.

Exercise 2.1.8. For 1 ≤ p < ∞, show that

C∞
c (R) = Lp(R), C∞

c (R) = C0(R).

(Hint: use Minkowski integral inequality in (2.1.1).)

2.2 Riemann-Lebesgue Lemma

Theorem 2.2.1. If f ∈ L1(R), then lim|ξ|→∞ f̂(ξ) = 0.

Proof. Since f ∈ L1(R), for ϵ > 0, there exists g ∈ C∞
c (R) such that ∥g − f∥1 < ϵ. Given g is

differentiable, ĝ′(x) = (ix)ĝ(x), by Theorem 2.1.6. So |xĝ(x)| ≤ ∥g′∥1 < ∞. Hence |ĝ(ξ)| → 0 as
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|ξ| → ∞.
Now

|f̂(ξ) − ĝ(ξ)| ≤ ∥f − g∥1 < ϵ.

Letting |x| → ∞, then |f̂(x)| ≤ ϵ, for all ϵ > 0. Which implies

lim
|x|→∞

f̂(x) = 0.

Notice that (L1(R))∧ ⊊ C0(R). In fact, the inclusion is injective but not surjective. That
is, every continuous function vanishing at ∞ need not be the Fourier transform (FT) of an L1

function. This is based on the fact that F.T. of an L1 function can’t too far from being an L1

function.
Suppose g ∈ C0(R) is an odd function such that g = f̂ , for some f ∈ L1(R). Then∣∣∣∣∫ b

1
f̂(x)

x dx

∣∣∣∣ ≤ A < ∞, where A is independent of b. This follows by the fact that
∫ β

α | sin t
t |dt ≤

B < ∞, where B is free of choice of α, β ∈ R. Since f̂ is odd (as g is odd):

f̂(x) = −i
∫
R
f(t) sin tx dt

Consider ∣∣∣∣∣
∫ n

−n
f(t)

(∫ b

1

sin tx
x

dx

)
dt

∣∣∣∣∣ =
∣∣∣∣∣
∫ n

−n
f(t)

(∫ b

1

sin tx
x

dx

)
dt

∣∣∣∣∣
≤
∫ n

−n
|f(t)|B ≤ ∥f∥1B < ∞.

Notice that, by Fubini’s theorem we can interchange the integrals in above. Hence∣∣∣∣∣
∫ b

1

f̂(x)
x

dx

∣∣∣∣∣ ≤ ∥f∥1B < ∞

But for

g(x) =


1

log x x > 0
1

log |x| x < 0

0 x = 0

Then g ∈ C(R) and g is odd. However,∣∣∣∣∣
∫ b

1

1
x log xdx

∣∣∣∣∣ = ∞.
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Example 2.2.2. Let f(x) = e−πx2 , the Gaussian. Then

F (ξ) = f̂(ξ) =
∫
e−2πixξf(x)dx = f(ξ)

We know that ∫
e−πx2

dx = 1 (Exercise)

Now

F ′(ξ) =
∫

(−2πiξ) f(x)e−2πixξdξ

= (−2πixf)∧(ξ) ( since f, xf ∈ L1(R))

= i(f ′)∧(ξ)( since f ′(x) = −2πxe−πx2)

= i(2πiξ)f̂(ξ)

= −2πξF (ξ)

That is
F ′(ξ) = −2πξF (ξ)

=⇒ d

dξ

(
F (ξ)eπξ2) = 0

=⇒ F (ξ)eπξ2 = const.

Since F (0) = 1, hence F (ξ) = e−πξ2 .

Remark 2.2.3. For δ > 0, let fδ(x) = δ1/2e−πx2/δ. Then f̂δ(x) = e−πδx2 → 0 as δ → 0, however,
fδ(x) → 1 as δ → 0. Hence, we cannot see both fδ & f̂δ exist together. That is, fδ and f̂δ cannot
be localized together. (This is known as the Heisenberg uncertainty principle; we elaborate later.)

Example 2.2.4. If f(x) = e−πx2 then show that |f(x)| ≤ M
1+x2

Lemma 2.2.5. Let f, h ∈ L1(R) and

f(x) =
∫
R
H(ξ)eixξdξ

for some H ∈ L1(R), then
(h ∗ f)(x) =

∫
H(ξ)f̂(ξ)eixξdξ
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Proof.

h ∗ f(x) =
∫
h(x− y)f(y)dy

=
∫ ∫

H(ξ)e−i(x−y)ξf(y)dydξ

=
∫
H(ξ)

(∫
e−iyξf(y)dy

)
eixξdξ

=
∫
H(ξ)f̂(ξ)eixξdξ

2.3 Good Kernels on R

Next, we shall consider seq. of good kernel on R. Some more of it is known as summability kernel
(or approximation of identity).

Definition 2.3.1. A seq. of functions {Kλ} ⊂ L1(R) is said to be “good kernels” if

(i)
∫
Kλ(x)dx = 1

(ii)
∫

|Kλ(x)|dx ≤ M as λ → ∞.

(iii)
∫

|x|>δ |Kλ(x)|dx → 0 as λ → ∞, for all δ > 0.

We can easily construct a sequence of good kernels in the following way. Let f ∈ L1(R) be
such that

∫
R f(x)dx = 1. Write Kλ(x) = λf(λx), λ > 0. Then

(i)
∫
Kλ(x)dx =

∫
f(y)dy = 1 (put y = λx)

(ii) ∥Kλ∥1 = ∥f∥1 < ∞ for all λ > 0

(iii)
∫

|x|>δ |Kλ(x)|dx =
∫

|y|>λδ |f(y)|dy =
∫
R(f − χ{|y|≤δλ}f)dy,

Since f(x)−χ{|y|≤δλ}(x) → 0 as λ → ∞ and |f−χ{|y|≤δλ}f | ≤ 2|f | ∈ L1 by DCT
∫

|λ|>δ |Kλ(x)| →
0 as λ → ∞. Hence, {Kλ}λ>0 is a family of good kernels.

Theorem 2.3.2. Let f ∈ L1(R) (or f ∈ Lp(R), 1 ≤ p < ∞). Then

lim
λ→∞

∥f −Kλ ∗ f∥p = 0.

If f ∈ L∞(R) and f is continuous at x, then

lim
λ→∞

(f ∗Kλ)(x) = f(x).
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Proof.
|Kλ ∗ f(x) − f(x)| ≤

∫
R

|Kλ(y)(f(x− y) − f(x))|dy (1)

By Minkowski’s integral inequality (exercise), (if p > 1)

∥Kλ ∗ f − f∥p ≤
∫
R

|Kλ(y)|∥τyf − f∥p dy

For small |y| < δ,
∥τyf − f∥p < ϵ

Hence,

∥Kλ ∗ f − f∥p ≤
∫

|y|<δ
|Kλ(y)|ϵdy +

∫
|y|≥δ

|Kλ(y)|∥τyf − f∥p dy

≤ ϵM +
∫

|y|>δ
|Kλ(y)|2∥f∥pdy

≤ ϵM + 2∥f∥pϵ, for δ > 0

If f ∈ L∞(R), continuous at x, then from (1)

|Kλ ∗ f(x) − f(x)| ≤
∫
R

|Kλ(y)||f(x− y) − f(x)|dy

For small |y| < δ, |f(x− y) − f(x)| < ϵ. Hence,

|Kλ ∗ f(x) − f(x)| < ϵM + 2∥f∥∞ϵ, for δ > 0.

Therefore,
Kλ ∗ f(x) → f(x) as λ → ∞.

2.4 The Fejer Kernel on R

The Fejer Kernel on R is given by

Kλ(x) = λK(λx), where

K(x) = 1
2π

(sin(x/2)
x/2

)2
=
∫ 1

−1
(1 − |ξ|)eixξdξ.

(It can be seen by evaluating the integral)

Kλ(x) = 1
2π

∫ λ

−λ

(
1 − |ξ|

λ

)
eixξdξ
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= 1
2π

∫
R

(
1 − |ξ|

λ

)
χ[−λ,λ](ξ)eixξdξ

= 1
2π

∫
R
Gλ(ξ)eixξdξ

where
Gλ(ξ) =

(
1 − |ξ|

λ

)
χ[−λ,λ](ξ)

is compactly supported.
To show Kλ is a good kernel, we need to show that∫

R
K(x)dx = 1

For this, we use the fact that the Fejer kernel for the circle is

Fn(x) = 1
n+ 1

(sin((n+ 1)x/2)
sin(x/2)

)2

and
lim

x→∞
1

2π

∫ δ

−δ
Fn(x)dx = 1

We know that
lim
x→0

(sin(x/2)
x/2

)2
= 1

For ε = 1 − sin(δ)
δ , for some small ε > 0, there exists δ > 0,∣∣∣∣∣

(sin(x/2)
x/2

)2
− 1

∣∣∣∣∣ <
∣∣∣∣∣1 −

(sin δ
δ

)2
∣∣∣∣∣

That is, (sin(δ)
δ

)2
<

(sin(x/2)
x/2

)2

for |x| < δ (small). Hence,

1
2π(n+ 1)

(sin δ
δ

)2 (sin((n+ 1)x/2)
x/2

)2
≤ 1

2π(n+ 1)

(sin(x/2)
x/2

sin(n+ 1)x/2
sin x/2

)2

≤ 1
2π(n+ 1)

(sin(n+ 1)x/2
x/2

)2
.

Let Kn(x) = 1
2π(n+1)

(
sin(n+1)x/2

x/2

)2
. Then

1
2π

(sin δ
δ

)2 ∫ δ

−δ
Fn(x) dx ≤

∫ δ

−δ
Kn(x) dx ≤ 1

2π

∫ δ

−δ
Fn(x) dx.
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Since,
lim

n→∞

∫ δ

−δ
Kn(x) dx =

∫ ∞

−∞
K(x) dx,

it follows that (sin δ
δ

)2
.1 ≤ ∥K∥1 ≤ 1, ∀ δ > 0 (small)

=⇒ ∥K∥1 = 1.

Hence, {Kλ}λ>0 is a family of good kernels.

2.5 Fourier uniqueness theorem

Let f ∈ L1(R). Then, by the fact that

f ∗Kλ(x) = 1
2π

∫
R

(
1 − |ξ|

λ

)
χ[−λ,λ](ξ)f̂(ξ)eixξdξ

it follows that
f = lim

λ→∞

1
2π

∫
R

(
1 − |ξ|

λ

)
χ[−λ,λ](ξ)f̂(ξ)eixξdξ (∗)

in the L1-norm. Thus, if f̂(ξ) = 0 for all ξ ∈ R, then by (∗)

∥f∥1 = 0 =⇒ f = 0 a.e.

