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Chapter 1

Fourier Series

Fourier series provide a canonical way to represent periodic functions as superpositions of the
basic characters of the circle group, namely the complex exponentials €™®, n € Z. Beyond
their striking applications to boundary—value problems in physics, Fourier series form a central

tool of analysis: they convert questions about a function into questions about its frequency

spectrum {f(n)}nez.

Learning objectives.
e See how separation of variables in classical PDE produces trigonometric eigenfunctions.

« Define Fourier coefficients on S' ~ R/277Z and interpret partial sums as convolutions with
the Dirichlet kernel.

« Distinguish pointwise, uniform, and L? convergence; understand why summability kernels
(Abel, Fejér) are useful.

1.1 Motivation: eigenfunction expansions in PDE

A guiding principle of Fourier analysis is that translation-invariant linear problems diagonalize
in a basis of exponential functions. On R/27Z these exponentials are precisely €”®, n € Z. One

classical route to this conclusion is separation of variables in boundary—value problems.

The vibrating string on an interval

Consider the one-dimensional wave equation on the interval (0,7) with Dirichlet boundary

conditions,
up(x,t) = uga(,t), u(0,t) = u(m,t) = 0. (1.1.1)
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Seeking separable solutions u(z,t) = X (x)T'(¢t) and dividing by XT yields

T//(t) _ X”(CU)

W - X@)

for some constant A € R, hence

X" 4+AX =0, T'+N\T=0.

The boundary conditions force X (0) = X () = 0, so nontrivial solutions occur exactly for A\ = n?

with n € N, with eigenfunctions
Xn(z) = sin(nx), n € N.

By linearity, one is led to expansions of the form

flx) ~ ZAnsin(n:r), (1.1.2)
n=1
where f(z) = wu(x,0) is the initial displacement and the coefficients are determined using

orthogonality: o m
A, = —/ f(z) sin(nz) dx.
™ Jo

A second initial condition u;(z,0) = g(x) determines the coefficients in front of sin(nz) sin(nt)
(or sin(nz) cos(nt)), and it already hints at a central theme: regularity of the data controls decay
of the coefficients.

The Dirichlet problem on the disc

A second motivation comes from the Laplace equation on the unit disc
Au=0 onD={(r,0):0<r<1, 0<6<2n}, u(1,6) = f(6),
the classical Dirichlet problem. Writing u(r, ) = F(r)G(6) leads to
G" + )G =0, r?F" +rF' — \F = 0.

Periodicity in 6 forces A = n? with n € Z, so G() = €™, and boundedness at 7 = 0 selects the

radial solutions F(r) = r/*l. Thus a bounded harmonic function admits an expansion

u(r,0) = Z an r'"e? so that f0)=u(1,0) ~ Z ane™.

nez neL

Question 1.1.1 (Central question). Given a function f on the circle (for instance f € L'(S?)



MAT746: Fourier Analysis 1. Fourier Series

or f € C(S1)), in what sense does the Fourier series
L R 2r .
S fme?,  fm) == [ f@)e 0 as,
nez

recover f7

We now formalize the identification of functions on the unit circle with 27-periodic functions

on R, and then develop the basic tools needed to answer the question above.

1.2 Functions on the circle

Throughout these notes we identify the unit circle
St.={e:t e R}

t

with the quotient group R/27Z via the map t +— €. Under this identification, a function

f:S' — C may be viewed as a 2m-periodic function (again denoted by f) on R.
The Lebesgue measure on S' corresponds to the usual Lebesgue measure dt on [0,27) and
is the (unique) translation-invariant probability measure up to scaling (Haar measure) on the

circle. We use the normalization

27
/ fyde = [ ft)de,  so that 1dt = 2.
St 0 St

In particular, for every tg € S' and every integrable f we have the translation invariance

| se—tyde= [ s,

which follows immediately from the substitution s =t — ty and 27-periodicity.

A trigonometric polynomialnomial of degree at most N is an expression

N
Pyn(t) = Z are’™,
k=—N

and a trigonometric series is a formal sum » ;.5 apet,

Definition 1.2.1. For n € Z, and f € L'(S"), the nth Fourier coefficient of f is defined by

A 1

2m .
foy =g [ e ar
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Definition 1.2.2. The Fourier Series of f € L'(S') is the expression of
S~ > fe
Hence, the n’th partial sum of the Fourier Series (FS) is
Sty = 30 Fke
k=—n

is a trigonometric polynomialnomial of degree n.

Lemma 1.2.3. Let f,g € L'(S'), then
(i) F+g(n) = f(n) +in),
(i) af(n) = af(n), acC,
(iii) F(n) = f(-n),
(iv) If 7, f(t) = f(t — to), to € S, then (i, f)" (n) = e~ f(n)

(v) |f(n)] < 5= [ 1F@®)ldt = | flh
Corollary 1.2.4. If f, € L'(S") and ||f; — fll1 — 0, then f](n) — f(n) absolutely (or even

uniformly).

Theorem 1.2.5. Let f : [0,2nr] — C C R. Then f is absolutely continuous if and only if f'

exists a.e. and .
fa) =10+ | fityat
(For a proof, see Carothers p.374.)
Theorem 1.2.6. Let f € L'(S') and f(0) = 0. Define

F(t) = /Ot F(s) ds.

Then F' is continuous 2m-periodic function and

m

F(n) = f(n)7 n # 0.

Proof. For t, — tg
2

F(ty) — F(to) = 0 X[to,tk)(s)f(s) ds.

Since Xit,t,)(5)f(s) = 0 point wise a.e. and f € L'(S'), by DCT, it follows that

F(ty) — F(tg) = 0 as k — oo.

6
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Hence, F is continuous on S*.
Notice that

l l 27
SR = F(ten)l £ [ X ()| (9)lds.
k=1 k=170

Hence, RHS tends to “0" when I — oco. This implies that F' is absolutely continuous. Thus, F' is
differentiable a.e. Also

t+2m
F(t +27) — F(t) :/t f(s)ds = F(0) = 0.

Now, integrating by parts, we get

F 1 21 _th 21 *Znt d 1
(n) = 5- /0 - / —Jat = —f(n)

Example 1.2.7. Let f(6) =60, —7m < 0 < 7. Then

. n+1
f(n) = 27T/ pe-intgg — TV g

m

£(0) = 0. Thus,
(— 1)”*1 < 1)" lsing

_22

It’s easy to see that Series on RHS is pointwise convergent, but showing it converges to f(0)

is not easy, as we see later!

_ (m=0)?
Example 1.2.8. f(0) = 5, 0<0 <27

The Fourier Series is uniformly convergent, but it converges to f(6) is not easy.

Theorem 1.2.9. For f,g € L'(S'). Define convolution of f and g by

h(t) = f+g(t) = f(t — s)g(s)ds.

27 Jo

Then h € LY(SY) and ||h|1 < |If]l1]lgll1,
moreover, fz(n) = f(n)ﬁ(n)
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Proof.
[ < o [ (1= ollgt)ids ) as
. % / ( / £(t — $)|dt)]g(s)|ds (by Fubini’s theorem)
= = [ Uflhlo(s)ids = s g
Further,

Question 1.2.10. Does there exists f,g € L'(S') such that f * g(s) = 1?

Let f € L'(S') and o(t) = €™, then

03 10) = 5 [ Fs)em s = e fi).

2
Hence, if
N .
Py(t) = Z cne™,
n=—N
then
N A .
Py x f(t) = Z cnf(n)e™,
n=—N

that is convolution of a trigonometric polynomialnomial with any function is a trigonometric

polynomialnomialnomial. Now, consider the Fourier series of f € L!(S!) as
0 A .
@)~ > fln)e™.
n=-—o0o
Let

N

N
Dy(t)= > €™ and Sn(f)(t)= > f(n)e™.
n=—N n=—N

Then
Sn(f)(t) = Dy = f(t).

8
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The function Dy is known as Dirichlet kernel. Further,

sin (N + 3)t)

Dn(t) = T ein(t2)

t#0
and Dy (0) = 2N + 1. (Hint: put w = e, then Dy(t) is the sum of two geometric series, etc.)

Hence, the earlier question of convergence of Fourier series can be rephrased as:

Question 1.2.11. Whether the partial sum of the sequence Sy (f) converges to f point wise.
That is,

Jim Dy f(6) = f(1) ? (4)

Recall back the heat-equation (steady-state):
AU =0, U(r,0)= Zamﬂm'eime

Let

P.(0) = Z rimlemd 0 <r < 1,0 €[]

m=—0o0

Then the series on RHS converges absolutely and uniformly. Hence,

A

P.(m) =rl™ and we have

P.x f(0) = i f(m)rmleimd

m=—0o0

The function P, () is known as Poisson kernel and can be represented as

1—1r2

T 1—2rcosf+ 12

P,(0)

(Hint: Series for P,(0) in terms of two geometric series, etc.)

Thus, we can ask when
. _ B
lim P % f(0) = f(6)

The function P, * f is called the Abel mean of Fourier series S(f).
Now, the question is, does there exist a family of “good kernels" (i.e., weight functions or

averaging functions) for the Fourier series that leads the series to the given function?
That is, if f € L'(S!), can we find a sequence K,, € L'(S!) such that f * K, — f?

Definition 1.2.12. A sequence of functions {K,,}>2 is “good kernels" if
(i) o= [T Kn(t)dt =1, foralln>1.

(ii) There exists M > 0 such that 5= [ |K,(t)|dt < M, for all n > 1.
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(ili) For each 6 >0, [54<x [Kn(t)|dt — 0 as n — oco.

Theorem 1.2.13. Let {K,}52, be a sequence of good kernels on [—m, x| and f € R([—m,])
(Riemann integrable).

Then (f x Ky)(z) — f(z) if © is a point of continuity of f, and the above limit is uniform if
f is continuous on [—m, 7).

Proof. Since f is continuous at z, for € > 0, there exists § > 0 such that |f(z —y) — f(x)| <
e, for all |y| < d. Now

£ K@) = f(a) = 5 [ K@l =) = Fa)ldy (by propesty (i) of K,)

= 1f 5 Kaw) ~ @) < o [ | Kalg)lFa —y) — F@)ldy

ly|<d

1
tom [ K-y~ f@)dy
T Jo<|yl<m
€ 2B
< = K, (y)|dy + == K, (y)|dy,
5 |y\<5’ Y)ldy + 6§|y|sfr‘ (v)|dy

where | f(z)] < B, for all x € [—m,n]. This implies
|f * Kp(z) — f(x)] < Ce for large n.

If f is continuous on [—, 7], then we can find one > 0 that serves for each x. Hence f* K,, — f

uniformly in this case. O

Corollary 1.2.14. If {K,}°, is a sequence of good kernels in L*(S') and f € L*(SY), then
f*K,— f in LY (Sh).

Proof. Since C([—m,n]) = L*([—m,7]), for f € L' and € > 0, there exists g continuous such that
|f(x) —g(x)| <€ for all z € [—7,x|. That is,

1 = glly < 2me.

From the above result g * K, (z) — g uniformly, that is
lg * Kn(z) — g(z)| < € for large n, and for all

= |lg *x K, — gl|1 < 2me (2)

10
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This implies,

1 * Kn = fllt < (I(f = 9) * Knlli + lg * Kn — gl + || f = glh
< If = gl Knlly + dme
<el+4me
for large n. O
Remark 1.2.15. Dirichlet Kernel is not a good kernel for Fourier series.
sin ((n + %)t)

D)= —omy

40,

Since |sinz| < |z|, it follows that

/_7; Do (b)|dt > i/ow sin ((n+ ;)t)‘ %

2 [nts)m dt
= —/ | sin t|—
0 t

™

2 s [ int
72/ | sin ‘dt
Tk

225 L[ Jsintia
- - S1848
T kT e

4 1
=m0
k=1

Y

as n — oo. That is, Dirichlet Kernel D,, fails to satisfy property of a good kernel.

In fact, it is also clear from the above calculation that
/ IDW(t)]dt 40 as n— oo
o<[t|<m

However, |
7/ Dy (t)dt = 1.

T™J—7

Thus, if we write

where

k
Dk(t) = Z €th,

I=—k

then we can show that {F,}°2 is a family of good Kernel. This is known as Fejer Kernels,

11
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and F}, * f is known as Cesaro sum of the Fourier series for f.

In general, for a sequence {a,}52, of complex numbers, let S, = a1 + ...+ a,. Then the

series Y a, is said to be Cesaro summable if

S1+--+ Sy
op = —"""—
n
is convergent.
Example 1.2.16.
o
1—1+41-14--=> (-1
n=0

then S, =0 (if n even), S,, = 1 (if n odd), and hence o,, = /2L, 3.

n

Let

Since S,,(f) = f * Dy, it follows that o,(f) = f * F,,, where

__l)o%—l)l%—...%—l)nfl
- .

Fy

s2( nx
Exercise 1.2.17. (i) Fy(z) = 1= (%) g #0.

n i (3)

(ii) F,(0) =1 (since F,, continuous at x = 0).
(ili) 5= 7. Fu(t)dt = 1.
Notice that for > 0, there exists ¢s > 0 such that

sin? (g) >c5, 0 <|z|<m.

Hence, F,(z) < nica, VY > 6. Therefore,

—0)1
/ Fn(az)dul:g(7T )——>0asn%oo.
§< || <m s on

Hence {F,,}92, is a family of good kernels.
Thus, if f € R[—m, x|, then the Fourier series is Cesdro summable to f at the point of

continuity of f, and uniformly Cesaro summable if f is continuous.

~

Remark 1.2.18. If f € R[—m, 7] and f(n) =0 for all n € Z, then f = 0 at all points of continuity
of f. Since

SN =3 Fikyet =,

k=—n

12
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JeFut)=0 = f(t) =0,

if f is continuous at t.

1.3 Uniqueness Theorem

Theorem 1.3.1. If f € L'(S') is such that f(m) =0 for allm € Z, then f =0 on St a.e.

Proof. For f € L(S') and € > 0, there exists g € C(S!) such that ||f — g||1 < €. Now

£l < IIf * Fo = fla
SWf*Fo—gxFolli+lg* Fo—glli +llg — flt
<|f=gli-14+lg*Ep—gli+1lg— fl-

Since g is continuous, for € > 0, ||g * F,, — g||1 < € for n > Ny. Hence,
| f]l1 < 3¢ for all € > 0.

