DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA650: Advanced Course on Hardy spaces Instructor: Rajesh Srivastava Time duration: two hour MidSem March 1, 2022 Maximum Marks: 25

1

N.B. Answer without proper justification will attract zero mark.

- 1. (a) If Θ is an inner function in $H^2(\mathbb{T}, m)$ such that $\Theta H^2(m) = H^2(m)$, does it imply that Θ is constant a.e. m?
 - (b) If $f, g \in H^2(\mathbb{T}, m)$ are two non-zeoro functions such that $\hat{g}(0) = 0$. Does it imply that $\widehat{(fg)}(0) = 0$?
 - (c) Let $f \in H^2(\mathbb{T})$ be such that $\frac{1}{f} \in H^\infty(\mathbb{T})$. Does it imply that $\frac{1}{f} \in E_f$?
 - (d) For $f \in H^{\infty}(\mathbb{D})$, let $f_{(r)}(z) = f(rz)$ if $|z| < \frac{1}{r}$ and $0 \le r < 1$. Does it imply $\lim_{r \to 1} \|f_{(r)}\|_{\infty} = \|f\|_{H^{\infty}(\mathbb{D})}$?
- 2. Let $\{\Theta_i \in H^2 : i \in I\}$ be a family of inner functions. Show that span $\{\Theta_i H^2 : i \in I\} = \Theta H^2$, where $\Theta = \gcd \{\Theta_i : i \in I\}$.
- 3. Show that a polynomial p(z) on \mathbb{C} is an outer function in $H^2(\mathbb{T})$ if and only if zero set $Z(p) \subset \{z \in \mathbb{C} : |z| \ge 1\}$.
- 4. For $w \in L^1(\mathbb{T})$, define $E_w = \overline{\operatorname{span}}\{z^n w : n \ge 0\}|_{L^1(\mathbb{T})}$. Does there exists $w \in L^1(\mathbb{T})$ such that $\overline{z} \in E_w$? Find all possible $w \in L^1(\mathbb{T})$ such that $\overline{z} \in E_w$.
- 5. Let $M(\mathbb{T})$ denote the space of all complex Borel measure on \mathbb{T} . Let $W = \{\mu \in M(\mathbb{T}) : \hat{\mu}(k) = 0 \text{ if } k < 0\}$. Suppose $\mu_n \in W$ converges to $\mu \in M(\mathbb{T})$ in the week* topology of $M(\mathbb{T})$. Show that there exists $h \in H^1(\mathbb{T})$ such that $\hat{\mu}(k) = \hat{h}(k), k \in \mathbb{Z}$. 3
- 6. Let $f, g \in H^2(\mathbb{T}, m)$. Show that $fg \in H^1(\mathbb{T}, m)$. Does the same conclusion hold if $f \in L^2(\mathbb{T}, m)$?
- 7. Using the identification of $H^1(\mathbb{D})$ with $H^1(\mathbb{T})$, show that convergence in $H^1(\mathbb{T})$ implies uniform convergence on every disc in \mathbb{D} . 3
- 8. Let $f \in H^{\infty}(\mathbb{D})$. Show that $f_{(r)}$ converges to f in the week^{*} topology of $L^{\infty}(\mathbb{T})$. **3**

END