2.6 Fourier Inversion

Theorem 2.6.1. Let f, f̂ ∈ L1(R). Then

f(x) = 1
2π

∫
R
f̂(ξ)eixξdξ

holds for almost all x ∈ R.

Proof. We know that

f(x) = lim
λ→∞

∫
R

(
1 − |ξ|

λ

)
f̂(ξ)eixξdξ (2.6.1)

holds in L1-norm. Hence, it follows that there is a subsequence such that (2.6.1) holds. Therefore,
w.l.o.g., we can assume (2.6.1) holds a.e. Since

|χ[−λ,λ]

(
1 − |ξ|

λ

)
f̂(ξ)| ≤ 2|f̂(ξ)| ∈ L1(R)
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and χ[−λ,λ](ξ)(1 − |ξ|
λ )f̂(ξ) → f̂(ξ) as λ → ∞. By Dominated Convergence Theorem, we get

f(x) = lim
λ→∞

1
2π

∫
R
f̂(ξ)eixξdξ a.e.

That is, if f, f̂ ∈ L1(R), then
f = (f̂)∨ a.e.

Notice that Fejer Kernel Kλ ∈ L1(R) (as
∫
Kλ(x)dx =

∫
K(x)dx = 1) and

Kλ(x) =
∫
R
Gλ(ξ)eixξdξ = G∨

λ(x) (1)

where Gλ(ξ) = χ[−λ,λ](ξ)
(
1 − |ξ|

λ

)
∈ L1(R). In fact, Kλ ∈ L1(R). Therefore, by inversion

formula,
Gλ = (G∨

λ)∧ = K̂λ(x) (from (1))

That is,
K̂λ(x) = χ[−λ,λ](x)

(
1 − |x|

λ

)
.

2.7 Plancherel Theorem

We know that if f ∈ L1(R), then f̂ = F(f) is a uniformly continuous function on R. However,
for f ∈ L2(R), f̂ exists uniquely as a function in L2(R) and satisfies the isometry

∥f̂∥2 = ∥f∥2

This can be seen using the fact that F is a continuous linear function on dense set L1 ∩L2 to
L2.

Further, using Riesz-Thorin interpolation theorem, for f ∈ Lp(R), 1 ≤ p ≤ 2, f̂ exists as
function in Lq(R), where 1

p + 1
q = 1 (This we see later). Finally, for p > 2, we shall see that f̂

exists as a distribution. That is, f̂ defined by the relation

⟨f̂ , φ⟩ =
∫
f(x)φ(x)dx, φ ∈ C∞

c (R).

Theorem 2.7.1. There exists a unique operator F from L2(R) onto L2(R̂) having the following
properties:

Ff = f̂ for f ∈ L1 ∩ L2(R),
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∥Ff∥2 = ∥f∥2

Proof. For f ∈ L1 ∩ L2(R), we define

f̂(ξ) =
∫
e−2πixξf(x)dx

Then
f ∗Kλ(x) =

∫
R
Gλ(ξ)f̂(ξ)e2πixξdξ

where Gλ(ξ) =
(
1 − |ξ|

λ

)
χ[−λ,λ](ξ).

Let f̃(x) = f(−x), and g = f ∗ f̃ . Then g ∈ L1(R) and

g̃(x) = f̂(x)f̂(x) = |f̂(x)|2.

Further,
g(x) =

∫
f(x− y)f(−y)dy =

∫
f(x+ y)f(y)dy = ⟨f−x, f⟩

As x 7→ f−x is continuous from R → L2(R) and < . > is continuous, it follows that g continuous
and |g(x)| ≤ ∥fx∥2∥f∥2 that is |g(x)| ≤ ∥f∥2

2.
Notice that g ∈ L∞ and g is continuous.

g ∗Kλ(0) =
∫
Gλ(ξ)ĝ(ξ)dξ → g(0) as λ → ∞.

That is,
lim

λ→∞

∫
Gλ(ξ)ĝ(ξ)dξ = ∥f̂∥2

2 = g(0)

Then,
lim

λ→∞

∫
Gλ(ξ)|f̂(ξ)|2dξ = ∥f̂∥2

2

Since Gλ(ξ) ↑ 1, by monotone convergence theorem, it follows that∫
|f̂(ξ)|2dξ = ∥f∥2

2

that is ||f̂ ||2 = ||f ||2 for f ∈ L1 ∩ L2.
Let Y = {f̂ | f ∈ L1 ∩ L2}, then

F : L1 ∩ L2(R) onto−−→ Y

isometry. We claim that Y = L2(R). By Hahn-Banach theorem, it is enough to show that
Y ⊥ = {0}. If y ∈ Y ⊥ ⊂ L2, then the fact that Gλex where ex(ξ) = e2πixξ belongs to L1 ∩ L2,

(Gλex)∧ = (Gλe−x)∨ = τxG
∨
λ = τxKλ ∈ Y
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for each x ∈ R. This holds, by applying Fourier inversion to Gλ = K̂λ(x) as Gλ ∈ L1(R). Hence,
we get

⟨τxKλ, h⟩ = 0 =⇒ Kλ ∗ h(x) = 0

But ||Kλ ∗ h− h||2 → 0 as λ → ∞

=⇒ ||h||2 = 0 =⇒ Y ⊥ = {0}

Hence, F can be extended on L2 onto L2 with ||Ff ||2 = ||f ||2. For this, F : L1 ∩ L2 ⊂ L2 →
Y ⊂ L2. Let g ∈ L2(R), then there exists F (gn) ∈ Y with gn ∈ L1 ∩ L2 such that Fgn

L2
−→ g

and
||F (gn)∥2 = ||gn||2

It implies that gn is Cauchy sequence in L1 ∩ L2(R). Hence, there exists f ∈ L2 such that
gn

L2
−→ f and it implies that Fgn

L2
−→ Ff . Then

∥F (f)∥2 = ∥g∥2.

Remark 2.7.2. Let f ∈ L2(R), then χ[−n,n]f ∈ L2(R) ∩ L1(R). If we write

φ̂n(x) =
∫ n

−n
e−2πixξf(ξ)dξ

then
||φ̂n − f̂ ||2 = ||(χ[−n,n]f)∧ − f̂ ||2 = ||χ[−n,n]f − f ||2 → 0

Thus,
f̂(ξ) = lim

n→∞

∫ n

−n
e−2πixξf(x)dx

exists in the L2-norm.

Example 2.7.3. Let H(x) = e−|x|. Show that

Ĥ(x) =
∫
R
H(t)eitxdt = 2

1 + x2

Note that if f ∈ L2(R), then ||f̂ ||2 = ||f ||2. By polarization identity∫
fg =

∫
f̂ ĝ

where f, g ∈ L2(R).

45



MA746: Fourier Analysis 2. The Fourier Transform

2.8 More on Convolution

Theorem 2.8.1. Let f ∈ Lp(R), g ∈ Lq(R) and 1
p + 1

q = 1. Then f ∗g is an uniformly continuous
and bounded function on R with ∥f ∗ g∥∞ ≤ ∥f∥p∥g∥q. In particular, if 1 < p < ∞, 1

p + 1
q = 1,

then f ∗ g ∈ C0(R).

Proof. By Hölder’s inequality, we get

|f ∗ g(x)| ≤
∫

|f(x− y)||g(y)| dy ≤ ∥τxf∥p∥g∥q = ∥f∥p∥g∥q.

Therefore, f ∗ g is bounded. Further,

|(τx(f ∗ g))(y) − (f ∗ g)(y)| ≤
∫

|τxf(y − ξ) − f(y − ξ)||g(ξ)|dξ ≤ ∥τxf − f∥p∥g∥q.

Hence,
∥τx(f ∗ g) − (f ∗ g)∥∞ ≤ ∥τxf − f∥p∥g∥q.

Since x 7→ τxf is uniformly continuous on R → L1(R), it follows that f ∗g is uniformly continuous
on R.

Let 1 < p < ∞, then 1 < q < ∞ since 1
p + 1

q = 1.
For given ϵ > 0, there exists fn, gn in C∞

c (R) such that

∥fn − f∥p < ϵ, ∥gn − g∥p < ϵ.

(since Cc(R) = Lp(R) if 1 ≤ p < ∞). Hence,

∥fn ∗ gn − f ∗ g∥∞ ≤ ∥fn − f∥p∥g∥q + ∥f∥p∥gn − g∥q.

Since gn → g in Lq, there exists Mq > 0 such that ∥gn∥q ≤ Mq.
Therefore,

∥fn ∗ gn − f ∗ g∥∞ ≤ ϵMq + ∥f∥pϵ

Thus, fn ∗ gn → f ∗ g uniformly, but C0(R) is a complete space, hence f ∗ g ∈ C0(R).

2.9 Riesz-Thorin Interpolation Theorem

Theorem 2.9.1. Let (X,S, µ) and (Y, T, ν) be two σ-finite measure spaces. Let pi, qi ∈ [1,∞], i =
0, 1 and define

1
pt

= 1 − t

p0
+ t

p1
,

1
qt

= 1 − t

q0
+ t

q1

where 0 ≤ t ≤ 1. If T is a linear map from

Lp0(µ) + Lp1(µ) → Lq0(ν) + Lq1(ν)
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such that
∥Tf∥qi ≤ Mi∥f∥pi , i = 0, 1,

then
∥Tf∥qt ≤ M1−t

0 M t
1∥f∥pt

(For a proof, see Real Analysis by G.B. Folland.)

Using R-T theorem we see that F.T. of a function f ∈ Lp(R), 1 ≤ p ≤ 2, exists as a function
in Lq, 1

p + 1
q = 1.

2.10 Hausdorff-Young Inequality

Theorem 2.10.1. Let 1 ≤ p ≤ 2. Then for f ∈ Lp(R), f̂ ∈ Lq(R), with ∥f̂∥q ≤ ∥f∥p, where
1
p + 1

q = 1.
Note that if 1 ≤ p < 2, then q ∈ [2,∞].
Similarly, if f ∈ Lp(S1), 1 ≤ p ≤ 2, then f̂ ∈ lq(Z), with 1

p + 1
q = 1 and ∥f̂∥q ≤ ∥f∥p.

Proof. We know that F : L1(R) → L∞(R) satisfies

∥F(f)∥∞ ≤ ∥f∥1

and F : L2(R) → L2(R) with ∥F(f)∥2 = ∥f∥2.
Let

1
pt

= 1 − t

1 + t

2 ,
1
qt

= 1 − t

∞
+ t

2
Note that

1
pt

+ 1
qt

= 1, 1
p

+ 1
q

= 1.

so we can choose t ∈ (0, 1) such that 1
q = t

2 and 1
p = 1−t

1 + t
2 . Hence by R-T inequality, we get

∥F(f)∥q ≤ ∥f∥p

Thus, F.T. is a bounded linear function from Lp to Lq.