Thus, ||f]1 =0 < f=0ae. O

Remark 1.3.2. A continuous function on S! can be uniformly approximated by trigonometric
polynomialnomials. That is, if f € C[—m, 7] and f(—m) = f(x), then o,(f) = fx F, is a
trigonometric polynomialnomialnomial and we know that f x F,, — f uniformly. That is,
{f*F,:neN}isdensein {f € Cl—m,x]: f(r) = f(—7)}.

We also mention that if f € L*(S'), then for € > 0, there exists Ny € N such that

[f* Fn— flli <€, n>No.

Hence, trigonometric polynomialnomials are dense in L!(S%).

1.4 Riemann-Lebesgue Lemma
Lemma 1.4.1. If f € L*(S?), then limy,| o, f(n) = 0.

Proof. For € > 0, there exists a trigonometric polynomialnomial P such that ||f — P||; < € (
where P = f % F}, etc.). Let |n| > deg P. Then

[f(m)] = 1f(n) = P(m)| < |f = Plh <e, if |n] > deg P.

That is, |f(n)| < e for large n. Hence, limyp,| 00 f(n) =o0. O

13
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1.5 Abel Means Summability
A series Y 07 ay is said to be Abel summable to s if the series

A(r) = Z anr"
n=0

is convergent for each 0 <r < 1, and lim,_,; A(r) = s.

Example 1.5.1. Every convergent series is Abel summable. Consider

1—2+3—4+5—---:i(—l)”(n+1).
n=0
Then
> n n 1 1
A(r) :;::O(—l) (n+1)r" = TESE — 1

Show that the above series is not Cesaro summable.

Now, consider the Fourier series of f € R[—m, 7] as

f)~ > fye™

Let -
41O = Y ()t
then
A f(0) = (f = Pr)(0)
where - )
P.(0) = Z pinleind — L-r

1 —2rcosf + r2

n=—oo

Lemma 1.5.2. P.(0) is a good kernel in the following sense:
() L [P0)d0=1

(i) limy—1 [5<|pj<q Pr(0)d0 =0,  for all 6> 0.

Proof. (i) easily follows from (x), since the series converges uniformly for each 0 < r < 1.

To prove (ii), let % <r < 1. Then

1—2rcosf+7r%=(1—r)2+2r(1—cosb)

14
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For 0 <6 < |0] <m, 1—2rcosf +r? > c5. Hence,

1—r2
Cs

P.(9) < for all 6 > 0.

1 1—r2
P(0)do < ——"

= — —0asr—1.
21 Js<jo)<r s

Theorem 1.5.3. Let f € R[—m,7|. Then
(i) A f(0) = (Prx f)(0) — f(0), if 0 is a point of continuity of f.
(i) A,f — f uniformly if f is continuous.

Proof. Proof of this result is same as for the Fejer kernel when we consider continuous parameter
r e (0,1). O

Corollary 1.5.4. Since C(S') = L(S'), it follows that
|Prxf—fli—=0asr—1 forfe L'Y(Sh

Theorem 1.5.5. Let U(r,0) = f x P.(8). Then
(i) U is twice differentiable on the unit disc D = {re?® : 0 <r < 1,—7 <0 < 7}

(iii) If 0 is a point of continuity of f, then U(r,0) — f(6) as r — 1, and the limit is uniform if

f is continuous on E = [—7, .
(iii) If f is continuous on E = [—m, 7|, then U(r,0) is the unique solution of AU = 0 with
lim,_; U(r,0) = f(0).
Proof. (i)
U(r,0) = i r'”'f(n)eme

Since the series and its derivative (with respect to r and ), both are uniformly convergent,

term-by-term differentiation is allowed. In fact, U(r,8) € C*°-function on D. Since

QU 19U | 19°U

AU = Or? +;87‘ +7“72W

it is easy to verify AU =0, if U = P, % f. A proof for (i) is followed by the previous result.
(iii) Let v(r,0) be another solution of AU = 0 with lim,_,; v(r,8) = f(#). Then

v(r,0) = Z an(r)e™? (. Av=0)

n=—0oo

15
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where

an (1) 1 / e~M%(r,0) do

=5 ]
Since v is two times differentiable,

1 [ 92
o ). 92"

r,0)e "™ dh = —n2a,(r).
(

Hence, from

Av—ai%—i-}@—f—i@—o
Cor2  ror  r2062 7

it follows that

This gives
an(r) = Apr™ + Bpr™ ", if n #£ 0.

Since v is bounded on D, letting » — 0 implies B, = 0. That is,

U(T, 9) = ZAn,rneZne unlfﬂ> f(@)

_ 1 —inf
— A, = 27r/f(¢9)e do.

For n =0, Ao(r) = Ao = 5= [™ f(t)dt. Thus for each 0 < r < 1, Fourier series of v is same as

for u. By uniqueness it follows that u = v.

Exercise 1.5.6. If {J,,}2°, and {K,}>° are two families of good kernels for L!(S!), then

{Jn * K, }22; is a good kernel for L(S1).

(i)

1 qm Lo
1 ™ 1 1 s
=% (27r [ - 8>dt) Fin(s)ds
1 i

=3 / 1-kn(s)ds (since L'(S!) is translation invariant)
wJ_
1

(i)
1 ™ 1 ™
— < — <
o [ Vs ka0l < o [ﬂM|kn(s)|ds < MN < 0

16
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(iii) Let d > 0, then

™

/5<|t|S7r B x Tn(B)ldt < /s:—7r </6<|t§7r [ Kt = S)Idt> |Jn(s)|ds

Let |s| < /2, then r =t —s € (—0/2,6/2). Now

(**)/ (/ !Kn(r)\dr> |Jn(8)]|ds — 0 as n — oo,
|s|<d/2 d/2<|r|<m

since [5 /o s_t|<x [Kn(t — s)|dt = 0 as n — co. (Exercise)

Since |s| < §/2, (use the fact that 7, f — f is continuous on L'(S')). That is, if
/ Ko(D)]dt — 0 for all § > 0,
o<|t|<m

then

/6<t|<7r(TsK”(t) — Ky (t))dt

< /{MSW (B (t) — Kn()|dt < €

For e > 0, there exists ng € N, such that [, |Kn(t)|dt < € for all n > ng and for small |s| < L.

However,
/ Koy (= 8)||Jn(s)|ds dt < / M| J(s)|ds — 0 as n — oc.
|s|>6/2 J|t|>d |s|>d/2
Lemma 1.5.7. Let f : [—m,m| — C be such that

\f(x) = fy)| < M|z —y| forall z,y € -7, 7]

for some M > 0. Then Sn(f) — f uniformly. Note that |x — y| = min{|x — y|, |z — y £+ 27|},

that is, the distance between x and y modulo 2.

Proof. Calculate

Since

S0 (F) (@) — f@)] < — ‘/Z(f(x . f(a:));:zg sin nt dt‘

/7r (flx —t)— f(:r))cosntdt’.

—Tr

17
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Let
f( +f/)2_ f() cos %, t #0.

g(t) =

Then |g(t)| < 2M |27, if t # 0.

Since limy_sq smt(/% =1, it follows that g is a bounded function on [—m, 7| and continuous on
[, 7]\ {0}. Hence, g € R[—m,7].
Let h(t) = f(x —t) — f(x). Then

|Sn(f)(x) — 71‘/ ) sin(nt)dt| + 7‘/ t) cos(nt)dt|

- 2
§| 9(n) = 9(=n)| + *lh( ) + h(=n)| = 0 (by R-L Lemma)
whenever = € [—7, 7. O
Corollary 1.5.8. If f € R[—m, 7| and f is differentiable at xo, then S, (f)(xo) = f(x0).
Define g(t) = {f(xo_t?t_f(%) £ 7 0;
—f'(zg), otherwise
Corollary 1.5.9. If f € C'[—m, 7|, then Sp(f) — f uniformly. (Hint: Use MVT.)
Notice that if f is piecewise C'!-function, then S, (f) — f uniformly too.

Question 1.5.10. Does every continuous function f on S! have a Fourier series which converges
to f at each point of S1?

To discuss this, we need the following lemma.

Lemma 1.5.11. Let f € R[—m, 7] and f is bounded on [—m,n| by M. Then there exists a

sequence fy, of continuous functions on [—m, | such that
(1) |fn(x)] <M foralln eN, x € [—m, 7).
(it) [™_|fn(z) — f(z)|dz — 0 as n — oc.

Proof. First consider f as a real-valued function. For € > 0, there exists a partition P of [—m, 7]
such that

U(P, f) = L(P, f) <&, (1)

where

For = € [x;_1,x;], define g(x) = sup{f(y) : zi—1 <y < z;}. Then g is bounded by M.

[ l9@) = f@)lde = [ (g@) ~ f@)dz < by (1)

—T —T
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Let § > 0 and x € (x; — 0, x; +0), define g(x) be the linear function joining g(x —¢) and g(x +9),
and ¢ = 0 near —m and 7. Then § is a continuous periodic function which differs with g on N

many intervals, each of length less than 26 surrounding the partitioning points. Hence,

[ lgt@) - @) dz < (21)N (26).

—T

For ¢ sufficiently small,

[ lata) - gl d < e

— [ 1@~ (@)l dz < 2.

For 2¢ = 1, take § = f,,. Thus

n

/7T |f(z) = fu(x)lde =0 as n — .

O

Remark 1.5.12. If f € R[—m, ] has only finitely many points of discontinuity, then g, (z) — f(z)
point-wise.
Now, let X = C(S!) and define A, : X — X by

Then {A,} is a sequence of linear functionals on X and
[An(HI < [1Dallillflloc == l[Anll < [ Dl

We claim that [[Ay|| = [|Dyll1 that is ||Ay]] = J7 [ Dn(t)| dt.

For this, let g(t) = sign D,,(t). Then for each fixed n, g has only finitely many points of
discontinuity. Hence, there exists g, € C|—m, 7| such that |g,(¢)] < 1 and g,(t) = g(t) as n — o
for each t € [—m, 7] (by previous lemma). Therefore

™

n}grloo An(gm) = lim gm(_t)Dn(t) dt

m—oo | _

= [ g0Davrd by DCT)

—T

— [ IDu®)1dt = |Dall

Thus,
IAnl] = || Dnlli = 00 as n— oo.
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That is, {A,}52 is not a uniformly bounded sequence in B(X, D), hence by Uniform Boundedness
Principle (UBP), there exists f € C([—m,n]) such that A,(f) = S,(f)(0) is not bounded.
Therefore, the F.S. (Fourier Series) of f at 0 does not converge to f(0).

Notice that by translation we can show that for each x € [—m, 7], there exists a function
f € C[—m, ] whosee Fourier series does not converge to f(x) at x. In fact, for each z € [—7, 7],
we can create a dense class of continuous functions say E, such that S, (f)(z) — oo (see Rudin,
Real & Complex).

1.6 Convergence of Fourier Series in L?(S')

We have seen that the Fourier series of f € C(S') need not converge to f uniformly. Similarly,
we can also see that the Fourier series of f € L!(S!) need not converge to f in L'-norm. ( For
this, define A, (f) = S,.(f), f € L*(S') and use ||F,,||; = 1). However, because of the self-duality
of the space L?(S1), for f € L%(S!), we shall see that S, (f) — f in L?-norm.

For f,g € L?(S"), define an inner product by

1 2 -
(fr9)=5=1{ [f(0)g(0)dd

2 Jo

and

1 2m
1718 = 5= [ 17(0)as

Let e,(0) = ¢™. Then {e, : n € Z} forms an orthonormal system (ONS) in L?(S'), because

0, m#n
(ensem) = { 7

1, m=n

Let

1 2 .
(f.en) = o ft)e ™Mt = a,.
Then
Sn(f)= D anen.
In|<N
Note that
f— Z anen L e, forall n| <N
[n|<N
Hence,

(f— Z anen) 1L Z bnen

In|<N In|<N

whenever b, € C.
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By the Pythagorean theorem,

f=r- Z (nén + Z AnCn,

[n|<N In|<N

it follows that

IFIZ =1 = D anenl3+ D lanf

In|<N In|<N
or
I3 =1f = Sn(AHIZ+ D lanl? (1)
In|<N

Since f € L?(SY), we get Pinl<N lan|? < ||f||3 for each N € N (Bessel’s inequality).

1.7 Best Approximation Lemma

Lemma 1.7.1. Let f € L2[0,27] and a, = f(n). Then

If = Sn(Hllz < If = D cnenll2

[n|<N
for any sequence (c,) C C. Moreover, equality holds if ¢, = ay, for all In| < N.

Proof.
f_ Z Cnen:f_SN(f)+ Z (an_cn)en

[n|<N [n|<N
Let a, — ¢, = b,. Then by orthogonality,

2 2

= |If = Sn (N3 +
2

Z bnen

n|<N

Hf_ Z Cn€n

In|<N

2

So,
If = Sn(ll2 < Hf - chenHQ.

But equality holds if and only if ||Ybyen|l5 = 0, if and only if b, = 0. That is, Fourier

approximation is best among any other approximation of the form ZInIS N Cnén. ]

1.8 Mean Square Convergence

Theorem 1.8.1. If f € R[—mn, 7|, then

% /7r F(2) — S (F)(@)Pdz — 0 as N — oo
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(i.e. | f = Sn(f)l2 = 0).

Proof. First, we suppose f is continuous. Then for € > 0, there exists a trigonometric polynomi-
alnomial P such that
|f(z) — P(z)| <e forall ze|—mmn]|.

Let deg P = k. Then (P, e,) # 0 for |n| = k, and by the best approximation lemma,

1 s
If —Sn(H)3 < o | |f(m) — P(z)|?dz <e forall N>k

Now, if f € R[—m, x|, then for ¢ > 0, there exists g € C[—m, 7] such that

sup |g(z)| < sup [f(x)] < M

and
/|f z)|dr < €
Hence,
If—glls = o / z)||f(z) — g(x)|dx < %62 (2)
Since
lg — Sn(g)|l2 < € for all N > k, (3)

from (2) and (3), we get

1f = Sn(Hll2 < I = gll2 + lg = Sn(g)ll2 + [Sn(g = fll2

M
<\aoetet Y- o) o)l
In|<M

M

<y Tetetlf - gl3
| M

< {/—e€+2¢forall N > k.
T

Corollary 1.8.2. If f € L*(SY), then ||f — Sx(f)|]2 — O.

