DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA650: Advanced Course on Hardy spaces Instructor: Rajesh Srivastava Time duration: two hour Quiz II April 23, 2022 Maximum Marks: 10

 $\mathbf{2}$

|2|

N.B. Answer without proper justification will attract zero mark.

- 1. (a) For p > 0, let $f \in H^p(\mathbb{D})$ and $f \not\equiv 0$. Does it implies that $\log |f| \in L^1(\mathbb{T})$? $|\mathbf{1}|$
 - (b) Let $f \in \text{Hol}(\mathbb{D})$. Does existence of non-tangential limits of f at a.e. $\xi \in \mathbb{T}$ imply the existence of point-wise radial limits of f at a.e. $\xi \in \mathbb{T}$?
- 2. Let μ be finite Borel measure on \mathbb{T} , which is singular w.r.t. *m*. Define

$$f(z) = \exp\left(-\int_{\mathbb{T}} \frac{\xi + z}{\xi - z} d\mu(\xi)\right)$$

for $z \in \mathbb{D}$. Show that |f| = 1 a.e. on \mathbb{T} .

3. Let f be a holomorphic function on the open unit disc \mathbb{D} and f(0) > 0. If

$$\lim_{r \to 1} \int_{\mathbb{T}} |\log |f_r|| dm = 0,$$

then show that f is a Blaschke product.

- 4. Let $f \in \text{Hol}(\mathbb{D})$. Show that there exists a function $g \in L^{\infty}(\mathbb{T})$ satisfies $\left|\frac{|g|}{f}\right| \leq 1$ a.e. on \mathbb{T} .
- 5. Let f be in H^{∞} . Show that there exists a function $g \in \text{Nev}(\mathbb{D})$ such that $Z(f) \cap \mathbb{D} = \{z \in \mathbb{D} : g(z) = 1\}$.

END