2.11 Young’s Inequality

Theorem 2.11.1. Let 1 ≤ p, q, r ≤ ∞ and 1
p + 1

q = 1 + 1
r . If f ∈ Lp and g ∈ Lq, then f ∗ g ∈ Lr

and
∥f ∗ g∥r ≤ ∥f∥p∥g∥q

Proof. Case I: if p = 1, q = r, then

∥f ∗ g∥r = ∥f ∗ g∥q ≤ ∥f∥1∥g∥q
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(by Minkowski integral inequality).
Case II: if p = q

q−1 , r = ∞, (1
p + 1

q = 1, 1 < p, q < ∞) then

∥f ∗ g∥r = ∥f ∗ g∥∞ ≤ ∥f∥p∥g∥q

(since f ∗ g ∈ C0(R)).
Case III: 1 ≤ q ≤ ∞, fix g ∈ Lq and consider Tg(f) = f ∗ g. Then

(i) Tg : L1 → Lq satisfies ∥Tg(f)∥q ≤ ∥f∥1∥g∥q,

(ii) Tg : Lq → L∞ satisfies ∥Tg(f)∥∞ ≤ ∥f∥q′∥g∥q, when 1
q + 1

q′ = 1.

For Riesz-Thorin interpolation theorem, let p0 = 1, q0 = q; p1 = q′, q1 = ∞ and M0 =
∥g∥1;M1 = ∥g∥q. Then

∥Tg(f)∥qt ≤ M1−t
0 M t

1∥f∥pt

where
1
pt

= 1 − t

p0
+ t

p1
= 1 − t+ t

q′ ,
1
qt

= 1 − t

q0
+ t

q1
= 1 − t

q

If we want qt = r, then 1
r = 1−t

q . Hence q
r = 1 − t, t = 1 − q

r . Thus 1
pt

= 1
p . So,

1
p

+ 1
q

= 1 + 1
r

and 1
q

+ 1
q′ = 1.

Hence,
∥Tgf∥r ≤ ∥f∥p∥g∥q.

Notice that, by the Hausdorff-Young inequality, if 1 ≤ p ≤ 2, then for f ∈ Lp(R), f̂ ∈ Lq(R)
where 1

p + 1
q = 1. Hence by continuity we can define

f̂(ξ) :L
2

= lim
n→∞

∫ n

−n
e−ixξf(x) dx.

However, if 1 < p < 2, we do not know how the f̂ looks like. For example, if f ∈ L1(R), then

lim
λ→∞

∥f ∗Kλ − f∥1 = 0

and
f(x) = lim

λ→∞

1
2π

∫
R
Gλ(ξ)f̂(ξ)eixξdξ (*)

holds in L1(R).
For 1 < p < 2, we can generalize (*). For this, we need to verify the following: If f ∈ L1(R)

and g ∈ Lp(R), 1 < p < 2, then f ∗ g ∈ Lp and (f ∗ g)∧ = f̂ ĝ. Since C∞
0 (R) is dense in Lp(R),
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for ϵ > 0, there exists gn ∈ C∞
0 (R) so that ∥g − gn∥Lp < ϵ.

Note that ĝn ∈ L1(R) (since second derivative of g satisfies ĝ2
n(x) = (ix)2ĝn(x)) and

F(gn ∗ f) = F(gn)F(f). (**)

As F : Lp → Lq, is a continuous linear map, from (**) it follows that

F(g ∗ f) = F(g)F(f).

Now, consider f = Kλ (Fejer kernel on R), then

(Kλ ∗ g)∧ = K̂λĝ = Gλĝ,

where
Gλ(ξ) = (1 − |ξ|/λ)χ[−λ,λ](ξ)

Since ĝ ∈ Lq(R), q > 2, it is easy to see that Gλĝ ∈ L2(R). By inversion formula,

Kλ ∗ g(x) = 1
2π

∫
Gλ(ξ)ĝ(ξ)eixξdξ,

and Kλ ∗ g ∈ L2(R). Since Kλ is a good kernel and Kλ ∗ g → g in Lp(R), we can write the
following result:

Theorem 2.11.2. Let 1 ≤ p ≤ 2 and g ∈ Lp(R). Then

g(x) = lim
λ→∞

1
2π

∫
R
Gλ(ξ)ĝ(ξ)eixξdξ

in Lp(R).

Corollary 2.11.3. {f ∈ Lp, 1 ≤ p ≤ 2 supp f̂ is compact }, is dense in Lp(R).

Notice that, if f, g ∈ L1(R), then F(f ∗ g) = F(f)F(g) where F is the Fourier transform.

Question 2.11.4. Does F is unique that satisfies F(f ∗ g) = F(f)F(g)?

Note that if we write
F(f) =

∫
f(x)e−it0xdx = f̂(t0),

then F is a continuous linear functional on L1(R). We then shall see that such any continuous
linear functional is only F.T.
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2.12 Riesz Theorem

Theorem 2.12.1. Let 1 ≤ p < ∞ and (X,S, µ) be a σ-finite measure space. Then for every
continuous linear functional T on Lp(µ), there exists a unique g ∈ Lq(X), where 1/p+ 1/q = 1,
such that

Tf =
∫
fg

Fourier Transform is unique. Now, suppose φ is a continuous linear functional on L1(R) with
∥φ∥ ≤ 1 and φ(f ∗ g) = φ(f)φ(g), for all f, g ∈ L1(R). Then by the Riesz theorem, there exists
β ∈ L∞(R) such that

φ(f) =
∫
f(x)β(x)dx.

Then
φ(f ∗ g) =

∫
(
∫
f(x− y)g(y)dy)β(x)dx =

∫
g(y)φ(fy)dy

where fy(x) = f(x− y). On the other hand,

φ(f ∗ g) = φ(f)φ(g) = φ(f)
(∫

g(y)β(y)dy
)

Hence ∫
(φ(fy) − φ(f)β(y))g(y)dy = 0, for all g ∈ L1(R). (*)

By uniqueness in the Riesz theorem, it follows that

φ(f)β(y) = φ(fy), a.e. y

Since y → fy is continuous on R to L1(R) and φ is continuous on L1(R) → C, it follows that
RHS of (*) is continuous. Hence, we can assume β(y) is continuous, except on a set of measure
zero.

By replacing y → x+ y, we get

φ(f)β(x+ y) = φ(fx+y) = φ((fx)y) = φ(fx)β(y) = φ(f)β(x)β(y).

Since φ is non-zero, we can find f ∈ L1(R) such that φ(f) ̸= 0. Hence

β(x+ y) = β(x)β(y)

By using Theorem 2.0.1, there exists t0 ∈ R such that β(x) = e−it0x. Hence

φ(f) =
∫
f(x)e−it0xdx = f̂(t0).
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Notice that for every φ (except φ = 0), there exists unique t ∈ R such that φ(f) = f̂(t),
because if s ̸= t, then there exists f ∈ L1(R) such that f̂(t) ̸= f̂(s).

2.13 Poisson Summation Formula

For f ∈ L1(R), write

φ(t) = 2π
∞∑

j=−∞
f(t+ 2πj).

Then φ is a 2π-periodic function on R and ∥φ∥L1(S1) ≤ ∥f∥L1(R). This can be seen by the fact
that ∫ 2π

0
|φ(t))|dt = 2π

∞∑
j=−∞

∫ 2π

0
|f(t+ 2πj)|dt

= 2π
∞∑

j=−∞

∫ 2π(j+1)

2πj
|f(s)|ds =

∫ ∞

−∞
|f(s)|ds.

Theorem 2.13.1. Let f ∈ L1(R). Then

∞∑
j=−∞

f(t+ 2πj) =
∞∑

j=−∞
f̂(j)eijt, ∀t ∈ R, (2.13.1)

where f̂(j) is the Fourier transform.

Proof. To prove this identity, it is enough to show the Fourier coefficients of LHS is f̂(j).

1
2π

∫ 2π

0

∞∑
j=−∞

f(t+ 2πj)e−intdt =
∞∑

j=−∞

∫ 2π

0
f(t+ 2πj)e−intdt

by Beppo-Levi theorem.
=
∫
R
f(t)e−intdt = f̂(n)

Hence, by uniqueness of the Fourier series, we get the required identity.

Example 2.13.2. Prove that ∑ 1
(n+ x)2 = π2

(sin πx)2

(Hint: Take g(x) = 1−|x| for |x| < 1, = 0 otherwise in the Poisson summation formula (2.13.1)).

2.14 Lp-Derivative of a Function on R

For h ∈ R and f a function on R, define

Dhf(x) = f(x+ h) − f(x)
h
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Definition 2.14.1. A function f ∈ Lp(R) is said to be differentiable in Lp sense if there exists
g ∈ Lp(R) such that

lim
h→0

∥Dhf − g∥p = 0.

Lemma 2.14.2. Let 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1. Suppose f ∈ Lp, has derivatives f ′ in Lp

sense , then (f ∗ g)′ exists in the ordinary sense when g ∈ Lq and

(f ∗ g)′ = f ′ ∗ g.

Proof. We know that f ∗ g is continuous and f ′ ∈ Lp, therefore f ′ ∗ g is also continuous. Thus

|Dh(f ∗ g)(x) − f ′ ∗ g(x)| = |(Dhf − f ′) ∗ g(x)| ≤ ∥Dhf − f ′∥p∥g∥q → 0 as |h| → 0

Hence
(f ∗ g)′ = f ′ ∗ g

Theorem 2.14.3. Let f ∈ Lp(R), 1 < p < ∞. Then f has derivative in Lp sense if and only if
f is absolutely continuous on each bounded interval [a, b] (except on a set of measure zero) and
its pointwise derivative f ′ ∈ Lp(R).

To prove this, we need a fact that AC[a, b] is a complete space under the norm:

∥f∥AC = |f(a)| +
∫ b

a
|f ′(t)|dt.

We know that f ∈ AC[a, b] if and only if f ′ exists a.e.,

f ′ ∈ L1[a, b] and f(x) = f(a) +
∫ x

a
f ′(t)dt

Hence, ∥f∥AC < ∞ and ∥f ′∥AC = 0 =⇒ f(a) = 0, f ′(t) = 0 a.e. =⇒ f(t) = f(a) = 0.
( f ′ = 0 a.e. =⇒ f is constant, a non-trivial result (referred to Rayden book). ) Hence,

(AC[a, b], ∥ · ∥AC) is a normed linear space.
If fn is a Cauchy sequence, then fn(a) and f ′

n are Cauchy sequences in C and L1([a, b]),
respectively. Let fn(a) → fa, f

′
n → g in L1. Write

f(x) = fa +
∫ x

a
g(t) dt

Then f is absolutely continuous and

∥fn − f∥AC ≤ |fn(a) − fa| +
∫ b

a
|g(t) − f ′

n(t)|dt
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Hence, fn → f ∈ AC[a, b].