Since
R[—n, 7] = L*[—, 7]

Further,
113 =1F = Sn(DIZ+ Y lanl?

[n|<N
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implies
[e.e]

2 _ 1 2 _ ny 2 ) .
Ifllz = A}gnoo Z lan|” = Z |f(n)]* (Parseval’s Identity).
In|<N n=-00
The set {e,, : n € Z} is a complete orthonormal system (ONS). For this, let f € L?(S!) and
(f,en) =0, for all n € N. Then, f = 0 by uniqueness of Fourier series, since L?(S') C L?(S!).
Now, for f,g € L?(S')

<fag> = <]\}1_r>n Z <f7 €n>enag> = J\;gnoozwc’ €n><enag> = Z<f7 en><g,en)

0o
In|<N

that is

(fg)=> fm)j(n)

n=—0oo

Exercise 1.8.3. Let 300 |an|? < co. Then there exists a unique f € L?(S') such that

n—

A

fn) = ay,.
Proof. Consider
Z anen(t) = Z an e
then ,
Z ‘anemt‘ = Z |an]? -1 < 0.

That is, 3 a,e™ is absolutely summable in L?(S!). Set f = 3" a,e™. Then f € L?(S!) and
(f,en) = an = f (n). Since the Fourier series of any L? function is unique, it follows that f must

be unique. ]

Now we end the topic of Fourier series by the following optimal result about the convergence

of the Fourier series.

Theorem 1.8.4. Let f € R[—n,n] and f(n) = O(1/n). Then S,(f)(t) — f(t) if t is a point of

continuity of f; and the limit is uniform if f is continuous on [—m, 7).
Proof. We know that
n

il = 3 (1= ) s = sunn - e

Since o, (f;t) — f(t) at the point of continuity of f, we need to show that the residual in the
RHS is negligible. For 0 < n < m, define
m T n 1o, yU) — Lom ;
o fit) = Sm1(S)(E) +---+ Su(S)(E) _ (n+Dona(fit) = (m+ Domia(f;1) 1)

n—m n—m
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Thus,
n+1-—
Umn—S + Z 7|j| (])697

n—m
m<|j|<n

where e;(t) = e*!. For each fixed k € N, from (1),

{(E+1)n+ 1} ogq1yn (fit) — (kn + 1)ogn1(f;51)
Tn,(k+1)n([3 1) = -
— (k+1)f(t) —kf(t) = f(t) asn — oo
Further, if nk < m < (k + 1)n, then
(k+1)n

2nA 24

|‘7kn (k+1) n(fit) = Sm(fit)] < Z <2 Z - S Tk
kn<|j|<(k+1)n j=nk+1 J

Now, for fixed kg, choose ng > kg such that for all n > ng

|kom, (ko + 1) (f38) = (D) <e/2 (3)

For € > 0, select kg so large that 24/ky < €/2. Then for m > kgng, and for some n > ny,
kong < kogn <m < (k’o + 1)7”L,

<

Thon sl F51) — Sm(£)(O)] < 2

€
2

From (3) and (4), for m > kong = Ny (say), we get |Sp(f)(t) — f(t)] < e.

1.9 Isoperimetric problem

Theorem 1.9.1. Let v be a simple closed curve in R? of length 1, and it encloses the area A.
Then A < %. Equality holds if and only if v is a circle.

1
Proof. By using dilation, we can assume that [ = 27. Then A < 7. Let ~ : [0, 27] 5 R? be
given by ~(t) = (z(t),y(t)), such that

(@' (1) + (y'(1)* = 1.

(i.e. v was traced by a particle with constant speed). Then

1 2w

o [ (@O + G 0))dt =1 (1)
™Jo
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Since 7 is closed, x(t) and y(t) are 2m-periodic. Hence,

x(t) ~ Z ane™, y(t) ~ Z bne™.

As 7 is given smooth, v can be considered to be a continuously differentiable curve, i.e. v €
C*(]0,27]), and

2 (t) ~ Z(in)anemt, y'(t) ~ Z(in)bnemt
By the Parseval identity, (1) gives

o

Y. nP(lanf® + baf*) =1 (2)

n=—0oo

Since z(t) and y(t) are real-valued, we have a,, = @—, and b,, = b_,,. Now, by bilinear form of

the Parseval identity,

o0

Z n(anby — bnay) (3)

n=—oo

A=—

[ o) - 2 Oy ==

Here,
|anbpn — butn| < 2|an||bn| < |an|? + |bp|?

Since |n| < n?, from (3) we get:
A<y [ (lanl® +[bal?) =7 (by (2))
When A =, it follows that
x(t) = a_1e” "+ ap + are’ and y(t) = bore 4+ by + bret (from (3))

From (2),

2(|‘11|2 + |b1|2) =1, ( since a_1 =ag, b1 = (71)

that is

1. 1 .
a) = §€m’ by = 56’5
The fact that 1 = 2|a1b; — biagl, we get
|sin(a —B)| =1 = a=p8=kr/2

= z(t) = ap £ cos(a + t), y(t) = b £ sin(a + ¢).
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1.10 Exercise

1. Determine whether each of the following statements is TRUE or FALSE, providing

rigorous justification in each case.

(a) Let D,, denote the Dirichlet kernel on S 1. Does the identity D,, * D,, = D,, necessarily
hold?

(b) Does there exist a function f € L*(S') such that § Inf(n)]? = co?

n=—oo

2. Suppose f is continuously differentiable on S'. Show that

o~

f'(n) =inf(n) forall n € Z.
Deduce that there exists a constant C > 0 such that

)< &

= Inl’
Does this conclusion remain valid if f is absolutely continuous?

3. Let f be of bounded variation on [—m,7]. Prove that

for all n € Z.

4. For f € L'(S'), establish that

fo = o [ 1r@ ~ £ (24 7)) .

—m
Use this identity to prove the Riemann—Lebesgue lemma.

5. Let f € L'(S') satisfy the Hélder condition
[f(z+h) = f(x)| < M|h|*

for all ,h € S, where 0 < & < 1 and M > 0. Show that

f0-0(3),
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6.

10.

11.

12.

13.

Demonstrate that Fejér’s kernel F), can be expressed as
n

Ro= S (1o U)o

j=—n "

Given f € L'(S') and m € N, define f,,(t) = f(mt). Prove that

T

0, otherwise.

. For f:S! — C, and for z,y € S!, define the translation operator 7, f(y) = f(x —y). Prove

that the map z + 7, f is continuous in LP(S') for 1 < p < co. That is,
|7ef — fllp = 0 as|z] = 0.

Does this continuity hold for p = co?

. Let f € L'(S1) and g € L>°(S1). Show that

tin, - [ 0g(nt) de = F(0)3(0).

Given f € L'(S'), define the convolution operator Ty : L' (S') — LY(S1) by T¢(g) = f * g.

Prove that T is a bounded operator and that its operator norm satisfies
IT¢ll = NI 11

Let P be a trigonometric polynomialnomial of degree n on S'. Show that

1P [loc < 20| Plloc-

For 1 <p<oowithpl+¢ ! =1,and f € LP(S'), g € LI(S!), prove that the convolution

f * g is continuous on S*.

Suppose f € L®(S!) satisfies
- k
fn)] < —
fol < o

for some constant k > 0 and all n € Z \ {0}. Prove that
1Sn (D] < (I flloo + 2,
where S, (f) = Dy, * f.
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14.

15.

16.

17.

18.

19.

20.

If f is a bounded monotone function on S', show that

A 1
fm=0().
In|
Let f be Riemann integrable on [—, 7]. Prove that
oo

> 1f)P <,

n=—oo

from which it follows that f(n) = o(1).

Prove that if the series } "2 a, of complex numbers converges to s, then it is both Cesaro

and Abel summable to s.

Prove that if the series )2 a, is Cesaro summable to o, then it is Abel summable to o.

Show by counterexample that the converse need not hold.

Suppose the series Y oo a, is Cesaro summable to [. Show that

. Gnp
lim — =0,
n—oo

where s, = a1 + -+ + an,.

Define u(r,0) = %IZT (), where P,(6) is the Poisson kernel on the open unit disk D = {re? :
0<r<1,0¢c[—mm)} Prove that

Au=0 onD

and
lirq u(r,0) =0

T

for every 0 € [—m, 7).

Let f be Riemann integrable on [—7, 7| and define the Abel mean
A (f)(0)=f*P(0), 0<r<l.

If f has a jump discontinuity at 6, prove that

10%) +1(67)

1im 4,(7)(6) = 772
Provide justification for why
: f(9)
lim Ar(f)(0) # En
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when f is continuous at 6.

21. Let f be Riemann integrable on [—m, 7] and 0, (f)(0) = f x F,,(0), where F,, is Fejér’s
kernel. If f has a jump discontinuity at 6, prove that

lim on(f)(0) = 1O HSO7)

n—00 2

22. Suppose f is Riemann integrable on [—m, 7] such that
A 1
f(n)=0 <||> for all n € Z.
n

Prove the following assertions:

(a) If f is continuous at 6, then
SN(f)(0) = Dy = f(0) — f(0) as N — oo.

(b) If f has a jump discontinuity at 0, then

fOF) + £(67)

Sn(ne) » =1

as N — oo.

(c) If f is continuous on [—m, 7|, then the convergence

Sn(f) = f

is uniform.

23. Assume f is a Lebesgue measurable function on S' satisfying

/2ﬂwt)’dt<oo.
0 t

Show that
Jim 5, (f;0) = 0.

24. For f € L%(S1), prove that
1 n—1 k R
> 1 (a4 1) = F0)
n = n

in the L2-metric as n — oo.
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25. Does there exist a function f € L'(S') such that

[e.e]

> 1)) =oo?

n=—oo
26. Suppose f € L'(S') vanishes on a neighborhood of x = 0. Prove that

SN(f) — 0

uniformly near z = 0.

27. Let f be a function on [—, 7] satisfying the Lipschitz condition

1£(0) = f(e)] < MO — ¢l

for some M > 0 and all 0, ¢ € [—7,7].
(a) For
u(r,9) =P x f(0)7
show that % exists for all 0 < r < 1 and that

ou

— | < M.
00|~

(b) Demonstrate that

o0 o

> 1fm) < 1f )] +2M Z

n=—0o0 n=1

28. If f is continuously differentiable on S*, show that
o0

> @+ ()

n=—00
29. Let {G,}5°, be a family of good kernels on S!. Prove that

lim G, (k) =1.

n—oo

30. Let f and g be Riemann integrable on [—, 7]. Define g(z) = g(—=x).
(a) Show that
1 /7 -
o | la®F dt = (g4 5)(0).

2 J_»
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31.

32.

33.

34.

35.

36.

37.

(b) Show that

o [ ro@Pdr= o [ (9@ da.

—T

Let f € LY(SY) satisfy f(|n|) = —f(—=|n|) > 0 for all n € Z. Show that

ngln)<oo.

n>0

If {K,}22, and {J,}5°, are families of good kernels on S', show that { K, * J,}°°; is also

a family of good kernels.

Suppose f is absolutely continuous on S with f' € L?(S'). Prove that

00 ~ > 1
o 1 < flh +2, Zﬁllf’llz-
n=—00 n=1

Show that there exists a function f € L!(S!) for which the partial sums S, (f) of its Fourier

series fail to converge to f in the L'-norm.

Let f € L*(S') and S,,(f) denote the n-th partial sum of the Fourier series of f. Show that

HSn(f)

n

—0 asn — co.

1

If f is Riemann integrable on [—m, 7] and differentiable at to € [—m, 7|, prove that

Sn(fito) = f(to) asn — oo.

Suppose f € C(S?) satisfies
(f =L+ ) = ()

for all t € S'. Prove that f is a trigonometric polynomialnomialnomial.
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Chapter 2

The Fourier Transform

On R", translations form a non-compact abelian group, so the Fourier expansion of a non-
periodic function is no longer discrete. The Fourier transform replaces the Fourier coefficients
{f(n)Ynez by a continuous frequency variable & € R™. It linearizes convolution, converts
differentiation into multiplication, and provides the natural L? isometry (Plancherel).

Learning objectives.
e Understand characters of R™ and how they motivate the definition of the Fourier transform.

o Prove the basic identities: translation/modulation, scaling, convolution, and differentiation

rules.

 Establish inversion and the Plancherel theorem, and see how LP estimates (Hausdorff-Young,

Young) fit into the picture.

Fourier analysis may be viewed as the systematic study of functions through the exploitation
of their underlying symmetries. In the case of Fourier series, we observed that when a function
is periodic on R, it suffices to restrict attention to a single fundamental period. Each period
contributes precisely one Fourier coefficient, so that the entire function is encoded by a countable
collection of complex numbers. By contrast, when f is not periodic, a different framework is
required, though the central idea remains the same: to understand how a function on R™ (or on
T™) transforms under the action of translations.

Suppose the function f transforms under the translation by a multiplication of absolute value
1. That is,

fl+y)=¢@)f(y), where [p(z)]=1.

Then
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That is, f is completely determined by ¢. Moreover,
p(@)e(y) f(0) = (@) f(y) = f(z +y) = ¢z +y)f(0)
— vz +y) =e@)ely), f#0.
Hence, to determine all such f that transform as above, it is enough to find out those ¢ such that
oz +y) = ox)e(y).

Theorem 2.0.1 (Characters of R™). Let ¢ : R™ — C be measurable and satisfy
ol +y)=e@ely), le@)|=1  zyeR"
Then there exists £ € R™ such that
o(x) = ¥t x € R"™.

Proof. We first treat the case n = 1. Since |p| = 1, we have ¢ € LL (R). Choose a € R such
that / @(t)dt # 0 and set A~! = [ p(t)dt. Using p(z +t) = p(z)p(t) we obtain
0

o(x) = A/Oago(:c—l-t) dt = A/;—Fago(t) dt.

