DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA650: Advanced Course on Hardy spaces Instructor: Rajesh Srivastava Time duration: two hour Quiz I February 20, 2022 Maximum Marks: 10

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Whether $H^2(\mathbb{T}, m) \cap L^{\infty}(\mathbb{T}, m)$ is dense in $L^2(\mathbb{T}, m)$?
 - (b) Let μ be finite Borel measure on \mathbb{T} . If $\overline{z}^2 \in H^2(\mu)$, does it imply that $H^2(\mu) = z^2 H^2(\mu)$?
 - (c) Let $f = \chi_{[0,\frac{\pi}{2}]}$. Does it imply that $\overline{\text{span}}\{z^n f : n \ge 0\}$ is a non-reducing subspace of $H^2(\mathbb{T}, m)$?
 - (d) Let $0 \le \mu \ll m$. Is it possible that $H^2(\mu)$ is a proper reducing subspace of $L^2(\mu)$?
- 2. Let μ be finite Borel measure on \mathbb{T} and $H_0^2(\mu) = \overline{\operatorname{span}}\{z^n : n \ge 1\}$ in $L^2(\mu)$. Let $f \in L^2(\mu)$. Evaluate dist $(f, H_0^2(\mu))$.
- 3. Let $f \in H^1(\mathbb{T}, m) \cap L^{\infty}(\mathbb{T}, m)$. Show that there exist $f_j \in L^2(\mathbb{T}, m)$: j = 1, 2 such that $E_{f^2} = f_1 E_{f_2}$, where E_g stands for $\overline{\text{span}}\{z^n g : n \ge 0\}$.
- 4. Let $f(z) = e^z$ and $g \in H^2(\mathbb{T}, m)$ be such that f * g = 1. Show that g must be constant. 2

END