Proof of Theorem 2.14.3. For simplicity, consider p = 1, q = ∞.
Suppose f has L1-derivative (or derivative in L1 sense). Then there exists g ∈ L1(R) such

that limh→0 ∥Dhf − g∥1 = 0. By the previous lemma, (f ∗Kλ)′ exists ordinarily and satisfies

(f ∗Kλ)′ = f ′ ∗Kλ

Note that for each fixed λ, the function f ∗ Kλ is smooth on R. Hence by MVT, f ∗ Kλ ∈
AC[a, b], ∀a, b ∈ R That is,

f ∗Kλ(x) = f ∗Kλ(x0) +
∫ x

x0
(f ∗Kλ)′(t) dt (1)

for some x0 ∈ [a, b]. Since f ∗Kλ
L1
−→ f , it follows that

f ∗Kλ(x) → f(x) a.e.

(as a subsequence of f ∗Kλ). Hence, we can choose x0 ∈ [a, b].
As (f ∗Kλ)′ = g ∗Kλ → g (in L1), we can take limit in (1) and hence

f(x) = f(x0) +
∫ x

x0
g(t) dt a.e., x ∈ R.

This implies f ′ = g a.e. on R, and f ′ = g ∈ L1(R).
Conversely, suppose f ∈ AC[a, b], for all a, b ∈ R and pointwise derivative f ′ exists and

belongs to L1(R). Then

f(x+ h) − f(x)
h

− f ′(x) = 1
h

∫ h

0
(f ′(x+ t) − f ′(x)) dt

(since f ∈ AC[a, b], etc.)
Since f ′ ∈ L1(R), by Minkowski integral inequality, it follows that

∥Dhf − f ′∥1 ≤ 1
|h|

∫ |h|

0
∥τtf

′ − f ′∥1 dt

< ∥τtf
′ − f ′∥1 < ϵ

whenever |h| < δ, as |t| < |h| < δ. Thus, f ′ is the L1-derivative of f .
If 1 < p, q < ∞, 1

p + 1
q = 1, then Lp(R) ⊂ L1

loc(R). Hence, all the above calculations make
sense, and same conclusion is followed by Minkowski integral inequality.
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2.15 C∞ form of Urysohn lemma

Lemma 2.15.1. Let K be a compact set that is contained in an open set O ⊂ R. Then there
exists f ∈ C∞

c (R) such that 0 ≤ f ≤ 1, f |K = 1 and suppf ⊂ O.

Proof. Let δ = d(K,Oc). Then δ > 0, and let

V = {x : d(x,K) < δ/3}.

Suppose φ ∈ C∞
c (R) such that

∫
φ = 1, φ(x) = 0 if |x| > δ/3. Write f = χV ∗ φ. Then f |K = 1,

0 ≤ f ≤ 1, and supp(f) ⊂ {x : d(x,K) < 2δ/3} ⊂ O, and f ∈ C∞
c (R). Note that φ can be

constructed by choosing

φ(x) =

exp
(
− 1

1−x2

)
|x| < 1

0 |x| ≥ 1
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2.16 Exercise

1. (a) Let f ∈ C∞
c (R) be nonzero and let P be a polynomial of degree n ≥ 1. Determine

whether the function P f̂ is bounded on R.

(b) Is the subspace
{f ∈ L2(R) : supp f̂ is compact}

dense in L2(R)?

2. Suppose f is continuously differentiable on [−R,R]. Prove that there exists a constant
C > 0 such that

|f̂(ξ)| ≤ C

|ξ|
, ξ ̸= 0.

3. Let f, g ∈ L2(R). Show that the convolution f ∗ g is a bounded continuous function on R,
and that

lim
|x|→∞

(f ∗ g)(x) = 0.

4. Let f ∈ L1(R) satisfy f(x) > 0 for all x ∈ R. Prove that there exists δ > 0 such that

|f̂(ξ)| < f̂(0), |ξ| > δ.

5. For n ∈ N, define
Fn(x) = χ[−1,1] ∗ χ[−n,n](x).

Verify that Fn ∈ Cc(R) with ∥Fn∥∞ = 2. Does the sequence {Fn(x)} converge uniformly
to 2 on R?

6. For 1 ≤ p < ∞, let f ∈ Lp(R) and set

F (x) =
∫ x+1

x
f(t) dt.

Show that F ∈ C0(R). Does this conclusion remain valid for f ∈ L∞(R)?

7. For f ∈ L1(R), prove the identity

2f̂(ξ) =
∫
R

[
f(x) − f

(
x− π

ξ

)]
e−iξx dx,

and deduce the Riemann–Lebesgue lemma.

8. Let f, g ∈ L1(R). Prove that∫
R
f(y)ĝ(y) dy =

∫
R
f̂(ξ)g(ξ) dξ.
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If f̂ ∈ L1(R), deduce the Fourier inversion formula for f .

9. For n ∈ N, define
f(x) = xn

√
2π
e− x2

2 .

Show that
f̂(ξ) = Pn(ξ)e− ξ2

2 ,

where Pn is a polynomial of degree n.

10. A continuous function f : R → C is of moderate decrease if there exists A > 0 such that

|f(x)| ≤ A

1 + x2 , x ∈ R.

Suppose f is of moderate decrease and satisfies∫
R
f(y)e−y2

e2xy dy = 0 ∀x ∈ R.

Prove that f ≡ 0.

11. Let f be of moderate decrease and define

f ∗Kλ(x) = 1
2π

∫ λ

−λ

(
1 − |ξ|

λ

)
f̂(ξ)eiξx dξ.

Show that f ∗Kλ → f uniformly as λ → ∞.

12. Let {kλ} ⊂ L1(R) be a family of good kernels. If f ∈ L∞(R) ∩C(R), prove that f ∗ kλ → f

uniformly on every compact subset of R.

13. For 1 ≤ p ≤ 2, prove that

{f ∈ Lp(R) : supp f̂ compact}

is dense in Lp(R).

14. Show that
X = {f̂ : f ∈ L1(R)}

is dense in C0(R).

15. Let f ∈ C2
c (R). Prove that there exists g ∈ L1(R) ∩ L∞(R) such that ĝ = f .

16. For f ∈ L2(R), define the translation operator τxf(y) = f(y − x). Show that

X = {τxf : x ∈ R}
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is dense in L2(R) if and only if f̂(ξ) ̸= 0 almost everywhere.

17. Let f ∈ L1(R) with compact support. Prove that f̂ is real-analytic on R. Does f̂ ∈ L1(R)?
What additional conclusion holds if f ∈ C2

c (R)?

18. Let f ∈ L1(R) with f ≥ 0. Show that

∥f̂∥∞ = f̂(0) = ∥f∥1.

19. Suppose f ∈ L1(R) is continuous at 0 and f̂(ξ) ≥ 0 for all ξ. Prove that f̂ ∈ L1(R) and

f(0) =
∫
R
f̂(ξ) dξ.

20. For n ∈ N, let gn = χ[−1,1] ∗ χ[−n,n]. Show that gn is the Fourier transform of

fn(x) = sin x sinnx
π2x2 ∈ L1(R),

and that ∥fn∥1 → ∞. Conclude that the Fourier transform maps L1(R) into a proper
subspace of C0(R).

21. For f ∈ L1(R), define fλ(x) = λf(λx) and

φλ(t) = 2π
∞∑

j=−∞
fλ(t+ 2πj).

Show that
lim

λ→∞
∥φλ∥L1(S1) = ∥f∥L1(R).

22. For f ∈ L1(R), define

g(t) = 2π
∞∑

n=−∞
f(t+ 2πn).

Show that g is periodic and
∥g∥L1(S1) ≤ ∥f∥L1(R).

23. For 1 ≤ p < ∞, suppose f ∈ Lp(R) and h ∈ R. Define

∆hf(x) = f(x+ h) − f(x)
h

.

Show that there exists g ∈ Lp(R) such that

lim
h→0

∥∆hf − g∥p = 0
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iff f is absolutely continuous on bounded intervals (modulo null sets) and f ′ ∈ Lp(R). Does
this remain true for f ∈ L∞(R)?

24. Suppose f ∈ L∞(R) satisfies

25. Give an example of f ∈ L∞(0,∞) such that f ′ exists pointwise on (0,∞) but f ′ /∈ L∞(0,∞).

26. For f ∈ L1(Rn) and g ∈ Lp(Rn), 1 < p < 2, prove that f ∗ g ∈ Lp(Rn) and deduce that

f̂ ∗ g = f̂ ĝ.
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Chapter 3

Distributions

Many operations in analysis — differentiation, convolution, Fourier transformation — extend
well beyond smooth functions. The language of distributions (generalized functions) provides
a precise framework for these extensions while remaining compatible with classical calculus
whenever the latter makes sense. In this chapter we introduce test function spaces, distributions,
and their basic operations, with an eye toward applications in Fourier analysis.

Learning objectives.

• Define the spaces D(Ω) and D′(Ω) and interpret distributions as continuous linear functionals.

• Understand distributional derivatives and multiplication by smooth functions.

• See how the Fourier transform extends naturally to the Schwartz space and to tempered
distributions.

We know from the previous section that there are functions in Lp-spaces which are differen-
tiable in Lp-sense. That is, there exists g ∈ Lp such that ∥Dhf − g∥p → 0 as |h| → 0. However,
there is a large class of functions which are neither differentiable nor their Lp-derivative exist.
Though, there is a large sub-class of such functions whosee derivative can be realized with the
help of certain class of differentiable functions, known as “test functions”.

For example, suppose f is differentiable and g is a compactly supported differentiable function
on R. Then ∫ ∞

−∞
f ′g = −fg|∞−∞ −

∫ ∞

−∞
fg′ = −

∫ ∞

−∞
fg′,

because g is compactly supported. Therefore, this gives way to realize the derivative of f ∈ L1
loc(R).

For g ∈ C∞
c (R), write

Λf (g) =
∫
R
fg,
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then the derivative of Λf can be defined by

Λ′
f (g) = −

∫
R
fg′.

In fact, functional Λf is all time differentiable and its k-th derivative is given by

DkΛf (g) = (−1)k
∫
R
fDkg,

where D = d
dx .

In order to discuss “distributions” in detail, we need to derive a complete topology on C∞
c (Rn).

Since the space C∞
c (Rn) cannot be made complete under sup norm, a complete topology on

C∞
c (Rn) will be derived from a family of semi-norms (defined on compact subsets of Rn). Thus,

the space E(Rn) becomes a locally convex topological space.

3.1 Locally Convex Topology

Let {pi : i ∈ I} be a family of semi-norms on a topological vector space X. For a finite set F ⊂ I,
let

UF,ϵ =
⋂
i∈F

{x ∈ X : pi(x) < ϵ} =
⋂
i∈F

Vi,ϵ.