In particular, ¢ is continuous (as a translate of an absolutely continuous primitive of ¢), hence

differentiable. Differentiating the identity above and using again the functional equation gives

¢'(x) = A(p(x 4 a) — p(x)) = A(p(a) — 1)p(x) =: Bp(z).

Solving the ODE yields op(x) = ¢5%, and the condition |p(x)| = 1 forces B = 2mi ¢ for some
£ eR.

For general n, let ey, ..., ey, be the standard basis and define ¢;(t) := p(te;). Each ¢; satisfies
the one-dimensional hypotheses, hence ¢;(t) = €2™% for some ¢; € R. Using the functional

equation repeatedly,
n n n ) )
QO(J,‘) =y Zﬁjej — H 90(13]'63‘) — H 627rz§jmj _ 627mm'§7
j=1 j=1 j=1

where € = (&1,...,&). O

Corollary 2.0.2. If ¢ : T — C measurable and o(x +y) = o(x)p(y) with |p(z)| = 1, then

o(z) = ¥ for some n € Z.
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Proof. Notice that ¢ is periodic with period 1 if and only if ©(0) = ¢(1), if and only if e*™¢ = 1
if and only if £ € Z. That is, p(x) = €2™"% n € Z.
O

Exercise 2.0.3. If ¢ : T" — C measurable and |p(z)| = 1,

(s +1) = p(s)p(t),

then show that
(P(t) — 627rit.o¢’ a € 7n

Thus, we conclude that those functions which transform as above, satisfying
f(x+y) =¥ f(y), for some & € R™ (or Z").

For the time being, we keep in mind the model eigenfunctions z — e2™®¢  which satisfy
flx+y) = ™8 f(y).

2.1 Definition of the Fourier transform

Definition 2.1.1. Let f € L*(R) (or L'(R")), then we define its Fourier transform by
O = [ e @) da.

Lemma 2.1.2. Let f € L'(R"). Then

(i) (ryf)(€) = eV f(€), where 7, f(2) = f(z —y).

(ii) If g(x) = €7 f(z), then §(¢) = f(& — @) = (7af)(&).

(iii) If g(x) = f(~x), then §(&) = f(€).

(iv) If g(x) = f(3),A > 0 then §(&) = AF(AE)

() |FOI < [If1 (uniformly bounded).

(vi) If f,g € LX(R™), then (f = g)"(&) = F(£)3(E).

(Hint: use Fubini’s theorem and change of variable.)

~»

Lemma 2.1.3. Let f € L'(R"), then f is uniformly continuous on R™.

Proof. Let zp,yn € R™, be such that |z, — y,| — 0. Then

|f(@n) = flyn)l = \ / FO e — e‘i?f"’f)dfl < / [F(€)[Je Fnmum) € — 1dg
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For each fixed &, ™€ is uniformly continuous. It follows by Dominated Convergence Theorem
(DCT) that
\f(zn) = flyn) = 0 as n — occ.

Hence f is uniformly continuous on R™.

Lemma 2.1.4. Let f € L'(R) and f is uniformly continuous. Then

lim f(z) =
|z|—o00
Proof. Suppose lim|;|_,«, f(z) # 0, then for some ¢y > 0, there exists x9 € R such that |f(zo)| >
€0, |zo| > ¢ for all 6 > 0. By continuity at g, there exists 6y > 0 such that if |x — zg| < dp implies
|f(x) — f(zo)| < % implies |f(z)| > €o/2. By uniform continuity, |f(z)| > €y/2 on each interval
of length 20g. Since y € (xo — 200,20 — o), |f(y)| > €0/2 = |vo —y| <o = [f(y)| > 2.

Hence

zo+(n+1)4
[ ey =3 [ F)ldy > 3 6+ c0/2 = 0
ly|>5 zo—ndo nel
0
We use this fact to prove the following result.
Theorem 2.1.5. Let f € L'(R) and xf(z) € L'(R), then f is differentiable and
216 = G
0¢ B
Proof.
h —zach 1
Notice that - -
e—zx o 1 e—’LZ‘ . 1
A AN .
- < |z, - — —izas h —0
Hence, the integrand on the RHS is bounded by |zf(z)| € L*(R). By DCT, it follows that
O = [ f@e " (—ia)da = (i) (©)
O

Theorem 2.1.6. Let f € L'(R), and F(z) = [*._ f(y)dy. If F € L'(R) then F(£) = L 7o),

3
£#0.
Equivalently, if f, f' € LY(R) then f/(€) = i&f(€) f' is the derivative of f.

.
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Proof. By Fundamental theorem of calculus (FTC), it follows that F/ = f a.e. on R. Since
F € L'(R), we have

—ixy

/ Flo)ewvdy = L0
— 00 —Y

Oo o0 iy AT
[ e
oo o0 -y
Since F(z)e~®¥ € L!(R) and uniformly continuous, by the previous Lemma 2.1.4,

Fly)=—fy), y#0

or
Fiy) =iyf'(y), if f, f € L'(R).
Il

Lemma 2.1.7. Let C°(R) be the space of all infinitely differentiable functions on R having
compact support. Then

C>(R) = L'(R).

Proof. Let f € L'(R). Since C.(R) = L'(R), for ¢ > 0, there exists g € C.(R) such that
lg — flli <e. Now, consider ¢ € C°(R) such that [z = 1. For t > 0, let ¢;(z) =t Lp(z/t).
Then [ ¢; = 1. Hence, g x ¢ € C°(R) (exercise). Now

g*pr(x) —g(z) = /(g(fv —y) —9(2))pe(y)dy = /(g(l‘ —tz) — g(x))p(2)dz (2.1.1)

= llg+ ¢t =gl < [ g - glle(2)ldz

For small ¢, |79 — g|| < e. By DCT it follows that ||g *x ¢ — g]i < € for all [t| < 4. So
llg * or — fll1 < 2e for all [t] < 4.
O

Exercise 2.1.8. For 1 < p < oo, show that

C&e(R) = LP(R),  Ce(R) = Co(R).

(Hint: use Minkowski integral inequality in (2.1.1).)

2.2 Riemann-Lebesgue Lemma

Theorem 2.2.1. If f € LY(R), then limg o0 f(§) =0.

Proof. Since f € LY(R), for € > 0, there exists g € C>°(R) such that ||g — |1 < e. Given g is
differentiable, ¢/(z) = (iz)g(z), by Theorem 2.1.6. So |z§(x)| < ||¢|l1 < oo. Hence [§(£)] — 0 as
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Now

1F€) =9I < |If — gl <e
Letting |z| — oo, then |J?(CC)| < e, for all € > 0. Which implies

~

lim f(z)=0.

|z|—00
]

Notice that (L'(R))" € Cy(R). In fact, the inclusion is injective but not surjective. That
is, every continuous function vanishing at oo need not be the Fourier transform (FT) of an L!
function. This is based on the fact that F.T. of an L' function can’t too far from being an L'
function.

Suppose g € Co(R) is an odd function such that ¢ = f, for some f € L'(R). Then
1b @ dz| < A < oo, where A is independent of b. This follows by the fact that | f |S0L| g <

B < oo, where B is free of choice of «a, 5 € R. Since f is odd (as ¢ is odd):

f(x) = —i/Rf(t) sin tx dt

Consider

|/7; £(t) (/j S“;t‘”da;> dt

_ |/if(t) (/f Sir;mdx> dt

< [ OB <I7hB <o

Notice that, by Fubini’s theorem we can interchange the integrals in above. Hence

‘/lbff)dx < |IfIhB < oo
But for
loéz x>0
g(z) = Wllxl z <0
0 z=0

Then g € C(R) and g is odd. However,
b1

/ dx
1 xlogx
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Example 2.2.2. Let f(z) = e ™, the Gaussian. Then

P = 1) = [ e () = 10

We know that
/e*”ﬁdaﬁ =1 (Exercise)

Now
/(€)= [ (~2mi) fw)emixd
= (=2mizf)N€) (since f,zf € LY(R))
= i(f")(€)( since f'(z) = —2mwe ™)
= i(2mi€) £(€)
= —27EF(€)

That is

F/(€) = —2nEF(¢)

d g2
— d—g(F(f)e “)=0
= F(ﬁ)e”g2 = const.

Since F(0) = 1, hence F(£) = e~ ™.

Remark 2.2.3. For § > 0, let fs(z) = 6%/2¢=™°/%_ Then fs(z) = e ™** — 0 as § — 0, however,
fs(x) = 1 as 6 — 0. Hence, we cannot see both f5 & ﬁ; exist together. That is, fs and f5 cannot

be localized together. (This is known as the Heisenberg uncertainty principle; we elaborate later.)

Example 2.2.4. If f(z) = e ™ then show that |f(z)| < H%

Lemma 2.2.5. Let f,h € L'(R) and
fla) = [ H(E)e s

for some H € L*(R), then
(h+ f)(w) = [ HEF(€)ed
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Proof.

=/hx—yfydy

= [ [ @ e ply)dyas

= [ ([ e " rway) e=ta

- [H©F O

2.3 Good Kernels on R

Next, we shall consider seq. of good kernel on R. Some more of it is known as summability kernel

(or approximation of identity).
Definition 2.3.1. A seq. of functions {K)} C L!(R) is said to be “good kernels” if
() [ Kx(z)de = 1
(i) [|Kx(x)|de < M as A — oo.
(ili) Jiz>5 [Ex(2)|dz — 0 as A — oo, for all 6 > 0.

We can easily construct a sequence of good kernels in the following way. Let f € L'(R) be
such that [p f(x)dr =1. Write K)(x) = Af(Az), A > 0. Then

i) [Kx(z)dz = [ f(y) 1 (put y = Az)
(i) [|Exll = £l < oo for all A > 0
(i) [ippss [EN@)d2 = [iysns [FWldy = [ (f = Xqyi<oxy )y,

Since f(x)—x{jyj<ony(x) = 0as A = oo and | f—xqy1<sn /| < 2/f| € L by DCT Jiazs 1 EA(@)] =
0 as A — oo. Hence, {K)} >0 is a family of good kernels.

Theorem 2.3.2. Let f € L'(R) (or f € LP(R), 1 <p < 00). Then
Jim [|f = Ky fllp = 0.
If f € L>(R) and f is continuous at x, then

lim (f * K))(x) = f(x).

A—00
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Proof.
Ky s f@) = 1@ < [ 1A =) = S@)ldy (1)

By Minkowski’s integral inequality (exercise), (if p > 1)
1K3s S =Ll < [ K@l f = flly dy

For small |y| < 9,
Iy f = fllp <€

Hence,

1Kxe s =l < [ 1Ky + [ 1KA@llf = Sl dy

<M+ / K () (2] £ [y
ly|>6

< eM + 2| f|lye, for 5> 0
If € L°(R), continuous at z, then from (1)
Ky f(@) = f@) < [ 1B = 9) = F(@)ldy
For small |y| <0, |f(z —y) — f(z)| < e. Hence,
| Ky f(x) = f(z)] < eM + 2 f|loce, for 6 > 0.

Therefore,
Kyx f(z) — f(z) as A — oo.

2.4 The Fejer Kernel on R

The Fejer Kernel on R is given by

Ky(z) = AK(Az), where

K@) = o (PO [ 1 pepeias

(It can be seen by evaluating the integral)

Ky(z) = % /_/\/\ (1 - |§|> et de
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:3;A@§§m%m&mﬁ

= o= [ Gx(ea

where

@ = (1-8) @

is compactly supported.

To show K is a good kernel, we need to show that

/RK(:B)dx =1

For this, we use the fact that the Fejer kernel for the circle is

Fo(a) = 1 (sin((n+1)x/2))2

n+1 sin(z/2)
and

. I
mh_}rgo%/_é Fo(x)dr =1
We know that )

lim (sm(m/Q)) 1

2—0 x/2

Fore=1- Sin(sﬂ, for some small € > 0, there exists § > 0,

(52) < (%)
@?»Zwﬁﬁpf

1 <sin5)2 <sin((n + 1):1;/2))2 _ 1 (Sin(x/Q) sin(n + 1)x/2)2

That is,

for |x| < ¢ (small). Hence,

2r(n+1) \ 0 x/2 ~2m(n+1) x/2 sinx/2
1 sin(n + 1)z/2\?
~ 2n(n+1) ( x/2 ) '

sin(n+1)x/2 2
Let Kn(2) = gy (22502527, Then

sin

;(6fﬁmmmggmmms;£&mm
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Since,

lim /66 K, (x)dx = /O:O K(z)dz,

n—oo

it follows that

. 5 2
(S“;) 1<|KlL<1, ¥6>0 (small)

Hence, { K}~ is a family of good kernels.

2.5 Fourier uniqueness theorem

Let f € L'(R). Then, by the fact that

£ = 5 [ (1= B xp@i@eae

T on
it follows that ) €l
f=tm o [ (1-5) ow©Ff@eta o)

A—o0 27

in the L'-norm. Thus, if f(¢) = 0 for all £ € R, then by (x)

Iflh=0 = f=0 ae.

2.6 Fourier Inversion

Theorem 2.6.1. Let f, f € L'(R). Then

1 ~ .
— ixé
fa) = 5= [ Fleyet=as
holds for almost all x € R.

