DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA650: Advanced Course on Hardy spaces Instructor: Rajesh Srivastava Time duration: three hour EndSem May 5, 2022 Maximum Marks: 35

1

1

N.B. Answer without proper justification will attract zero mark.

- 1. (a) It is possible that Blaschke product can be an outer function?
 - (b) Does generalized Jensen's inequality hold for H^p for 0 ?
 - (c) Is it possible that an inner function can be uniform limit of Blaschke products having distinct zero?
 - (d) If $f \in \text{Nev}(\mathbb{D})$ and f is outer on \mathbb{D} , does it imply that f is outer on $\frac{1}{2}\mathbb{D}$? 1
 - (e) If $u \in L^{\infty}(\mathbb{T})$ is real-valued, does it imply that its Hilbert transform $\tilde{u} \in L^{\infty}(\mathbb{T})$?
- 2. Let $f \in \text{Hol}(\mathbb{D})$. If there exist a non-negative harmonic function g on \mathbb{D} such that $|f(z)| \leq g(z)$ for all $z \in \mathbb{D}$, then show that $f \in H^1(\mathbb{T})$.
- 3. Show that $\left\{g \in L^{\infty}(\mathbb{T}) : \int_{\mathbb{T}} gfdm = 0 \text{ for all } f \in H_0^1\right\} = H^{\infty}.$ 3
- 4. Show that $\frac{1}{\lambda z}$ is an outer function on \mathbb{D} for $|\lambda| > 1$. 3
- 5. Let $p, q, r \ge 1$. Let $f \in H^p(\mathbb{D})$. For any $g \in H^q$, suppose that $g/f \in H^r$ whenever $g/f \in L^r(\mathbb{T})$. Show that f is outer.
- 6. Let σ be a subset of positive Lebesgue measure in \mathbb{T} . Define $f_n = \left[n\chi_{\sigma} + \frac{1}{n}\chi_{\mathbb{T}\smallsetminus\sigma}\right]$ for $n \ge 2$. Show that $\frac{1}{n} < |f_n(z)| < n$ for $z \in \mathbb{D}$. and $|f_n|(\mathbb{T}) \subset \{\frac{1}{n}, n\}$.
- 7. Let $E = \overline{\text{span}}\{z^m f_k : f_k \in L^2(\mathbb{T}), m \ge 0, 1 \le k \le n\}$. Show that if $zE \ne E$, then $\theta \frac{f_j}{f_k} \in \text{Nev}(\mathbb{D})$ for all j, k, where θ is an inner function. 4
- 8. If $f \in H^1(\mathbb{C}_+)$ and $f \not\equiv 0$, then show that $\int_{\mathbb{R}} \frac{|\log |f(x)||}{1+x^2} dx < \infty$. 3
- 9. Let $f \in \operatorname{Hol}(\mathbb{D})$ and $f \not\equiv 0$ and $f = f_1/f_2$, where $f, f_2 \in H^1$. Show that there exist $g_1, g_2 \in H^\infty$ such that $f = g_1/g_2$.
- 10. Show that $H^2(\mathbb{T}) = \overline{\operatorname{span}}_{L^2(\mathbb{T})} \left\{ \frac{1}{1-\lambda z} : |\lambda| < 1 \right\}.$ 3

END