Then each VF,ϵ is convex and balanced. Let

B = {UF,ϵ : ϵ > 0, F ⊂ I,#(F ) < ∞}.

Then the collection

T = {O ⊂ X : for all x ∈ O, there exists U ∈ B such that x+ U ⊂ O}

is a topology on X.
Obviously, T contains ∅ and X, and is closed under arbitrary unions. Now, let

O =
k⋂

i=1
Oi, Oi ∈ T

If x ∈ O, then x ∈ Oi and there exists UFi,ϵi ∈ B such that x+UFi,ϵi ⊂ Oi. Write ϵ = min1≤i≤k ϵi

and F = ⋃k
i=1 Fi.Then ϵ > 0 and F is finite and hence

x+ UF,ϵ ⊂
k⋂

i=1
(x+ UFi,ϵi) ⊂ O.

The space (X, T ) is known as locally convex topological space.
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Example 3.1.1. Show that a locally convex topological vector space X is Hausdorff if and
only if {pi : i ∈ I} separates points in X i.e., given x ∈ X,x ̸= 0, there exists i ∈ I such that
pi(x) ̸= 0.

Example 3.1.2. Let X be a locally convex Hausdorff space whosee topology is induced by
{pi : i ∈ I}. Define

d(x, y) =
∑

2−n pn(x− y)
1 + pn(x− y)

Show that topology τd coincides with T .

Note that, in general settings, UF,ϵ plays the role of Bϵ(0) in Rn as Bϵ(0), ϵ > 0 forms a local
base at 0. Therefore,

B = {UF,ϵ : ϵ > 0, F ⊂ I,#(F ) < ∞}

is a local base at 0 ∈ X.

Definition 3.1.3. (i) A sequence (xi)∞
i=1 ⊂ X is said to converge to x ∈ X if for all U ∈ B

there exists N = N0 ∈ N such that x− xj ∈ U , for all j ≥ N .

(ii) (xi)∞
i=1 ⊂ X is called a Cauchy sequence if for all U ∈ B, there exists N = N0 ∈ N such

that xk − xℓ ∈ U for all k, ℓ ≥ N .

(iii) X is called sequentially complete if every Cauchy sequence in X has a limit in X.

Lemma 3.1.4. A sequence (xi)∞
i=1 ⊂ X converges to x ∈ X if and only if limn→∞ pn(xi −x) = 0

for all n ∈ I.

Proof. Let Uj,ϵ = {x ∈ X : pj(x) < ϵ}. Then there exists N ∈ N such that pj(xj − x) <
ϵ for all j ≥ N, etc.

Theorem 3.1.5. Let {pi}i∈I be a separating family of semi-norms on a vector space X, and set

Vp,n = {x ∈ X : p(x) < 1/n}.

Then J = {Vpi,n : i ∈ I, n ∈ N} forms a convex balanced local base for a topology T on X, which
makes X into a locally convex space such that

(i) each pi is continuous, and

(ii) A set E ⊂ X is bounded if and only if for all i ∈ I, pi(E) is bounded.

Proof. Let x ∈ X and x ≠ 0. Then there exists pi such that pi(x) > 0. Therefore, for some
x, npi(x) > 1, implies x /∈ V (pi, n), a neighborhood of 0. Hence, {0} is closed. Since T is
translation invariant, each {x} ⊂ X is closed in (X,T ).
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Addition is continuous: Let U be a neighborhood of 0 in X. Then ⋂i∈I V (pi, ni) ⊂ U (by
the definition of topology T ). Let

V =
⋂
i∈I

V (pi, 2ni).

Then V + V ⊂ U .
Consider (x1, x2) 7→ x1 +x2, and let U be an open set containing x1 +x2. Then U − (x1 +x2)

is a neighborhood of 0. Hence, there exists a neighbourhood V of 0 such that

V + V ⊂ U − (x1 + x2)

then
(V + x1) + (V + x2) ⊂ U.

Thus, addition is continuous.
Scalar multiplication is continuous: Let x ∈ X and α ∈ C, U and V as above. Then x ∈ sV

for some s > 0. Write t = s
1+|α|s , and y = x+ tV , with |β − α| < 1/s. Then

βy − αx = β(y − x) + (β − α)x ∈ |β|tV + |β − α|sV ⊂ V + V ⊂ U

Since |β|t < (|α| + 1
s )t = 1, and V is balanced, thus β(x + tV ) ⊂ αx + U , this implies scalar

multiplication is continuous.
(ii) Suppose E is a bounded subset of X. Since each V (pi, 1) is a neighborhood of 0, there

exists ki > 0 such that
E ⊂ kiV (pi, 1) = V (pi, 1/ki)

⇒ pi(x) < ki, ∀i,∀x ∈ E.

Conversely, suppose pi(x) < Mi, for all x ∈ E, for all i ∈ I, then for each neighborhood V of 0,

U ⊃
m⋂

i=1
V (pi, ni)

which implies

E ⊂
m⋂

i=1
V (pi, 1/Mi) =

m⋂
i=1

MiniV (pi, ni)

If n > Mini for all i = 1, 2, . . . ,m, then

E ⊂ n
m⋂

i=1
V (pi, ni) ⊂ nU

Hence E is bounded in (X,T ).
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3.2 Topology of the spaces C∞(Ω) and DK

We define a topology on C∞(Ω) which makes C∞(Ω) a Fréchet space with the Heine-Borel
property, such that the space

DK = {φ ∈ C∞(Rn) : supp(φ) ⊂ K}

where K is a compact set in Ω, is a closed subspace of C∞(Ω).
Define a sequence of compact sets in Ω such that Ki ⊂ Ki+1

Ki = {x ∈ Ω : d(x,D(Ω) ≥ 1/i} ∩Bi,

where Bi = {x ∈ Rn : |x| < i}.
For f ∈ C∞(Ω), define

pN (f) = sup{|Dαf(x)| : x ∈ K, |α| ≤ N}.

These {pN }∞
N=1 form a separating family of seminorms that makes C∞(Ω) a metrizable locally

convex topological space (exercise: use the previous theorem).
For x ∈ Ω, define δx(f) = f(x). Then each δx is a continuous linear functional in the topology

induced by {pN }∞
N=1. That is, pN (fi) → 0 =⇒ |fi(x)| ≤ pN (fi) → 0. It is easy to see that

DK =
⋂

x∈Ω\K

ker δx

Hence DK is a closed subspace of C∞(Ω). Notice the collection

VN = {f ∈ C∞(Ω) : pN (f) < 1/N}, N = 1, 2, . . .

forms a convex balanced local base at 0 ∈ C∞(Ω).
If {fj} are a Cauchy sequence in C∞(Ω), then for each VN , there exists lN ∈ N such that

fi − fj ∈ VN for all i, j > lN

=⇒ pN (fi, fj) < 1/N,

=⇒ |Dαfi(x) −Dαfj(x)| < 1/N, x ∈ KN

That is, Dαfi → gα on each compact set KN in Ω. In particular, fi(x) → g0(x). Thus g0 ∈ C∞(Ω)
and gα = Dαg0. This implies that fi → g0 in the topology of C∞(Ω). Hence C∞(Ω) is a Fréchet
space and the same is true for DK .

Suppose E ⊂ C∞(Ω) is closed and bounded. Then, by the previous theorem A, there exists
0 < MN < ∞ such that pN (f) < MN for all N = 1, 2, . . ., f ∈ E.
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Thus, |Dαf | < MN on KN , |α| ≤ N . Hence,{
Dβf : f ∈ E

}
is an equicontinuous family on KN−1, if |β| ≤ N − 1. By the Mean Value Theorem (MVT),

|f(x) − f(y)| < N∥D1f∥∞|x− y| (1)

Replacing f → Dβf in (1), we get

|Dβf(x) −Dβf(y)| ≤ ∥Dβ+1f∥∞∥x− y∥ ≤ ∥f∥N ∥x− y∥

By Arzelà-Ascoli Theorem, every sequence (fn) in E has a convergent subsequence. Hence,
E is compact in C∞(Ω). Thus, C∞(Ω) has the Heine–Borel property. Since

d(f, 0) ≤
∑

2−n pN (f)
1 + pN (f) < 2,

the topology on C∞(Ω) is not normable.
Now, for each fixed K ⊂ Ω, DK is a Fréchet space and

D(Ω) = C∞
c (Ω) =

⋃
K⊂Ω

DK

It is known as the space of test functions.
For φ ∈ D(Ω), define

∥φ∥N = sup {|Dαφ(x)| : x ∈ Ω, |α| ≤ N}

for N = 0, 1, 2, . . . .
Note: Restriction of these norms to DK gives the same topology as do the semi-norms

{pN }∞
N=1. For this, let K ⊂ Ω compact. Then there exists N0 ∈ N such that K ⊂ KN , N ≥ N0,

add for these N ≥ N0,
∥φ∥N = pN (φ), ∀φ ∈ DK

Since ∥φ∥N ≤ ∥φ∥N+1 ≤ . . . and

pN (φ) ≤ pN+1(φ) ≤ . . .

the topology given by either sequence {∥pN }∞
N=N0

or {∥ · ∥N }∞
N=N0

will be the same. Thus, the
topology on DK coincides. Therefore,

VN =
{
φ ∈ DK : ∥φ∥N <

1
N

}
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form a local base for DK .
Notice that ∥ · ∥∞

N=0 can be used to define a locally convex metrizable topology on D(Ω), but
this topology is not complete.

For φ ∈ D(Ω), suppφ ⊂ [0, 1], φ > 0 on (0, 1),

φm(x) = φ(x− 1) + 1
2φ(x− 2) + 1

m
φ(x−m)

is a Cauchy sequence in this topology, but (φm) is not completely supported. This happens
because {pN }∞

N=0 is not enough to prevent Cauchy sequences "leaking" toward the boundary of
Ω, so that we can add more semi-norms to the family {pN }∞

N=0 that allows more functions on
D(Ω) to be continuous.

Now, we define another topology τ on D(Ω) (in which Cauchy sequences do converge),
however τ is not metrizable.

(i) Let B = {W ⊂ D(Ω) : W is convex, balanced; sets with DK ∩W ∈ τK , ∀K compact ⊂ Ω}.