Proof. We know that

f(x) = lim A (1 — |§|> f(&)e™ede (2.6.1)

A—00

holds in L'-norm. Hence, it follows that there is a subsequence such that (2.6.1) holds. Therefore,

w.l.o.g., we can assume (2.6.1) holds a.e. Since

o (1- B Fol < i1 e Dy
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A

and x[—xx(§)(1 — @)f(&) — f(&) as A = 0o. By Dominated Convergence Theorem, we get

f(x) = lim i/ F(6)e™ede  ae.
R

A—o0 2T

That is, if f, f € LY(R), then

f=(0)" ae
O
Notice that Fejer Kernel K, € LY(R) (as [ Ky(z)dz = [ K(z)dx = 1) and
K@) = [ Ga(©)eede = Gi(@) (1)

where G(§) = x[-a () (1 - @) € L*(R). In fact, K\ € L'(R). Therefore, by inversion
formula,

Gy = (GY)" = Ka(w) (from (1))

That is,

2.7 Plancherel Theorem

We know that if f € L'(R), then f=F (f) is a uniformly continuous function on R. However,
for f € L*(R), f exists uniquely as a function in L?(R) and satisfies the isometry

1Fll2 = [1£ 112

This can be seen using the fact that F is a continuous linear function on dense set L' N L? to
L2,

Further, using Riesz-Thorin interpolation theorem, for f € LP(R), 1 < p < 2, f exists as
function in LI(R), where % + % =1 (This we see later). Finally, for p > 2, we shall see that f
exists as a distribution. That is, f defined by the relation

(f.0) = [ F@pa)ds, oeCE®)
Theorem 2.7.1. There exists a unique operator .F from L*(R) onto Lz(@) having the following

properties:
Ff=7F for feL'nL*R),
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17 fll2 = 11 £ll2
Proof. For f € L' N L%(R), we define
f(é-) — /6—27rix§f($)dx

Then
fe K@) = [ GrOF©em g

where G5 (§) = (1 — %) XA\ (€)-
Let f(x) = f(—x), and g = f % f. Then g € L'(R) and

) = f(2)f(x) = |f(2)]*.

Further,
o) = [ $e -9 FCndy = [ 1+ 9@y = on )

As x — f_, is continuous from R — L?(R) and < . > is continuous, it follows that g continuous

and [g(z)| < || foll2llf]l2 that is [g(=)[ < || f]I3.
Notice that g € L* and g is continuous.

g*KA /G)\ Clﬁ—)g() as A — oo.

That is,
Jim [ GA(©3(€)ds = 11 = 9(0)

Then,
Jim / G (&)1 F(&)%dg = || 113

Since G (&) 1 1, by monotone convergence theorem, it follows that

JUGIRII T

that is || f||2 = || f||2 for f € L' N L2
Let Y = {f | f € L' N L?}, then

Z:L'NLAR) 2%y

isometry. We claim that Y = L?(R). By Hahn-Banach theorem, it is enough to show that
L ={0}. Ify € Y+ C L?, then the fact that G\e, where e,(£) = €27 belongs to L' N L2,

(Grex)" = (Gre_p)" = TzGX =, K,eY
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for each 2 € R. This holds, by applying Fourier inversion to Gy = K A(x) as G\ € LY(R). Hence,
we get
(TxK)\,h> =0 = K, *E(I) =0

But ||[Ky*h — h|]2 = 0 as A — oo
— ||h|]z =0 = Y+ ={0}

Hence, .Z can be extended on L? onto L? with ||.Z f||2 = || f||2. For this, & : L' N L? C L? —
2
Y C L% Let g € L?(R), then there exists .#(g,) € Y with g, € L' N L? such that .Zg, L, g

and
17 (gn)ll2 = llgnl2

It implies that g, is Cauchy sequence in L' N L?(R). Hence, there exists f € L? such that
2 2
In L, f and it implies that % g, Eay f. Then

17 ()2 = llgll2-

Remark 2.7.2. Let f € L?(R), then X[=nn)f € L?(R) N LY(R). If we write
pulw) = [ e g
then
160 = fll2 = 1(X(=nm £)" = Fll2 = IX(=nn) f = fll2 =0

Thus,

76 = tim [ e f(a)d

n—oo J_,

exists in the LZ-norm.

Example 2.7.3. Let H(z) = e 1l. Show that

2 itx 2
H(z) :/RH(t)et it =1

Note that if f € L2(R), then ||f||2 = ||f||2. By polarization identity

[1a=[73

where f,g € L*(R).

45



MAT746: Fourier Analysis 2. The Fourier Transform

2.8 More on Convolution

Theorem 2.8.1. Let f € LP(R), g € LY(R) and %%—% = 1. Then fxg is an uniformly continuous
and bounded function on R with ||f * gllcc < || flIpllgllq- In particular, if 1 < p < oo, % + % =1,
then f x g € Cp(R).

Proof. By Hoélder’s inequality, we get
[f*g(z)| < /If(w — gl dy <7 fllpllgllq = I1fllpllgllg-

Therefore, f * g is bounded. Further,

[(7e(f * 9))(y) = (f x9)(y)] < /ITzf(y — &) = fly = Ollg(ds < l[maf = Flipllglla-

Hence,

172 (f  9) = (f * Dlloc < lI72f = fllpllglla-

Since z + 7, f is uniformly continuous on R — L!(R), it follows that f g is uniformly continuous
on R.

Let1<p<oo,then1<q<oosince%—i—%:l.

For given € > 0, there exists fy, gn in C2°(R) such that

1fn = Fllp < € llgn = gllp < e

(since C.(R) = LP(R) if 1 < p < 00). Hence,

[ fr % gn = f*Glloe < || fn — f”pHqu + Hf”p“gn - 9”61'

Since g, — g in L9, there exists M, > 0 such that ||g,|/q < M,.

Therefore,
[ fr* gn — f * glloo < €My + || fllpe

Thus, f, * gn — f * g uniformly, but Cy(R) is a complete space, hence f x g € Cy(R). O

2.9 Riesz-Thorin Interpolation Theorem

Theorem 2.9.1. Let (X, S, u) and (Y, T, v) be two o-finite measure spaces. Let p;,q; € [1,00], i =

0,1 and define
11—t t 11—t t

9

Y2 Po n at do a1
where 0 <t < 1. If T is a linear map from

L () + L7 () = LP(v) + L (v)
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such that
1T fllg < Mill fllp., @=0,1,

then
1T fllge < Mo~ Myl flp,
(For a proof, see Real Analysis by G.B. Folland.)

Using R-T theorem we see that F.T. of a function f € LP(R), 1 < p < 2, exists as a function

in 4 111 _
1nL,p+q—l.

2.10 Hausdorff-Young Inequality

Theorem 2.10.1. Let 1 < p < 2. Then for f € LP(R), f € LY(R), with ||f|lq < ||f, where
1 4 1
P g ’

Note that if 1 < p < 2, then q € [2,0].

Similarly, if f € LP(SY), 1 < p < 2, then f € 19(Z), with % + % =1 and ||fllq < IIfllp-

Proof. We know that F : L}(R) — L*®°(R) satisfies

[F(Hllee < If11
and F : L?(R) — L2(R) with ||F(f)|l2 = || f|l2-
Let
11—t t 1 1—t t
no 1 T2 g = 2
Note that

so we can choose t € (0,1) such that % = 5 and

IF M < [1fllp

Thus, F.T. is a bounded linear function from L? to LY. ]

2.11 Young’s Inequality

Theorem 2.11.1. Let 1 < p,q,r < 0o and %—I—% = 1+%. If fe LP and g € L9, then fxge L"
and
1+ gllr < 1 flpllgllg
Proof. Case I: if p=1,q = r, then
1f#gllr = [1f * gllg < lfll1llgllg
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(by Minkowski integral inequality).

Case II: ifp:q%’l,r:oo, (%+%:1,1<p,q<oo) then

1 % gllr = 1f * glloo < 1 £1Ipllgllg

(since f* g € Co(R)).
Case III: 1 < g < o0, fix g € L? and consider Ty(f) = f * g. Then

(i) Ty« L' — L9 satisfies | Ty (f)llg < [ f11]9llq,

(i) T, : L — L satisties |Ty(f) ] < IIfll¢llgllgs when 1+ = 1.

For Riesz-Thorin interpolation theorem, let pg = 1, qo = ¢; p1 = ¢, 1 = oo and My =
lgll1; My = [|gllg- Then

1Ty (Fllge < Mo~ M| £l

where
1 1—1t t t 1 1—1t t 1—-1t
2 Po n q at qo0 q q
Ifwewantqt:r,then%:ﬁ. Hence £ =1—¢t,t=1—42 Thus L = 1. So,
q T r pt P
1 1 1 1 1
St -=1+-and -+ =1.
p q r q g
Hence,

1Tofllr < [ fllpllglly-

O]

Notice that, by the Hausdorff-Young inequality, if 1 < p < 2, then for f € LP(R), f € L1(R)

where 1% + % = 1. Hence by continuity we can define

&) £ tim " e (@) da.

n—oo J_,

However, if 1 < p < 2, we do not know how the f looks like. For example, if f € L'(R), then
lim ||f+Kx— fl1=0
A—00

and

@) = dim [ Ga(e)f(e)e e *)

A—oo 27 JR
holds in L!(R).
For 1 < p < 2, we can generalize (*). For this, we need to verify the following: If f € L!(RR)
and g € LP(R),1 <p < 2, then fxg € LP and (f *xg)" = f§. Since C§°(R) is dense in LP(R),
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for € > 0, there exists g, € C§°(R) so that ||g — gnllrr <e.
Note that g, € L'(R) (since second derivative of g satisfies ngn(x) = (iz)%g,(x)) and

Flgn * f) = Fgn) F(f)- (**)

As F: LP — L4, is a continuous linear map, from (**) it follows that

Flg* f) = Flg)F(f)-

Now, consider f = K (Fejer kernel on R), then
(Kxx9)" = Kpg = Gag,

where

GA(§) = (1 = [&l/M)x[=an (6)

Since g € LI(R), q¢ > 2, it is easy to see that G)\§ € L?(R). By inversion formula,

Ky g(e) = 5- [ Gr©a©ede,

and Ky * g € L?(R). Since K is a good kernel and Ky * g — g in LP(R), we can write the

following result:

Theorem 2.11.2. Let 1 <p <2 and g € LP(R). Then

g(z) = lim —/ GA()§(&)e™Cde

A—o00 2T
in LP(R).
Corollary 2.11.3. {f e LP,1<p<2 supp f is compact }, is dense in LP(R).
Notice that, if f,g € L*(R), then F(f * g) = F(f)F(g) where F is the Fourier transform.
Question 2.11.4. Does F' is unique that satisfies F(f * g) = F(f)F(g)?

Note that if we write

1= [ 1@e e = i),

then F is a continuous linear functional on L!(R). We then shall see that such any continuous

linear functional is only F.T.
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2.12 Riesz Theorem

Theorem 2.12.1. Let 1 < p < 0o and (X, S, 1) be a o-finite measure space. Then for every
continuous linear functional T on LP(u), there exists a unique g € LY(X), where 1/p+1/q =1,
such that

71 = [ t9

Fourier Transform is unique. Now, suppose ¢ is a continuous linear functional on L!(R) with
llell <1 and o(f * g) = o(f)p(g), for all f,g € L*(R). Then by the Riesz theorem, there exists
B € L*(R) such that

o) = [ f@)Ba)da.
Then
¢U*w:1ﬂ/f@—ymwmmﬁ@Mx:/p@wuw@

where fy(xz) = f(x —y). On the other hand,

ol +9) = o(Deto) = ol) [ atw)sw)ay)

Hence

(et — e(Psw)g)dy =0, forall g € L'(R). "

By uniqueness in the Riesz theorem, it follows that

o(f)By) = w(fy), ae y

Since y — f, is continuous on R to L*(R) and ¢ is continuous on L'(R) — C, it follows that
RHS of (*) is continuous. Hence, we can assume [(y) is continuous, except on a set of measure
zero.

By replacing y — = + vy, we get

(B +y) = o(fary) = 2((fa)y) = #(f2)B(y) = @(S)B(2)B(y).

Since ¢ is non-zero, we can find f € L!(R) such that o(f) # 0. Hence

Bz +y) = B(x)B(y)

By using Theorem 2.0.1, there exists ¢y € R such that 3(x) = e~ %%, Hence

ol = [ f@eda = fita).
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~

Notice that for every ¢ (except ¢ = 0), there exists unique t € R such that ¢(f) = f(1),
because if s # t, then there exists f € L'(R) such that f(t) # f(s).

2.13 Poisson Summation Formula

For f € LY(R), write

o(t) =27 i f(t +2mj).

j==o0

Then ¢ is a 27m-periodic function on R and ||¢[[z1(s1) < [|f]|L1(®r)- This can be seen by the fact

that ) )
/ pO)ldt =27 3 / F(t + 2m5)|dt
0
j_—OO
2m(j+1) 00
—or 3 / yds_/ 1£(s)|ds.
j=—oc0 27y —00
Theorem 2.13.1. Let f € L'(R). Then
ST oft+2mi)= > f(i)et, VteR, (2.13.1)
j=—o0 j=—o00

where f(j) is the Fourier transform.

Proof. To prove this identity, it is enough to show the Fourier coefficients of LHS is f (7).

2w
7 / Z ft+2mj)e "t = Z / f(t+2mj)e M at
0 Pl
by Beppo-Levi theorem.
= [ et = fn)
R
Hence, by uniqueness of the Fourier series, we get the required identity. ]

Example 2.13.2. Prove that

1 2

Z (n+ x)? - (sin )2

(Hint: Take g(x) = 1—|z| for |x| < 1, = 0 otherwise in the Poisson summation formula (2.13.1)).

2.14 [P-Derivative of a Function on R
For h € R and f a function on R, define

e = 11 =S
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Definition 2.14.1. A function f € LP(R) is said to be differentiable in LP sense if there exists
g € LP(R) such that

lim || Dy, f — =0.

lim D11 — gll, = 0

Lemma 2.14.2. Let 1 < p,q < 0o and % + é = 1. Suppose f € LP, has derivatives f' in LP

sense , then (f * g)' exists in the ordinary sense when g € L1 and

(f*9)' =[xy

Proof. We know that f * g is continuous and f’ € LP, therefore f’ * g is also continuous. Thus

D (f * g)(@) — £ g(@)| = [(Dnf — ) * 9(@)| < | Dnf = f'llpllglly — 0 as || =0

Hence
(fxg) =f*g
O

Theorem 2.14.3. Let f € LP(R), 1 < p < oo. Then f has derivative in LP sense if and only if
f is absolutely continuous on each bounded interval [a,b] (except on a set of measure zero) and

its pointwise derivative f' € LP(R).
To prove this, we need a fact that AC|[a,b] is a complete space under the norm:
b !
I1£lac = @]+ [ 17 (®ld.
We know that f € AC|a,b] if and only if f’ exists a.e.,
e LVa,b] and f(z) +/f

Hence, || f|lac < oo and ||f'||ac =0 = f(a) =0, f'(t) =0a.e. = f(t) = f(a)=0.

