DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA650: Advanced Course on Hardy spaces
Instructor: Rajesh Srivastava
EndSem
Time duration: three hour
May 5, 2022
Maximum Marks: 35
N.B. Answer without proper justification will attract zero mark.

1. (a) It is possible that Blaschke product can be an outer function?
(b) Does generalized Jensen's inequality hold for H^{p} for $0<p<1$?
(c) Is it possible that an inner function can be uniform limit of Blaschke products having distinct zero?
(d) If $f \in \operatorname{Nev}(\mathbb{D})$ and f is outer on \mathbb{D}, does it imply that f is outer on $\frac{1}{2} \mathbb{D}$? 1
(e) If $u \in L^{\infty}(\mathbb{T})$ is real-valued, does it imply that its Hilbert transform $\tilde{u} \in$ $L^{\infty}(\mathbb{T})$?
2. Let $f \in \operatorname{Hol}(\mathbb{D})$. If there exist a non-negative harmonic function g on \mathbb{D} such that $|f(z)| \leq g(z)$ for all $z \in \mathbb{D}$, then show that $f \in H^{1}(\mathbb{T})$.
3. Show that $\left\{g \in L^{\infty}(\mathbb{T}): \int_{\mathbb{T}} g f d m=0\right.$ for all $\left.f \in H_{0}^{1}\right\}=H^{\infty}$.
4. Show that $\frac{1}{\lambda-z}$ is an outer function on \mathbb{D} for $|\lambda|>1$.
5. Let $p, q, r \geq 1$. Let $f \in H^{p}(\mathbb{D})$. For any $g \in H^{q}$, suppose that $g / f \in H^{r}$ whenever $g / f \in L^{r}(\mathbb{T})$. Show that f is outer.
6. Let σ be a subset of positive Lebesgue measure in \mathbb{T}. Define $f_{n}=\left[n \chi_{\sigma}+\frac{1}{n} \chi_{\mathbb{T} \backslash \sigma}\right]$ for $n \geq 2$. Show that $\frac{1}{n}<\left|f_{n}(z)\right|<n$ for $z \in \mathbb{D}$. and $\left|f_{n}\right|(\mathbb{T}) \subset\left\{\frac{1}{n}, n\right\}$.
7. Let $E=\overline{\operatorname{span}}\left\{z^{m} f_{k}: f_{k} \in L^{2}(\mathbb{T}), m \geq 0,1 \leq k \leq n\right\}$. Show that if $z E \neq E$, then $\theta \frac{f_{j}}{f_{k}} \in \operatorname{Nev}(\mathbb{D})$ for all j, k, where θ is an inner function.
8. If $f \in H^{1}\left(\mathbb{C}_{+}\right)$and $f \not \equiv 0$, then show that $\int_{\mathbb{R}} \frac{\|\log \mid f(x)\|}{1+x^{2}} d x<\infty$.
9. Let $f \in \operatorname{Hol}(\mathbb{D})$ and $f \not \equiv 0$ and $f=f_{1} / f_{2}$, where $f, f_{2} \in H^{1}$. Show that there exist $g_{1}, g_{2} \in H^{\infty}$ such that $f=g_{1} / g_{2}$.
10. Show that $H^{2}(\mathbb{T})=\overline{\operatorname{span}}_{L^{2}(\mathbb{T})}\left\{\frac{1}{1-\lambda z}:|\lambda|<1\right\}$.