(ii) Σ ={ unions of the form φ+W , φ ∈ D(Ω), W ∈ B}

NOte that The topology τ is different than the topology generated by the pN ’s as the
topologies τ includes more seminorms. For example, let φ ∈ D(Ω)), and {xi} ⊂ Ω : the sequence
having no limit point, for any Ci > 0,

p(φ) = sup
i
Ci|φ(xi)| < ∞ (since there exist only finitely many i for each φ)

is a semi-norm on D(Ω) and p restricted to each Dk is continuous. In fact,

W = {φ ∈ D(Ω) : p(φ) < C}

is convex balanced and belongs to B as a τ -neighborhood of 0 ∈ D(Ω). This forces every
τ -bounded set (or Cauchy Sequence) in D(Ω)) to be concentrated on a common compact set
K ⊂ Ω. This will be formalized in the next theorem. That is, a sequence (φi) ∈ D(Ω) converges
to 0 if suppφi ⊂ K, ∀i = 1, 2 . . . .

Theorem 3.2.1. (a) τ is a topology on D(Ω), and B is a local base for τ .

(b) Σ makes D(Ω) into a locally convex topological vector space.

Proof. To prove (a), it is enough to show that for V1, V2 ∈ τ and φ ∈ V1 ∩V2, there exists W ∈ B
such that φ+W ⊂ V1 ∩ V2. By definition, there exists φi +Wi ∈ τ such that φ ∈ φi +Wi ⊂ Vi,
i = 1, 2.

Choose K ⊂ Ω compact so that φ1, ψ2, φ ∈ DK . Since DWi is open in DK and φ − ψi ∈
DK ∩ Wi, it follows that φ − φi ∈ (1 − δi)Wi for δi > 0 (it is like if x ∈ Bϵ(x) ⊂ W , then
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x ∈ (1 − δ)Bϵ/2(x) ⊂ (1 − δ)W ) By the convexity of Wi, we get

φ− φi + δiWi ⊂ (1 − δi)Wi + δiWi = Wi.

So φ+ δiWi ⊂ φi +Wi ⊂ Vi, i = 1, 2. Hence, φ+ (δ1W1) ∩ (δ2W2) ⊂ V1 ∩ V2. This proves (a).
(b) Let φ1, φ2 ∈ D(Ω) be distinct and

W = {φ ∈ D(Ω) : ∥φ∥0 < ∥φ1 − φ2∥0}.

Then W ⊂ B and φ2 ∈ φ1 +W . Since φ2 is arbitrary, it implies that {φ1} is closed set relative
to τ . Notice that for every pair of ψ1, ψ2 ∈ D(Ω),

(ψ1 + 1
2W ) + (ψ2 + 1

2W ) = (ψ1 + ψ2) +W.

Hence, addition is continuous in (D(Ω), τ).
Pick α0 ∈ C and φ0 ∈ D(Ω). Then φ0 + 1

2sW for some s > 0. Let |α − α0| < 1
s and

t = s
2(1+(|α0|s) . Then for φ ∈ φ0 + tW ,

αφ− α0φ0 = α(φ− φ0) + (α− α0)φ0

∈ K/tW + 1
2W

∈ 1
2W + 1

2W = W,

since |α|t < (|α| + 1
s )t = 1

2 . Thus,

α(φ0 + tW ) ⊂ α0φ0 + |α|tW ⊂ α0φ0 +W.

Hence, scalar multiplication is continuous. From onward, by D(Ω) we mean (D(Ω), τ).

Theorem 3.2.2. (a) A convex balanced subset V ∈ D(Ω) is open if and only if V ∈ B.

(b) The topology τK of DK ⊂ D(Ω) coincides with the topology on DK that is inherited from
D(Ω).

(c) If E is a bounded subset of D(Ω), then E ⊂ DK for some compact K ⊂ Ω and there exists
0 ≤ MN < ∞ such that

∥φ∥N ≤ MN , ∀φ ∈ E, N = 0, 1, 2, . . .

(d) D(Ω) has the Heine-Borel property.

(e) {φi} is a Cauchy sequence in D(Ω), then {φi} ∈ DK for some K ⊂ Ω, K compact.
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(f) If φi → 0 in D(Ω), then there exists compact set K ⊂ Ω such that suppφi ⊂ K for all i,
and Dαφi → 0 uniformly for all α.

(g) In D(Ω), every Cauchy sequence is convergent.

Proof. (a) Suppose V ∈ τ . Claim V ∈ B. Consider φ ∈ DK ∩ V . By previous theorem, there
exists W ∈ B such that φ+W ⊂ V .

⇒ φ+ (DK ∩W ) ⊂ DK ∩ V

Since DK ∩W is open in DK , it implies DK ∩ V is open in DK for each V ∈ τ .

Conversely, if V ∈ B, then V ∈ τ , since B ⊂ τ .

(b) Let V ∈ τ , then DK ∩ V ∈ τK (by (a)). That is, τ ∩ DK ∈ τK for all K ⊂ Ω.

Conversely, suppose E ∈ τK for some K ⊂ Ω.

Claim. E = DK ∩ V for some V ∈ τ . Let φ ∈ E, then there exists N and δ > 0 such that

{ψ ∈ DK : ∥ψ − φ∥N < δ} ⊂ E

or
{ψ ∈ DK : ∥ψ∥N < δ} ⊂ E − φ

Let Wφ = {ψ ∈ DK : ∥ψ∥N < δ}, then Wφ ∩ DK ∈ τK (an open ball in DK). Hence
Wφ ∈ B, and

DK ∩ (φ+Wφ) = φ+Wφ ∩ DK ⊂ φ+ E − φ = E

Let V = ⋃
φ∈E(φ+Wφ), then

E =
⋃

φ∈E

(φ+Wφ) ∩ DK

= union of all balls around φ ∈ E

= V ∩ DK .

(c) Let E be a bounded set in D(Ω). Suppose E /∈ DK for any K. Then there exists φm ∈ E

and a sequence {xm} ∈ Ω having no limit point such that φm(xm) ̸= 0, m = 1, 2, . . .

Let
W =

{
φ ∈ D(Ω) : |φ(xm)| < 1

mφm(xm),m = 1, 2, . . .
}

Since each K contains only finitely many xm,

W ∩ DK =
{
φ ∈ DK : |φ(xm)| < 1

mφm(xm)
}
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is open in DK . For this, let φ ∈ W ∩ DK . Then |φ(xm)| < 1
m |φm(xm)|,m = 1, 2, . . . l Let

p(φ) = sup
1≤m≤l

|φ(xm)| < Cl, where Cl = max
1≤m≤l

1
m |φm(xm)|

Since p is continuous, it follows that W ∩DK is open in DK . Thus W ∈ B. Since φm /∈ mW

for any m, it follows that E is not bounded.

Thus every bounded set E ⊂ D(Ω) must lie in some DK . By (b), E is bounded in DK .
This implies

sup{∥ψ∥N : ψ ∈ E} ≤ MN < ∞, N = 0, 1, 2, . . .

(d) It follows from (c), since DK has the Heine-Borel property. If E is a closed and bounded
set in D(Ω), then E is closed and bounded in DK , hence compact. Thus, E is compact in
D(Ω).

(e) If {φi} is a Cauchy Sequence in D(Ω), then it is bounded and hence φi ∈ DK for some K.
By (b), {φi} is Cauchy Sequence relative to DK .

(f) It is just restatement of (e).

Finally, (g) follows from (b), (e) and completeness of DK (i.e., DK is a Fréchet space).

Theorem 3.2.3. Let Λ be a linear map from D(Ω) to a locally convex space Y . Then the
following are equivalent:

(i) Λ is continuous.

(ii) Λ is bounded.

(iii) If φi → 0 in D(Ω), then Λφi → 0 in Y .

(iv) For all K ⊂ Ω, the restriction Λ : DK → Y is continuous.

Proof. (i) =⇒ (ii): Known.
(ii) =⇒ (iii): Suppose Λ is bounded and φi → 0 in D(Ω). Then φi → 0 in some DK , and

hence Λ/DK is bounded. Therefore, Λ : DK → Y is continuous, and thus Λφi → 0 in Y .
(iii) =⇒ (iv): Suppose {φi} ⊂ DK and φi → 0 in DK . Then by (b) of the previous theorem,

φi → 0 in D(Ω). By (iii), Λφi → 0 in Y .
(iv) =⇒ (i): Let U be a convex balanced neighborhood of 0 in Y , and write V = Λ−1(U).

Then V is a convex, also balanced set in D(Ω). By (a) of the previous theorem, V ∈ τ if and only
if DK ∩ V ⊂ τK for each K ⊂ Ω. By (iv), DK ∩ V ∈ τK , hence V ∈ τ . Hence Λ is continuous.
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Definition 3.2.4. A linear functional Λ on D(Ω) which is continuous in the topology τ of D(Ω)
is called distribution.

The space of all distributions is denoted by D ′(Ω).

Theorem 3.2.5. Let Λ be a linear functional on (D(Ω), τ). Then the following are equivalent:

(i) Λ ∈ D ′(Ω).

(ii) For each compact set K ⊂ Ω, there exist N ∈ N and C > 0 such that

|Λψ| ≤ C∥ψ∥N for all ψ ∈ DK (∗)

This result is nothing but equivalence of (i) and (iv) in the previous theorem.

Note that if N in (∗) is independent of the choice of K, then the minimum of such N ’s is
called the order of the distribution Λ. If no such N exists, then we say Λ has ∞ order.

Remark 3.2.6. Since each DK is closed, it is obvious that DK has no interior in D(Ω). Since
there exists a countable sequence of compact sets in Ω such that Ω = ⋃∞

i=1Ki, Ki ⊂ Ki+1 we
get

D(Ω) =
∞⋃

i=1
DKi

Since Cauchy sequence in D(Ω) does converges in D(Ω), by the Baire Category Theorem, D(Ω)
cannot be metrizable.

Example 3.2.7. Let f ∈ Lloc(Rn), then

Λf (φ) =
∫
fφ, φ ∈ D(Rn)

defines a distribution on D(Rn). However, every distribution cannot be generated by a function
in this way.

For example, Dirac distribution δ0 cannot be produced by any f ∈ Lloc(Rn).
On contrary, suppose, there exists f( ̸= 0) ∈ Lloc(Rn) such that δ0(φ) =

∫
fφ for all φ ∈ D(Rn).

Consider φε ∈ D(Rn) such that support of φε ⊆ Bε(0), 0 ≤ φε ≤ 1, φε = 1 on Bε/2(0). Then

δ0(φε) =
∫
fφε

=⇒ 1 = φϵ(0) =
∫

Bε(0)
fφε ≤

∫
Bε(0)

|f | → 0 as ε → 0.

However, every distribution is weakly assigned to some derivative of a continuous function. We
see it later. Notice that

|δ0(φ)| = |φ(0)| ≤ ∥φ∥∞ = ∥φ∥0, ∀φ ∈ D(Rn)
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Hence, δ0 is a distribution of order 0.
Example: Let µ be a Radon measure on Ω. Then

Λ(φ) =
∫
φ(x) dµ(x)

defines a distribution and

|Λ(φ)| ≤ ∥φ∥∞µ(K), φ ∈ DK , and for every choice of K, compact in Ω.