( f/'=0ae. = f is constant, a non-trivial result (referred to Rayden book). ) Hence,
(ACla,b], || - [|ac) is a normed linear space.

If f, is a Cauchy sequence, then f,(a) and f/ are Cauchy sequences in C and L([a,b]),
respectively. Let fn(a) — fa, fi — g in L'. Write

f@) = fut [ olt)ar

Then f is absolutely continuous and

1fn = fllac < |fala ¢m+/wg ()]t
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Hence, f, — f € AC]a,b].

Proof of Theorem 2.14.3. For simplicity, consider p =1, ¢ = o0
Suppose f has L'-derivative (or derivative in L! sense). Then there exists g € L'(R) such
that limy,_,q [|[Dpf — g]l1 = 0. By the previous lemma, (f * K))" exists ordinarily and satisfies

(f*K)\)/:f/*K)\

Note that for each fixed A, the function f % K is smooth on R. Hence by MVT, f x K, €
ACla,b], Va,be€ R That is,

£ K@) = £ Kaoo) + [ (F ) (0) de (1)

1
for some zq € [a,b]. Since f * K L, f, it follows that

[+ Kx(z) = f(z) ae

(as a subsequence of f x K)). Hence, we can choose ¢ € [a, b].

As (f* K)) =g+ Ky — g (in L'), we can take limit in (1) and hence
f(x f(zo +/ t)ydt a.e., x€R.
This implies f' = g a.e. on R, and f' = g € L'(R).

Conversely, suppose f € AC|a,b], for all a,b € R and pointwise derivative f’ exists and
belongs to L!(R). Then

fl@+h) - f(x) h/

Y "(x+t)— f(x))dt

(since f € AC(a,b], etc.)
Since f' € L'(R), by Minkowski integral inequality, it follows that

1 lnl
1Duf =l < o [ i’ = £ e
2] Jo
<llmf =l <

whenever |h| < 8, as |t| < |h| < d. Thus, f’ is the L'-derivative of f.
If1<p,q< oo, z% + % =1, then LP(R) C L .(R). Hence, all the above calculations make

sense, and same conclusion is followed by Minkowski integral inequality. O
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2.15 (C* form of Urysohn lemma

Lemma 2.15.1. Let K be a compact set that is contained in an open set O C R. Then there
exists f € C°(R) such that 0 < f <1, flx =1 and suppf C O.

Proof. Let 6 = d(K,O¢). Then ¢ > 0, and let
V={z:d(z,K) <§/3}.

Suppose ¢ € C°(R) such that [ =1,p(z) =0 if |x| > 6/3. Write f = xy * ¢. Then f|x =1,
0 < f<1,andsupp(f) C {z :d(z,K) < 2§/3} C O, and f € C(R). Note that ¢ can be

constructed by choosing

() = {exp (—ﬁ) lz| <1

0 lz| > 1
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2.16 Exercise

1. (a) Let f € C°(R) be nonzero and let P be a polynomial of degree n > 1. Determine
whether the function P f is bounded on R.

(b) Is the subspace
{f € L*(R) : supp f is compact}

dense in L%(R)?

2. Suppose f is continuously differentiable on [—R, R|. Prove that there exists a constant

C > 0 such that
<

€1’

3. Let f,g € L?>(R). Show that the convolution f * g is a bounded continuous function on R,
and that

1f (&) < £ #0.

lim (f*g)(z)=0.

|z|—o00

4. Let f € L'(R) satisfy f(z) > 0 for all z € R. Prove that there exists § > 0 such that
F@I<f0), &>

5. For n € N, define
Fn($) = X[-1,1] * X[=n,n] (:E)

Verify that F,, € C.(R) with || F},|[cc = 2. Does the sequence {F,,(x)} converge uniformly
to 2 on R?

6. For 1 <p < o0, let f € LP(R) and set

Show that F' € Cy(R). Does this conclusion remain valid for f € L>®(R)?

7. For f € L'(R), prove the identity

2f(6) = |,

and deduce the Riemann-Lebesgue lemma.

f@) = £(o = 7) |

8. Let f,g € LY(R). Prove that
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10.

11.

12.

13.

14.

15.

16.

If f € L'(R), deduce the Fourier inversion formula for f.

. For n € N, define

f(@) = f%‘?
Show that o
F(&) = Pu(&)e™ 2,

where P, is a polynomial of degree n.

A continuous function f : R — C is of moderate decrease if there exists A > 0 such that

A

<irm= *E€R

/()

Suppose f is of moderate decrease and satisfies

/ f(y)€7y262xy dy=0 VzeR.
R
Prove that f = 0.

Let f be of moderate decrease and define

f*Ex(2) = 5 / 1(1 - §) fe)eie ae.

Show that f * Ky — f uniformly as A — oo.

Let {ky} C L*(R) be a family of good kernels. If f € L°(R) N C(R), prove that fx*ky — f

uniformly on every compact subset of R.

For 1 < p <2, prove that
{f € LP(R) : supp f compact}

is dense in LP(R).

Show that
X={f:fel'(R)}

is dense in Cy(R).

Let f € C2(R). Prove that there exists g € L'(R) N L>°(R) such that § = f.

For f € L?(R), define the translation operator 7, f(y) = f(y — x). Show that
X ={rf:zeR}
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is dense in L?(R) if and only if f (&) # 0 almost everywhere.

17. Let f € L*(R) with compact support. Prove that f is real-analytic on R. Does f € LY(R)?
What additional conclusion holds if f € C2(R)?

18. Let f € L'(R) with f > 0. Show that
£ lloo = £(0) = 111
19. Suppose f € L'(R) is continuous at 0 and f(€) > 0 for all £. Prove that f € L*(R) and
10) = [ fe)de.

20. For n € N, let g, = X[~1,1) * X[—n,n]- Show that g,, is the Fourier transform of

sin x sin nx

fnlx) = € L'(R),

w22

and that ||f,|1 — oo. Conclude that the Fourier transform maps L!(R) into a proper
subspace of Cy(R).

21. For f € LY(R), define f\(x) = Af(A\r) and

pA(t) =2m i At +2m7).

j=—00

Show that

i floallzisny = Il e)-

22. For f € L*(R), define
g(t) =27 Z f(t +2mn).

Show that g is periodic and
lgllisty < I fllm)-

23. For 1 < p < o0, suppose f € LP(R) and h € R. Define

flz+h) - f(x)
- :

Apf(z) =

Show that there exists g € LP(R) such that

li Anf — =0
lim 1A g1l
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iff f is absolutely continuous on bounded intervals (modulo null sets) and f’ € LP(R). Does
this remain true for f € L*°(R)?

24. Suppose f € L>®(R) satisfies
25. Give an example of f € L*(0, 00) such that f’ exists pointwise on (0, 00) but [’ ¢ L>(0, 00).

26. For f € LY(R") and g € LP(R"), 1 < p < 2, prove that f x g € LP(R") and deduce that

—

fxg9=19.
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Chapter 3

Distributions

Many operations in analysis — differentiation, convolution, Fourier transformation — extend
well beyond smooth functions. The language of distributions (generalized functions) provides
a precise framework for these extensions while remaining compatible with classical calculus
whenever the latter makes sense. In this chapter we introduce test function spaces, distributions,

and their basic operations, with an eye toward applications in Fourier analysis.

Learning objectives.
o Define the spaces D(2) and D'(2) and interpret distributions as continuous linear functionals.
e Understand distributional derivatives and multiplication by smooth functions.

e See how the Fourier transform extends naturally to the Schwartz space and to tempered

distributions.

We know from the previous section that there are functions in LP-spaces which are differen-
tiable in LP-sense. That is, there exists g € L? such that ||Dy,f — g/, — 0 as |h| — 0. However,
there is a large class of functions which are neither differentiable nor their LP-derivative exist.
Though, there is a large sub-class of such functions whosee derivative can be realized with the
help of certain class of differentiable functions, known as “test functions”.

For example, suppose f is differentiable and ¢ is a compactly supported differentiable function

on R. Then - - -
| ra=—to— [ gd==[ 1d.

because g is compactly supported. Therefore, this gives way to realize the derivative of f € L}OC(R).
For g € C°(R), write

As(g) = /ng,
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then the derivative of Ay can be defined by

Ny(g) = —/ng’-

In fact, functional A; is all time differentiable and its k-th derivative is given by
D*s(g) = (-1)* | D%,

where D = %.

In order to discuss “distributions” in detail, we need to derive a complete topology on CS°(R™).
Since the space C2°(R™) cannot be made complete under sup norm, a complete topology on
C°(R™) will be derived from a family of semi-norms (defined on compact subsets of R™). Thus,

the space £(R™) becomes a locally convex topological space.

3.1 Locally Convex Topology

Let {p; : i € I} be a family of semi-norms on a topological vector space X. For a finite set F' C I,
let

Ure = ﬂ{x € X :pi(z) <e} = ﬂ Vie.
i€l icF

Then each Vg, is convex and balanced. Let
B={Upc:€>0,F CI,#(F) < oo}.
Then the collection

T ={O0 C X : forall z € O, there exists U € B such that  + U C O}

is a topology on X.

Obviously, T contains () and X, and is closed under arbitrary unions. Now, let

If z € O, then x € O; and there exists Up, ¢, € B such that x +Up, ., C O;. Write € = minj<;<y €;
and F =%, F;.Then ¢ > 0 and F is finite and hence

k
r+Upe C ﬂ(ﬂf-f- UFi,ei) c O.
=1

The space (X, T) is known as locally convex topological space.
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Example 3.1.1. Show that a locally convex topological vector space X is Hausdorff if and

only if {p; : i € I} separates points in X i.e., given x € X, x # 0, there exists i € I such that

pi(z) # 0.

Example 3.1.2. Let X be a locally convex Hausdorff space whosee topology is induced by
{pi : i € I}. Define

—n_Pnlz—y)
d(x,y) = 27—
( y) Z 1+ Pn (.T - y)
Show that topology 74 coincides with 7.

Note that, in general settings, Ur . plays the role of B.(0) in R™ as B¢(0), e > 0 forms a local
base at 0. Therefore,
B={Upc:€>0,F CI,#(F) < oo}

is a local base at 0 € X.

Definition 3.1.3. (i) A sequence (z;)2; C X is said to converge to x € X if for all U € B
there exists N = Ny € N such that x —x; € U, for all j > N.

(ii) (x4)$52; C X is called a Cauchy sequence if for all U € B, there exists N = Ny € N such
that zp —xy € U for all k, ¢ > N.

(iii) X is called sequentially complete if every Cauchy sequence in X has a limit in X.

Lemma 3.1.4. A sequence (x;);2, C X converges to x € X if and only if limy, oo pn(z; — ) =
for alln € 1.

Proof. Let Uj. = {x € X : pj(x) < €}. Then there exists N € N such that p;(z; — x) <
€ for all j > N, etc. O

Theorem 3.1.5. Let {p;}ics be a separating family of semi-norms on a vector space X, and set
Vo ={z € X :p(z) < 1/n}.

Then J = {Vp,n 11 € I,n € N} forms a convex balanced local base for a topology T on X, which

makes X into a locally convex space such that
(i) each p; is continuous, and
(i) A set E C X is bounded if and only if for all i € I, p;(E) is bounded.

Proof. Let x € X and = # 0. Then there exists p; such that p;(z) > 0. Therefore, for some
x, np;i(x) > 1, implies ¢ V(p;,n), a neighborhood of 0. Hence, {0} is closed. Since .7 is

translation invariant, each {x} C X is closed in (X, .7).
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Addition is continuous: Let U be a neighborhood of 0 in X. Then (;c; V(pi,n;) C U (by
the definition of topology 7). Let

i€l

Then V+V CU.
Consider (1, z2) — =1+ x2, and let U be an open set containing x1 + x3. Then U — (21 + z2)
is a neighborhood of 0. Hence, there exists a neighbourhood V' of 0 such that

V4V CU-= (z1+2)

then
(V+x1)+(V+x2) cU.

Thus, addition is continuous.
Scalar multiplication is continuous: Let x € X and o € C, U and V as above. Then x € sV

for some s > 0. Write ¢t = Tsab’ and y =z +tV, with |8 — a| < 1/s. Then

y—ar=py—xz)+B-—a)ze|ftV+|f—alsVCV+V CU

Since |B|t < (|| 4+ 1)t = 1, and V is balanced, thus B(z + tV) C az + U, this implies scalar
multiplication is continuous.
(ii) Suppose E is a bounded subset of X. Since each V(p;, 1) is a neighborhood of 0, there
exists k; > 0 such that
E C kV(pi, 1) = V(pi, 1/k:)

= pi(x) < ki, Vi,Vx € E.
Conversely, suppose p;(x) < M;, for all x € E, for all ¢ € I, then for each neighborhood V' of 0,
i=1

which implies

Ec (\V(pi 1/M;) = () MiniV (pi, n;)
i=1 i=1

If n > Mn; for alli=1,2,...,m, then
m
EcCn m V(pi,ni) C nU
i=1

Hence E is bounded in (X, .7). O
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3.2 Topology of the spaces C*(f2) and Dy

We define a topology on C*°(Q) which makes C*°(Q2) a Fréchet space with the Heine-Borel
property, such that the space

Ik ={p € C*(R") : supp(p) C K}

where K is a compact set in €2, is a closed subspace of C*°(Q).

Define a sequence of compact sets in €2 such that K; C K; 1
Ki={zeQ:d(x,2(Q) >1/i} N B,

where B; = {z € R" : |z| < i}.
For f € C*(9), define

pn(f) = sup{[Df(z)| : © € K, |a] < N}.

These {pn}F_; form a separating family of seminorms that makes C°>°(2) a metrizable locally
convex topological space (exercise: use the previous theorem).

For z € Q, define 0,(f) = f(x). Then each J, is a continuous linear functional in the topology
induced by {pn}%_;.- That is, pn(fi) = 0 = |fi(z)| < pn(fi) — 0. It is easy to see that

D = ﬂ ker 4,
z€Q\K

Hence Zk is a closed subspace of C*°(€2). Notice the collection
Vn=A{feC>®Q) :pn(f)<1/N}, N=1,2,...

forms a convex balanced local base at 0 € C*°(2).
If {f;} are a Cauchy sequence in C*°(£2), then for each Vi, there exists Iy € N such that

fi—fjeVyforalli,j>ly
= pn(fi, fj) <1/N,
= [D*fi(x) = D*f;(x)| <1/N, z€Ky

That is, D f; — g, on each compact set Ky in Q. In particular, f;(x) — go(x). Thus go € C*°(Q)
and g, = D%go. This implies that f; — go in the topology of C*°(£2). Hence C*°(2) is a Fréchet
space and the same is true for Zx.