Hence, Λ = Λµ is a distribution of order 0. Later, we see that every distribution of order zero is
given by a Radon measure.

3.3 Local Equality of Distribution

Let Λi ∈ D′(Ω), i = 1, 2, and let O ⊂ Ω be open. Then we say Λ1 = Λ2 in O if

Λ1φ = Λ2φ, ∀φ ∈ D(O).

For example, if f ∈ Lloc(R) and φ ∈ D(O), then Λf = 0 if and only if f = 0 almost everywhere
on O.

Similarly, if µ is a Radon measure, then Λµ = 0 if µ(B) = 0, for all B ∈ B(O), the Borel
σ-algebra on O.

Therefore, distribution can be discussed locally, and that leads to ways to describe distributions
globally, if its behavior is known locally.

For this, we need to describe “partition of unity”.

Theorem 3.3.1. Let A = {Oi; i ∈ I} be an open cover of Ω. Then, there exists a sequence
{ψi}i∈N ⊂ D(Ω) with ψi ≥ 0 such that

(i) each ψi has support in some Oi ∈ A,

(ii)
∑

i∈N ψi(x) = 1, ∀x ∈ Ω,

(iii) for each compact set K ⊂ Ω, ∃m ∈ N and an open set O ⊃ K such that

ψ1(x) + . . .+ ψm(x) = 1, ∀x ∈ O.

The collection {ψi} is called a locally finite partition of unity in Ω subordinate to the cover A of
Ω.

Remarks: From (ii) and (iii), it follows that each point x ∈ Ω has an open neighborhood
that intersects the supports of only finitely many ψi.
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Proof. Let S = {p1, p2, . . .} be a countable dense set in Ω.
For ri ∈ Q, write Bi = Bri(pi), a closed ball that is contained in some Oi ∈ A. Let Vi = Bri/2(pi).
Then, Ω = ⋃

i Vi; since S = Ω, we can construct φi ∈ D(Ω) such that 0 ≤ φi ≤ 1, φi = 1 on Vi,
φi = 0 outside Bi.

Define ψ1 = φ1, and inductively write

(1) ψi+1 = (1 − φ1) · · · (1 − φi)φi+1, i ≥ 1.

Then ψi = 0 outside Bi. This proves (i).
The relation

(2) ψ1 + . . .+ ψi = 1 − (1 − φ1) · · · (1 − φi)

is trivially true if i = 1. Suppose (2) is true for some i, then by adding (2) at (i) we get (2) is
true for i+ 1. Since φi = 1 in Vi, from (2), it follows that

ψ1(x) + . . .+ ψm(x) = 1, ∀x ∈ V1 ∪ . . . ∪ Vm = O.

Since for any x ∈ Ω, there exists m such that x ∈ V1 ∪ . . . ∪ Vm, this proves (ii). Moreover, if K,
compact in Ω, then K ⊂

⋃m
i=1 Vi for some m. This proves (iii).

Now, suppose Λ1,Λ2 ∈ D′(Ω) and for each x ∈ Ω, there exists Ox open in Ω such that

Λ1(φ) = Λ2(φ), ∀φ ∈ D(Ωx).

Then there exists a partition of unity {ψi, Bi}∞
i=1 such that

∞∑
i=1

ψi(x) = 1, ∀x ∈ Ω.

Let φ ∈ D(Ω), then φ = ∑∞
i=1 ψiφ. The summation in RHS makes sense, since support of φ

intersects support of only finitely many ψi. Thus,

Λ1(φ) =
∑

Λ1(ψiφ) =
∑

Λ2(ψiφ) = Λ2(φ),

since ψφ ∈ D(Bi) ⊂ D(Oxi), for some xi ∈ Ω. Hence, Λ1 = Λ2 in D(Ω).

Theorem 3.3.2. Let A be an open cover of Ω, and for each O ∈ A, there exists Λ0 ∈ D′(O)
such that

Λ′
0 = Λ′′

0 ∀O′ ∩O′′ ̸= ∅.
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Then there exists unique Λ̃ ∈ D′(Ω) such that

Λ̃φ = Λ0 in O, ∀O ∈ A.

Proof: Let {ψi, Bi}N
i=1 be a partition of unity subordinate to A. Let φ ∈ D(R), then

φ =
N∑

i=1
ψiφ (finite sum for each φ)

Define
Λ̃φ =

∑
ΛBi(ψiφ).

Then Λ̃ is linear. To show that Λ̃ is continuous on D(R),
let φj → 0 in D(R). Then suppφj ⊂ K, K ′ for some K compact in R.

=⇒ supp ψiφj ⊂ K ∩Bi ⊂ Bi,

=⇒ ψiφj → 0 in D(Bi) (by Leibniz rule)

Hence, Λ̃φj → 0 in C in D′(Ω) (the weak* topology of D(R)). Thus, Λ̃ ∈ D′(⩽̸).
Let φ ∈ D(O), O ∈ A. Then

ψiφ ∈ D(Bi ∩O) ∀i,

and
ΛBi(ψiφ) = Λ0(ψiφ) (by hypothesis)

Thus,
Λ̃φ =

∑
Λ0(ψiφ) = Λ0(φ).

Suppose Λ be any other distribution such that

ΛO′ = ΛO′′ if O′ ∩O′′ ̸= ∅.

Then for each Bi, there exists Oi ∈ A such that Bi ⊂ Oi

ΛBi = ΛOi = Λ̃Bi .

For φ ∈ D(⩽̸), φ = ∑
ψiφ, suppψi ⊂ Bi.

Λ(φ) =
∑

Λ(ψiφ) =
∑

Λ̃Bi(ψiφ) =
∑

Λ̃(φ)

=⇒ Λ = Λ̃
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Theorem 3.3.3. A distribution Λ ∈ D′(Ω) is of order 0 if and only if there exists a Radon
measure µ (possibly complex-valued) such that Λ = Λµ.

Proof. If ∃µ a Radon measure. Then order(Λµ) = 0.
Conversely, suppose order(Λ) = 0. Then there exists 0 < C < ∞, such that |Λφ| ≤ C ||φ||∞,

∀φ ∈ C∞
c (Ω). Consider {ψi, Bi}∞

i=1, a partition of unity. Then suppψi ⊂ Bi, ∪Bi = Ω. Then Λ
is continuous on each D(Bi) and hence it can be extended to C(Bi). By Riesz representation
theorem, there exists a complex-valued Radon measure µi on Bi such that

Λ(φ) =
∫
φdµi, ∀φ ∈ C(Bi).

In particular, for each φ ∈ D(Bi). Let φ belong to D(⩽̸), then

φ =
∑

ψiφ,

and
Λ(φ) =

∑
Λ(ψiφ) =

∑∫
ψiφdµi

i.e. Λφ =
∫
φ
(∑

ψidµi

)
=
∫
φdµ,

where µ = ∑
ψidµi.

3.4 Derivative of distribution

Notice that for φ ∈ D(Ω) and f ∈ C∞(Ω),∫
Ω
fφ′ = fφ|δΩ −

∫
Ω
fφ′ = −

∫
Ω
fφ′,

since suppφ ⊂ K ⊂ Ω. This gives way to define the derivative of distribution Λ ∈ D′(Ω) by

Λ′(φ) = −Λ(φ′).

or,
∂αΛ(φ) = (−1)|α|Λ(∂αφ).

Hence, DαΛ is a linear map. Since Λ ∈ D′(Ω), for compact set K ⊂ Ω, ∃0 < C < ∞ and N ∈ N
such that

|Λφ| ≤ C||φ||N , ∀φ ∈ DK .

Then
|DαΛ(φ)| = |(−1)|α|Λ(Dαφ)| ≤ C||φ||N+|α| for all φ ∈ DK .
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Thus, ∂αΛ ∈ D′(Ω). We infer that every distribution in D′ is infinitely differentiable in the weak
sense. Since

DαDβφ = Dα+βφ = DβDαφ,

it follows that
DαDβΛ = DβDαΛ.

Example 3.4.1. Let f ∈ L1
loc(R). Then show that

Dαf ∈ D′(Ω) and DαΛf (φ) = (−1)|α|(Dαφ).

Does distributional derivative of a function is same as its usual derivative?
i.e., whether ∫

Dαfφ = (−1)|α|
∫
fDαφ?

If f ∈ C∞(R), then ∫
Dαfφ = (−1)|α|

∫
fDαφ,

by “integration by parts". However, this is not true in general.

Example 3.4.2. Let Ω = (−2, 2), consider f is the Cantor function on [0, 1]. Then f ∈ L1(−2, 2)
and f ′ = 0 almost everywhere.

∫
f ′φ = 0 ̸= −

∫
fφ′

Example 3.4.3. If f is absolutely continuous on each [a, b] ⊂ R, then Λ′
f = Λf ′ . That is,

∫
f ′φ = −

∫
fφ′.

(Note that “integration by parts" holds for absolutely continuous and integrable functions

3.5 Multiplication by a function

Let Λ ∈ D′(Ω), and f ∈ C∞(Ω). Then

1. (fΛ)(φ) = Λ(fφ) defines a linear functional on D(Ω).

2. Dα(fφ) = ∑
β≤α cα,βD

α−βfDβf ·Dβφ (By Leibniz formula)

Since Λ ∈ D′(Ω), for each compact set K in Ω, there exists 0 < C < ∞ and N ∈ Z+ such that

|Λφ| ≤ C∥φ∥N , ∀φ ∈ DK .
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By (2), there exists C ′ = C ′(f,K,N) such that

∥fφ∥ ≤ C ′∥φ∥N , ∀φ ∈ DK

Hence,
|fΛ(φ)| ≤ CC ′∥φ∥N , ∀φ ∈ DK .

Thus, fΛ ∈ D′(Ω).

3.6 Sequence of Distributions

Since the topology of D(Ω) provides a weak∗-topology on D′(Ω), that makes D′(Ω) a locally
convex topological vector space, the convergence in D′(Ω) is understood by point evaluation.
That is, {Λi}∞

i=1 ∈ D′(Ω) is said to converge to Λ if

Λi(φ) → Λ(φ), ∀φ ∈ D(Ω)

In particular, if fi ∈ L1
loc∞(Rn), then fi → Λ in D′(Rn) if

lim fiφ = λφ, ∀φ ∈ D(Rn).

Theorem 3.6.1. Let Λi ∈ D′(Ω) and Λ(φ) = lim Λi(φ) exists for each φ ∈ D(Ω). Then
Λ ∈ D′(Ω) and DαΛi → DαΛ in D(Ω).