Suppose E C C*°(Q) is closed and bounded. Then, by the previous theorem A, there exists
0 < My < oo such that py(f) < My forall N =1,2,..., f € E.
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Thus, |D*f| < My on Ky, || < N. Hence,
{Dﬁf fe E}
is an equicontinuous family on Ky_1, if |3] < N — 1. By the Mean Value Theorem (MVT),
|[f(x) = F)| < NIID flloclz =y (1)
Replacing f — D?f in (1), we get
D f (@) = D f(y)| < D" flloolle =yl < I FlInlle — vl

By Arzela-Ascoli Theorem, every sequence (f,) in E has a convergent subsequence. Hence,
E is compact in C*°(Q2). Thus, C*°(f2) has the Heine-Borel property. Since

d(f,0) < 22—"% <2,

the topology on C*°(Q) is not normable.
Now, for each fixed K C 2, Yk is a Fréchet space and

7)) =) = U 2«

KcQ
It is known as the space of test functions.
For p € (1), define

lelly = sup {|D%p(2)| : z € Q, |a] < N}

for N=0,1,2,....

Note: Restriction of these norms to Pi gives the same topology as do the semi-norms
{pn}_;. For this, let K C Q compact. Then there exists Ny € N such that K C Ky, N > N,
add for these N > Np,

lelly =pn(p), Yo € Dx

Since ]y < @llvs1 < ... and

pn(p) < pnsi(p) < ...

the topology given by either sequence {|[pn}3—n, or {|l - ¥ }¥=n, Will be the same. Thus, the

topology on Zk coincides. Therefore,

1
Vs ={oe ool < 3}
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form a local base for Py .

Notice that || - |3~ can be used to define a locally convex metrizable topology on Z(f2), but
this topology is not complete.

For p € 2(2), suppe C [0,1], ¢ > 0 on (0,1),

om(@) = ola— 1) + 20z ~2) + p(z —m)

is a Cauchy sequence in this topology, but (¢;,) is not completely supported. This happens
because {pn}J_, is not enough to prevent Cauchy sequences "leaking" toward the boundary of
(2, so that we can add more semi-norms to the family {pn}3_, that allows more functions on
() to be continuous.

Now, we define another topology 7 on 2(Q2) (in which Cauchy sequences do converge),

however 7 is not metrizable.
(i) Let B={W C 2(Q) : W is convex, balanced; sets with Zx "W € 75, VK compact C }.
(ii) X ={ unions of the form ¢ + W, p € 2(Q), W € B}

NOte that The topology 7 is different than the topology generated by the py’s as the
topologies T includes more seminorms. For example, let ¢ € 2(Q)), and {z;} C Q : the sequence

having no limit point, for any C; > 0,
p(p) = sup Ci|p(x;)| < oo (since there exist only finitely many 7 for each )
i

is a semi-norm on Z(2) and p restricted to each Zj is continuous. In fact,
W ={pe2(Q):plp) <C}

is convex balanced and belongs to B as a 7-neighborhood of 0 € 2(£2). This forces every
T-bounded set (or Cauchy Sequence) in Z(£2)) to be concentrated on a common compact set
K C Q. This will be formalized in the next theorem. That is, a sequence (¢;) € 2(2) converges
to O if suppp; C K, Vi =1,2....

Theorem 3.2.1. (a) 7 is a topology on 2(N2), and B is a local base for .
(b) ¥ makes 2(R) into a locally convex topological vector space.

Proof. To prove (a), it is enough to show that for V4, V5 € 7 and ¢ € V4 N Vs, there exists W € B
such that o + W C V4 N Va. By definition, there exists ¢; + W; € 7 such that ¢ € p; + W; C V;,
i=1,2.

Choose K C 2 compact so that ¢1,12,p € Dk. Since Py, is open in Zx and ¢ —1; €
P NW;, it follows that ¢ — ¢; € (1 — §;)W; for §; > 0 (it is like if z € Bc(x) C W, then
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r € (1 —0)Bcj2(x) C (1 —9)W) By the convexity of W;, we get
©— i+ 06W; C (1= 6)W; +o;W; = W,.

So o+ 6;W; C i+ W; C Vi, i=1,2. Hence, ¢ + (61W71) N (62W2) C Vi N Vi, This proves (a).
(b) Let p1, 92 € 2(2) be distinct and

W ={p € 2(Q) : llello < llvr — wallo}-

Then W C B and ¢y € p1 + W. Since ¢ is arbitrary, it implies that {1} is closed set relative
to 7. Notice that for every pair of 11,19 € D(Q),

(%1 + 3W) + (2 + W) = (Y1 + 2) + W.

Hence, addition is continuous in (D(2), 7).

Pick ap € C and ¢y € D(2). Then ¢g + 3sW for some s > 0. Let |a — ap] < 2 and

S
t= m Then for (RS QOO‘}‘tW,

ap — appo = ap — ¢o) + (o — ag)po
€ K/tW + W
ELW+IW =W,

since |alt < (Ja| + 1)t = 3. Thus,
alpo +tW) C agpo + |a|tWW C agpo + W.

Hence, scalar multiplication is continuous. From onward, by D(2) we mean (D(Q2), 7).

Theorem 3.2.2. (a) A convex balanced subset V€ 2(Q) is open if and only if V € B.

(b) The topology T of P C P(R) coincides with the topology on Py that is inherited from
2(Q).

(c) If E is a bounded subset of 2(R2), then E C Pk for some compact K C ) and there exists
0< My < oo such that

lelly < My,Vo € E,  N=0,1,2,...
(d) D(2) has the Heine-Borel property.
(e) {¢i} is a Cauchy sequence in 2(Q), then {p;} € P for some K C Q, K compact.

66



MAT746: Fourier Analysis 3. Distributions

(f) If oi — 0 in 2(Q2), then there exists compact set K C Q2 such that supp p; C K for all i,
and D%p; — 0 uniformly for all a.

(9) In 2(Q), every Cauchy sequence is convergent.

Proof. (a) Suppose V € 7. Claim V € B. Consider ¢ € Zx NV. By previous theorem, there
exists W € B such that o+ W C V.

=0+ (DxkNW)C IxNV

Since Y N'W is open in Y, it implies Y NV is open in Yk for each V € 7.

Conversely, if V € B, then V € 7, since B C 7.
(b) Let V € 7, then Zx NV € 7 (by (a)). That is, 7 N Pk € 7 for all K C Q.

Conversely, suppose E € 7 for some K C (2.

Claim. F = 9 NV for some V € 7. Let ¢ € F, then there exists N and d > 0 such that

(Y eDx:W—¢lnv<d}CE

or

{v ek Iy <} CE-¢

Let Wy, = {¢p € Pk : ||[¢||v < 0}, then W, N Pk € Tk (an open ball in Zk). Hence
W, € B, and
Ik N(e+W,) =+ W,NIPk Co+E—-p=FE

Let V' = U,ep(p + Wy), then

E=J(e+W,)NnZxk
pEeER

= union of all balls around ¢ € F

=V N9g.

(c) Let E be a bounded set in Z(2). Suppose E ¢ P for any K. Then there exists ¢,, € E
and a sequence {z,,} € Q having no limit point such that ¢, () #0, m=1,2,...

Let
W ={pe29): [plan)| < Lom(@m),m=1,2,...}

Since each K contains only finitely many x,,
Wk = {¢ € I : lp(@m)| < &om(@n) }
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is open in Z. For this, let ¢ € W N Zg. Then [p(zm)| < Z|pm(zm)|,m =1,2,...1 Let

ple) = sup lp(en)| < Ci, where G = may, P (@m)|
Since p is continuous, it follows that W N Pk is open in Pi. Thus W € B. Since ¢, ¢ mW

for any m, it follows that F is not bounded.

Thus every bounded set £ C Z(Q2) must lie in some Zk. By (b), E is bounded in Zk.
This implies
sup{[|[¢|n :p € E} < My < oo, N =0,1,2,...

(d) It follows from (c), since Pk has the Heine-Borel property. If E is a closed and bounded
set in Z(2), then F is closed and bounded in Pk, hence compact. Thus, E is compact in

2(9).

(e) If {¢;} is a Cauchy Sequence in Z(£2), then it is bounded and hence ¢; € Pk for some K.
By (b), {¢;} is Cauchy Sequence relative to Zf.

(f) It is just restatement of (e).

Finally, (g) follows from (b), (e) and completeness of Pk (i.e., D is a Fréchet space).
O

Theorem 3.2.3. Let A be a linear map from Z() to a locally convexr space Y. Then the

following are equivalent:
(i) A is continuous.
(ii) A is bounded.
(iii) If ; — 0 in 2(R2), then Ap; = 0 in Y.
(iv) For all K C ), the restriction A : D — Y is continuous.

Proof. (i) = (ii): Known.

(19) = (i7i): Suppose A is bounded and ¢; — 0 in Z(2). Then ¢; — 0 in some P, and
hence A/ Pk is bounded. Therefore, A : Zx — Y is continuous, and thus Ag; — 0 in Y.

(191) = (iv): Suppose {pi} C Pk and ¢; — 0 in Zk. Then by (b) of the previous theorem,
wi = 0in 2(Q). By (iii), Ap; - 0in Y.

(iv) = (i): Let U be a convex balanced neighborhood of 0 in Y, and write V = A~}(U).
Then V is a convex, also balanced set in (). By (a) of the previous theorem, V' € 7 if and only
if 7k NV C 1 for each K C Q. By (iv), Zx NV € 7k, hence V € 7. Hence A is continuous.

O
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Definition 3.2.4. A linear functional A on 2(2) which is continuous in the topology 7 of Z(1Q2)

is called distribution.
The space of all distributions is denoted by 2'(€2).
Theorem 3.2.5. Let A be a linear functional on (2(Q2), 7). Then the following are equivalent:
(i) A€ 2'(Q).

(ii) For each compact set K C S, there exist N € N and C > 0 such that

[AY| < C[Y|In - for allp € D (%)

This result is nothing but equivalence of (i) and (iv) in the previous theorem.

Note that if N in (x) is independent of the choice of K, then the minimum of such N’s is

called the order of the distribution A. If no such N exists, then we say A has oo order.

Remark 3.2.6. Since each P is closed, it is obvious that Zk has no interior in Z(2). Since
there exists a countable sequence of compact sets in Q such that Q = 2, K;, K; C Kiy1 we

get
2(9Q) = | Zx,
i=1

Since Cauchy sequence in Z(f2) does converges in Z(2), by the Baire Category Theorem, Z(12)

cannot be metrizable.

Example 3.2.7. Let f € LI°°(R"), then

Asle) = [ o, weD®Y

defines a distribution on D(R™). However, every distribution cannot be generated by a function
in this way.

For example, Dirac distribution d§y cannot be produced by any f € L;,.(R™).

On contrary, suppose, there exists f(# 0) € Lio.(R™) such that do(p) = [ f for all ¢ € D(R™).
Consider ¢. € D(R") such that support of p. C B:(0), 0 < . <1, ¢ =1 on B,/5(0). Then

bolpe) = [ foe

:>1290e(0):/ fSOaS/ |f|] = 0ase—0.
B:(0) B:(0)

However, every distribution is weakly assigned to some derivative of a continuous function. We

see it later. Notice that

100()| = [(0)] < [l#lloc = ll@llo, Ve € DR™)
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Hence, dy is a distribution of order 0.

Example: Let ;1 be a Radon measure on ). Then

A(p) = [ pla) dul)
defines a distribution and
|A(©)] < |l¢lloopt(K), ¢ € Dk, and for every choice of K, compact in (2.

Hence, A = A, is a distribution of order 0. Later, we see that every distribution of order zero is

given by a Radon measure.

3.3 Local Equality of Distribution
Let A; € D'(Q), i = 1,2, and let O C Q be open. Then we say A; = Ay in O if
Ao = Aoy, Yo € D(O).

For example, if f € L'°*(R) and ¢ € D(O), then A ¢ = 0if and only if f = 0 almost everywhere
on O.

Similarly, if p is a Radon measure, then A, = 0 if u(B) = 0, for all B € B(O), the Borel
o-algebra on O.

Therefore, distribution can be discussed locally, and that leads to ways to describe distributions
globally, if its behavior is known locally.

For this, we need to describe “partition of unity”.

Theorem 3.3.1. Let A = {O;;i € I} be an open cover of Q2. Then, there exists a sequence
{Wi}tien C D(Q) with ¥; > 0 such that

(i) each 1; has support in some O; € A,

(1))  Yien¥i(z) =1, Vo € Q,

(iii) for each compact set K C Q, 3m € N and an open set O D K such that

V1) + ...+ Ym(z) =1, Yz eO.

The collection {1;} is called a locally finite partition of unity in Q subordinate to the cover A of
Q.

Remarks: From (ii) and (iii), it follows that each point x € € has an open neighborhood

that intersects the supports of only finitely many ;.
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Proof. Let S = {p1,p2, ...} be a countable dense set in €.
For r; € Q, write B; = B,..(pi), a closed ball that is contained in some O; € A. Let V; = B, /2 (pi)-
Then, Q = |J; V;; since S = Q, we can construct ¢; € D(Q2) such that 0 < ¢; <1, ¢; =1 on V,
p; = 0 outside B;.

Define ¥ = ¢1, and inductively write

(1) Yix1 =1 —1) - (1 — pi)pit1, @ > 1.

Then ; = 0 outside B;. This proves (i).

The relation

)i+ +Yi=1—-(1—p1) - (1—¢i)

is trivially true if 4 = 1. Suppose (2) is true for some ¢, then by adding (2) at (i) we get (2) is
true for i + 1. Since p; = 1 in Vj, from (2), it follows that

vi(z)+ ...+ () =1, YzeVU...UV, =0.