Proof. Since Λφ = lim Λiφ, ∀φ ∈ D(Ω), it implies that

Λ(φ) = lim Λi(φ), ∀φ ∈ DK

As DK is a Fréchet space, by Banach-Steinhaus Theorem, Λ/DK is continuous for each K ⊂ Ω.
Hence, Λ is constant on D(Ω).

Now,

Dα(Λ)(φ) = (−1)|α|Λ(Dαφ)

= (−1)|α| lim Λi(Dαφ)

= limDαΛi(φ)

Theorem 3.6.2. If Λi → Λ in D′(Ω) and gi → g in C∞(Ω), then giΛi → gΛ in D′(Ω).

Proof. Note that gi → g in C∞(Ω) means the Fréchet space topology of C∞(Ω).
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(i.e., topology generated by pN (f) = sup|α|≤N,x∈KN
|Dαf(x)|, where Ω = ⋃

KN , KN ⊂ KN+1

with local base
VN = {f ∈ C∞(Ω) : pN (f) < 1/N, }N = 1, 2, . . .

Now, for fixed φ ∈ D(Ω), define a bilinear form B(g,Λ) = gΛ(φ) = Λ(gφ). Then B is co-
ordinatewise continuous, and by Theorem 2.17 (Rudin FA, Page 52), and the fact that C∞(Ω) is
a Fréchet space, D′(Ω) and C are topological vector spaces, it follows that

B(gi,Λi) → B(g,Λ) as i → ∞

Hence,
(giΛi)(φ) → (gΛ)(φ), ∀φ ∈ D(Ω).

3.7 Support of a Distribution

Let U be an open set in Ω and Λ ∈ D′(Ω). We say that Λ is zero in O if

Λ(φ) = 0, ∀φ ∈ D(O)

Let W = ⋃
{O ⊂ Ω : Λ|O = 0}. Then Λ|W = 0. The complement of W is called the support of Λ.

Note that O forms an open cover of W .
There exists a partition of unity {ψi} in W such that suppψi ⊂ Oi for some Oi such that

Λ|Oi = 0, and

φ =
∞∑

i=1
φψi, ∀φ ∈ D(W )

Hence,

Λφ =
∞∑

i=1
Λ(φiφ) = 0, that is, Λ|W = 0.

Theorem 3.7.1. Let Λ ∈ D′(Ω) and set SΛ = supp Λ.

(a) If suppφ ∩ SΛ = ∅ for some φ ∈ D(Ω), then Λφ = 0 (by definition of support).

(b) If SΛ = ∅, then Λ = 0 (i.e., W = Ω).

(c) If ψ ∈ C∞(Ω) and ψ = 1 on an open set V ⊃ SΛ, then ψΛ = Λ.

(d) If SΛ is a compact set, then Λ is of finite order. In fact, there exists 0 < C < ∞ and some
N ∈ NU{0} such that

|Λφ| ≤ C∥φ∥N , ∀φ ∈ D(Ω)

Further, Λ extends uniquely to a continuous linear functional on C∞(Ω).
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Proof. Proofs of (a) & (b) are trivial.
(c) If ψ = 1 on V ⊃ SΛ, then

supp(φ− ψφ) ∩ SΛ = ∅, ∀φ ∈ D(Ω).

Hence by (a), Λ(φ− ψφ) = 0. That is,

Λφ = ψΛφ, ∀φ ∈ D(Ω).

(d) If SΛ is compact, then we can always find ψ ∈ C∞
c (Ω) such that ψ = 1 on V ⊃ SΛ, for

some open set V ⊂ Ω. Let suppψ = K. Then from (c),

Λ(φ) = ψΛ(φ), if φ ∈ D(Ω).

Since Λ ∈ D ′(Ω), there exists C1 > 0 such that

|Λφ| ≤ C1∥φ∥N , ∀φ ∈ DK

for some N ∈ N ∪ {0} = Z+ (say). Further, by Leibniz’s rule, it follows that there exists C2 > 0
such that

∥ψφ∥N ≤ C2∥φ∥N ,

(i.e. suppφ = K cpt). Since Λφ = Λ(ψφ) if φ ∈ D(Ω), define

Λf = Λ(ψf) for f ∈ C∞(Ω).

Now if fi → 0 in C∞(Ω), then Dαfi → 0 on uniformly on each compact set K ⊂ Ω. Once again,
by Leibniz’s formula, it follows that

ψfi → 0 in D(Ω).

=⇒ Λ(ψfi) → 0 in D′(Ω).

That is, Λfi → 0 in the toplogy of D′(Ω). Notice that if f ∈ C∞(Ω) and K0 ⊂ Ω is compact,
then there exists φ ∈ D(Ω) such that φ = f on K0. (By Urysohn’s lemma, there exists ψ ∈ D(Ω)
such that ψ = 1 on K0, and hence φ = fψ = f on K0). It follows that D(Ω) is dense in C∞(Ω).
(i.e. ∥φ− f∥K = ∥fψ − f∥K < ϵ). Hence, Λ ∈ D′(Ω) has unique extension to C∞(Ω).

77



MA746: Fourier Analysis 3. Distributions

3.8 Exercise

1. (a) If Λ′ is a compactly supported distribution, must it follow that Λ itself is compactly
supported?

(b) Is every compactly supported distribution necessarily of finite order?

(c) Must the Fourier transform of every compactly supported function in L1(R) be real
analytic?

(d) Determine the distributional support of the function χQ, where Q denotes the set of
rational numbers.

(e) For n ∈ N, let δn denote the Dirac delta distribution at n. Does δn → 0 in the weak∗

topology of C0(R) (the space of continuous functions vanishing at infinity)?

(f) Determine the order of Λ ∈ D′(R) defined by

Λ(φ) =
∫

|x|>1
log(x)φ(x) dx.

2. Suppose f is a continuous function on Rn such that
∫
Rn fφ = 0 for all φ ∈ D(Rn). Show

that f = 0.

3. Let Λ = Λf , where f is a continuous function on Rn. Show that supp Λf = supp f. Does
the same statement remain valid for locally integrable functions?

4. Show that there exists ψ ∈ D(R) such that φ = ψ(k) if and only if∫
R
p(x)φ(x) dx = 0

for each polynomial p of degree at most k − 1.

5. If Λ ∈ D′(R) satisfies Λ′ = 0, prove that Λ = Λc for some constant c.

6. Show that every φ ∈ D(Rn) can be written as

φ = ψ′ + cφ0,

where φ0 is a fixed test function in D(R) with
∫
R φ0 ̸= 0.

7. Show that every φ ∈ D(Rn) can be written as

φ = xψ + cφ0,

where φ0 is a fixed test function in D(R) with φ0(0) ̸= 0. Deduce that if Λ ∈ D′(R) and
xΛ = 0, then Λ = cδ0.
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8. Determine all f ∈ C∞(R) such that fδ′
0 = 0.

9. Show that if Λ ∈ D′(R) is compactly supported, then Λ′ is also compactly supported.

10. Verify that

⟨Λ, φ⟩ =
∞∑

n=1
φ(n)(n)

defines a distribution on R. Is Λ compactly supported?

11. Let H = χ(−∞,0) and let hn be a sequence of differentiable functions such that hn → H in
D′(R). Show that h′

n → δ0 in D′(R). Does the conclusion remain valid if H = χ(−∞,0]?

12. Let Λn ∈ D′(R) be defined by

⟨Λn, φ⟩ = n
(
φ
(

1
n

)
− φ

(
− 1

n

) )
.

Determine lim Λn.

13. For a > 0, define

⟨Λa, φ⟩ =
(∫ −a

−∞
+
∫ ∞

a

)
φ(x)
|x|

dx+
∫ a

−a

φ(x) − φ(0)
|x|

dx.

Show that Λa defines a distribution on D(R). Find lima→0 Λa in D′(R) and compute its
distributional derivative.

14. For Λ ∈ D′(R), define
⟨G,φ⟩ =

∫
R

⟨Λ, φy⟩ dy,

where for φ ∈ D(R2), we set φy(x) = φ(x, y). Show that G ∈ D′(R2).

15. Let Λi ∈ D′(R) for i = 1, 2 be such that

⟨Λ1, φ⟩ = 0 ⇐⇒ ⟨Λ2, φ⟩ = 0.

Show that Λ1 = cΛ2 for some constant c.

16. If Λ ∈ D′(R) satisfies Λk = 0, prove that Λ is a polynomial of degree at most k − 1.

17. Let Ω = (0,∞). Define

⟨Λ, φ⟩ =
∞∑

n=1
φ(n)

(
1
n

)
, φ ∈ D(Ω).

Show that Λ is a distribution of infinite order, and prove that Λ cannot be extended to a
distribution on R.
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18. If Λ ∈ D′(R) has order N, show that Λ = f (N+2) in D′(R) for some continuous function f.
If Λ = δ0, what are the possible choices for f?

19. For k ∈ N, define fk = kχ
( 1

k ,
2
k )
. Show that fk → δ0 in D′(R). Furthermore, show that

although f2
k (x) → 0 pointwise, the sequence f2

k does not converge in the sense of distribu-
tions.

20. Define

f(x) =


x2, x < 1,

x2 + 2x, 1 ≤ x ≤ 2,

2x, x ≥ 2.

Find the distributional derivative of f.

21. Define

f(t) =

e
−t, t > 0,

−et, t < 0.

Show that f ′′ = 2δ′
0 + f. Deduce that the Fourier transform of f is

f̂(x) = − 2ix
1 + x2 .

22. If H = χ(−∞,0), show that

(a) H ∗ φ(x) =
∫ x

−∞
φ(t) dt,

(b) δ′
0 ∗H = δ0,

(c) 1 ∗ δ′
0 = 0,

(d) 1 ∗ (δ′
0 ∗H) = 1 ∗ δ0 = 1,

(e) (1 ∗ δ′
0) ∗H = 0.

23. Let {xk} be a sequence of real numbers with lim |xk| = ∞. Show that δ(x−xk) → 0 in the
sense of distributions.

24. Determine all f, g ∈ C∞(R) such that fδ0 + gδ′
0 = 0.

25. Define

f(x) =

e
−x, x ≥ 0,

1, x < 0.

Show that the Fourier transform of f satisfies (1 − ix)f̂ = Ĥ in the sense of tempered
distributions, where H = χ(−∞,0).
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26. Find the distributional derivative of f(x) = ex2
χ[0,1](x).

27. Suppose f ∈ L∞(R) satisfies∫
R
f(y)e−y2

e2xy dy = 0 ∀x ∈ R.

Prove that f ≡ 0.

28. Let Λ be a distribution on R such that x2Λ = 0. Show that Λ = cδ0 +dδ′
0 for some constants

c, d.

29. For n ∈ N, let fn = χ[0,n). Find limn→∞ f ′
n in the weak∗ topology of D(R).

30. Classify all continuous functions on R that define tempered distributions.
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