Since for any x € 2, there exists m such that = € V; U...UV,,, this proves (ii). Moreover, if K,
compact in Q, then K C ", V; for some m. This proves (iii).
Now, suppose A1, As € D'(Q2) and for each z € Q, there exists O, open in {2 such that

A1(p) = Aa(p), Y € D(82).

Then there exists a partition of unity {t;, B;}2; such that
[o.¢]
> i(w) =1, Vzeq.
i=1

Let ¢ € D(Q2), then ¢ = > 72, ;. The summation in RHS makes sense, since support of ¢
intersects support of only finitely many ;. Thus,

Ai(p) =D M(Wip) =D Aa(tip) = Aa(p),
since Yo € D(B;) C D(Oy,), for some z; € Q. Hence, A} = Az in D(Q). O

Theorem 3.3.2. Let A be an open cover of Q, and for each O € A, there exists Ag € D'(O)
such that
b=A; YO NnO" #£0.
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Then there exists unique A € D'(Q) such that
Ap=NAgin O, YO€A

Proof: Let {1, B;}}¥.; be a partition of unity subordinate to A. Let ¢ € D(R), then

N
Y= Zd}i@ (finite sum for each ¢)
i=1

Define
Ap =" Ap, (i)

Then A is linear. To show that A is continuous on D(R),

let p; — 0 in D(R). Then supp ¢; C K, K’ for some K compact in R.
= supp Yip; C KnNB; CB;,

= Y;p; = 0in D(B;) (by Leibniz rule)

Hence, Ap; — 0 in C in D'(Q) (the weak* topology of D(R)). Thus, A € D'(£).
Let ¢ € D(0), O € A. Then

wip € D(B;NO) Vi,

and
A, (Yip) = Ao(¢ip)  (by hypothesis)

Thus,
Ap =" Mo(ip) = Ao(p).

Suppose A be any other distribution such that
Ao =ANor i O'NO" £ 0.
Then for each B;, there exists O; € A such that B; C O;
Ap, = Ao, = Ap,.
For ¢ € D(%), ¢ = X vip, suppty; C B;.
Ap) =D Auhip) = Ap,(Wip) = > Alp)

— A=A
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Theorem 3.3.3. A distribution A € D'(Q) is of order 0 if and only if there exists a Radon

measure v (possibly complez-valued) such that A = A,,.

Proof. If 31 a Radon measure. Then order(A,) = 0.

Conversely, suppose order(A) = 0. Then there exists 0 < C' < oo, such that |Ap| < C'||¢||s,
Vo € C°(Q). Consider {1, B;}2,, a partition of unity. Then supp; C B;, UB; = 2. Then A
is continuous on each D(B;) and hence it can be extended to C(B;). By Riesz representation

theorem, there exists a complex-valued Radon measure p; on B; such that
M) = [ s, v € C(By).

In particular, for each ¢ € D(B;). Let ¢ belong to D(£), then

and

A(p) =) Ahip) = Z/wwdui
le. Ap= /cp (Z ¢idﬂi> = /cpdu,

where p = > ;du;. O

3.4 Derivative of distribution

Notice that for ¢ € D(Q) and f € C*(Q),

| e =tetsa— [ 16 == [ re

since supp p C K C Q. This gives way to define the derivative of distribution A € D'(2) by

or,

9*A(p) = (=1)*A(0%¢).

Hence, D*A is a linear map. Since A € D'(Q), for compact set K C Q, 30 < C < oo and N € N
such that
|Ap| < Cllglln, Vo € Di.

Then
ID*A(p)| = [(=1)IA(D*@)| < Cll¢l| ] for all ¢ € D.
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Thus, 0*A € D'(2). We infer that every distribution in D’ is infinitely differentiable in the weak
sense. Since
DDPp = DBy = DPDy,

it follows that
D*DPA = DPDA.

Example 3.4.1. Let f € L (R). Then show that

loc
DfeD'(Q) and DYAs(p) = (-1)(D%p).

Does distributional derivative of a function is same as its usual derivative?

i.e., whether
[pese= e [ oo
If f € C*(R), then
[ prre = (vl [ sy,
by “integration by parts". However, this is not true in general.

Example 3.4.2. Let Q = (—2,2), consider f is the Cantor function on [0,1]. Then f € L(—2,2)

and f’ = 0 almost everywhere.
[fe=0t-[1¢

Example 3.4.3. If f is absolutely continuous on each [a,b] C R, then A", = Ay. That is,

/f’<p= —/fso’-

(Note that “integration by parts" holds for absolutely continuous and integrable functions

3.5 Multiplication by a function
Let A € D'(Q), and f € C*°(Q). Then
L. (fA)(¢) = A(fe) defines a linear functional on D(£2).
2. D(fe) =X p<a caﬁDa_foDﬁf - DBy (By Leibniz formula)
Since A € D'(2), for each compact set K in €, there exists 0 < C' < oo and N € Z4 such that

|[Ap| < Cllelln, Yo € Dk.
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By (2), there exists C' = C'(f, K, N) such that

Ifell < C'llglin, Vo € Dk

Hence,
[fA(p)] < CC'l¢lIn, Vo € Dr.

Thus, fA € D'(Q).

3.6 Sequence of Distributions

Since the topology of D(Q2) provides a weak*-topology on D'(2), that makes D'(2) a locally
convex topological vector space, the convergence in D'(Q2) is understood by point evaluation.
That is, {A;}52, € D'() is said to converge to A if

Ai(p) = Alp), Vo € D(Q)
In particular, if f; € L}, oo(R™), then f; — A in D'(R™) if

lim fip = Ap, Yo € D(R").

Theorem 3.6.1. Let A; € D'(Q) and A(p) = lim A;(p) exists for each ¢ € D(QQ). Then
A € D'(Q) and D*A; — DA in D().

Proof. Since Ap =lim A;jp, Vo € D(R), it implies that
Ap) =lim Ai(p), Vo € Di

As Dk is a Fréchet space, by Banach-Steinhaus Theorem, A/Dy is continuous for each K C (.
Hence, A is constant on D(Q).

Now,

D*(A)(p) = (~1)*A(D*p)
= (=)l lim Ay (D)
= lim DYA;(p)

Theorem 3.6.2. If A; — A in D'(Q) and g; — g in C°(), then g;A; — gA in D'(Q).

Proof. Note that g; — ¢ in C°°(£2) means the Fréchet space topology of C*°().
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(i.e., topology generated by pn(f) = sup|qj<nzeky [Df(2)|, where @ = U Kn, Ky C Kn+1
with local base
Vn={feC®Q):pn(f)<1/N,} N=1,2,...

Now, for fixed ¢ € D(2), define a bilinear form B(g,A) = gA(¢) = A(gy). Then B is co-
ordinatewise continuous, and by Theorem 2.17 (Rudin FA, Page 52), and the fact that C°°() is

a Fréchet space, D'(2) and C are topological vector spaces, it follows that
B(gi, \i) = B(g,A) as i — o0

Hence,
(i) () = (9A) (), Voo € D(Q).

3.7 Support of a Distribution

Let U be an open set in © and A € D'(Q2). We say that A is zero in O if
A(p) =0, VpeD(O)

Let W ={J{O C Q: Alp =0}. Then Al = 0. The complement of W is called the support of A.
Note that O forms an open cover of W.

There exists a partition of unity {;} in W such that supp; C O; for some O; such that
Ao, =0, and

o= i, YoeDW)
=1

Hence,
Ap = iA(gpigp) =0, that is, Al = 0.
i=1
Theorem 3.7.1. Let A € D'(Q) and set Sy = supp A.
(a) If supp o N Sy = @ for some ¢ € D(QY), then Ap =0 (by definition of support).
(b) If Sy = @, then A =0 (i.e., W =Q).
(c) If p € C*(Q) and » =1 on an open set V DO Sy, then YA = A.

(d) If Sy is a compact set, then A is of finite order. In fact, there exists 0 < C' < 0o and some
N € NU{0} such that
|Apl < Cllellv, Vo € D(Q)

Further, A extends uniquely to a continuous linear functional on C*°(Q).
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Proof. Proofs of (a) & (b) are trivial.
(c)Ifp =10nV DSy, then

supp(p — ) NSy =0, Ve € D(Q).
Hence by (a), A(p —9p) = 0. That is,
Ap =9YAp, Vo e D).

(d) If Sy is compact, then we can always find ¢ € C2°(Q2) such that ) =1 on V D Sy, for
some open set V C Q. Let suppy = K. Then from (c),

A(p) = ¥A(p), if ¢ € D(Q).
Since A € 2'(R2), there exists C; > 0 such that
[Apl < Cillelln, Vo€ Zk

for some N € NU {0} = Z* (say). Further, by Leibniz’s rule, it follows that there exists Cy > 0
such that

lvelln < Collelln,

(i.e. suppp = K cpt). Since Ap = A(yp) if ¢ € Z(Q2), define
Af = A(yf) for f e C®(Q).

Now if f; — 0 in C*°(2), then D*f; — 0 on uniformly on each compact set K C 2. Once again,
by Leibniz’s formula, it follows that

¥f; =0 in D(Q).

— A(Yf;) — 0 in D'().

That is, Af; — 0 in the toplogy of D/(2). Notice that if f € C*°(Q) and Ky C Q) is compact,
then there exists ¢ € D(Q2) such that ¢ = f on Ky. (By Urysohn’s lemma, there exists ¢ € D(Q)
such that ¢» = 1 on Ky, and hence ¢ = fiy = f on Kj). It follows that D(Q) is dense in C*°(Q).
(ie. lo = fllxk = 1fY — fllk < ¢€). Hence, A € D'(Q2) has unique extension to C*°(2).

[
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3.8 Exercise

1. (a) If A/ is a compactly supported distribution, must it follow that A itself is compactly
supported?

(b) Is every compactly supported distribution necessarily of finite order?

(c) Must the Fourier transform of every compactly supported function in L'(R) be real

analytic?

(d) Determine the distributional support of the function xg, where Q denotes the set of

rational numbers.

(e) For n € N, let §,, denote the Dirac delta distribution at n. Does d,, — 0 in the weak”*

topology of Cp(R) (the space of continuous functions vanishing at infinity)?

(f) Determine the order of A € D'(R) defined by

Alg) = /M log(x) ¢ (x) dz.

2. Suppose f is a continuous function on R™ such that [, fe = 0 for all ¢ € D(R™). Show
that f = 0.

3. Let A = Ay, where f is a continuous function on R". Show that supp Ay = supp f. Does

the same statement remain valid for locally integrable functions?

4. Show that there exists ¢ € D(R) such that ¢ = *) if and only if

[ p@)pla)dz =0
R
for each polynomial p of degree at most k£ — 1.
5. If A € D'(R) satisfies A’ = 0, prove that A = A, for some constant c.
6. Show that every ¢ € D(R™) can be written as
o ="+ cpo,
where ¢ is a fixed test function in D(R) with [ ¢o # 0.
7. Show that every ¢ € D(R") can be written as
@ =z + cpo,

where g is a fixed test function in D(R) with ¢0(0) # 0. Deduce that if A € D'(R) and
xA =0, then A = ¢dy.
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8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Determine all f € C*°(R) such that fdo; = 0.
Show that if A € D'(R) is compactly supported, then A’ is also compactly supported.
Verify that
(o ¢]
— Z S0(71) n
n=1
defines a distribution on R. Is A compactly supported?

Let H = X(_o0,0) and let hy, be a sequence of differentiable functions such that h, — H in
D'(R). Show that h;, — dp in D'(R). Does the conclusion remain valid if H = x(_o,07

Let Ay, € D'(R) be defined by

(Ans ) :n(w(%) —90(_%))'

Determine lim A,,.

For a > 0, define

(Aa, ) = (/_:Jr/aoo) ﬁd:ﬁ%— _aa “’(m)';’s"(o) da.

Show that A, defines a distribution on D(R). Find lim,—0 A, in D’(R) and compute its
distributional derivative.
For A € D'(R), define
s ey) dy,
where for ¢ € D(R?), we set p,(z) = ¢(x,y). Show that G € D'(R?).

Let A; € D'(R) for i = 1,2 be such that
<A1,<p> =0 S <A2, > 0.
Show that A1 = cAy for some constant c.

If A € D'(R) satisfies A¥ = 0, prove that A is a polynomial of degree at most k — 1.

Let ©Q = (0,00). Define
Moy =D ™ (1), veD@)
n=1

Show that A is a distribution of infinite order, and prove that A cannot be extended to a

distribution on R.
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18. If A € D'(R) has order N, show that A = f(N+2) in D'(R) for some continuous function f.
If A = 0y, what are the possible choices for f?

19. For k € N, define fr = kx

(%7%). Show that fr — dp in D/(R). Furthermore, show that
although f,?(x) — 0 pointwise, the sequence f,? does not converge in the sense of distribu-
tions.

20. Define
z2, r <1,
fl@)=Sa?+2z, 1<z<2,
2x, T > 2.

Find the distributional derivative of f.

21. Define

—et, t<O.

et t>0,
f(t)={ g

Show that f” = 2§ + f. Deduce that the Fourier transform of f is

A 2ix
142

22. If H = X(—c0,0), show that

(@ Hep)= [ ol

(b) 0 * H = o,

(¢) 16y =0,

(d) 1%(5)*H)=1%6 =1,
(e) (1xdy)*H =0.

23. Let {z} be a sequence of real numbers with lim |x;| = co. Show that ¢, _,,) — 0 in the

sense of distributions.
24. Determine all f,g € C*°(R) such that fdy + gd, = 0.

25. Define
e x>0,
f(z) =

1, x < 0.

Show that the Fourier transform of f satisfies (1 — zx)f = H in the sense of tempered

distributions, where H = x(_u,0)-
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26. Find the distributional derivative of f(z) = exzx[oyl] ().

27. Suppose f € L*>°(R) satisfies

/ f(y)6_y2621y dy=0 VzeR.
R
Prove that f = 0.

28. Let A be a distribution on R such that A = 0. Show that A = ¢dp +dd), for some constants
¢, d.

29. For n € N, let f;, = x[o,n)- Find lim,, o f;, in the weak® topology of D(R).

30. Classify all continuous functions on R that define tempered distributions.
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