Lecture Notes on Hardy Spaces

MAG650 Lecture Notes, Jan-May, 2022

Rajesh Srivastava
Department of Mathematics, II'T Guwahati



Contents

Preface . . . . o e e

Notation and conventions . . . . . . . . . . . .. e

1 Introduction
1.1 What is a Hardy space? . . . . . . . . . e
1.2 Invariant subspaces and inner functions . . . . ... ... ... oL

1.3 Organization of the notes . . . . . . . .. .. .. . L

2 Preliminaries and notation
2.1 The unit circle and normalized Lebesgue measure . . . . . . . . . ... ... ...
2.2 Complex Borel measures and total variation . . . . . . ... ... ... ......
2.3 The weak-* topology on M(T) . . . . . .. .

3 Invariant subspaces of L?(T, )
3.1 Simply invariant subspaces of L2(11) . . . . . . ...
3.2 Uniqueness theorem in H? . . . . . . . .. .. .. e

3.3 Invariant subspaces of L2(f1) . . . o« o o oo

4 First Applications
4.1 Some consequences of Helson’s theorem . . . . .. .. ... ... ... .. ...,
4.2 Reducing subspaces. . . . . . . . ..o
4.3 The problem of weighted polynomial approximation . . . ... ... ... ....
4.4 The inner-outer factorization . . . . . . .. . ... ... ... ..
4.5 Arithmetic of inner functions . . . . . . . .. ... Lo
4.6 Characterization of outer functions . . . . . . . .. ... L.
4.7 Szeg6 infimum and Riesz Brother’s theorem . . . . .. ... ... ... ... ...

4.8 EXErciSes . . . . .o e

5 Canonical factorization in H?(D)
5.0.1 Properties of H” spaces . . . ... ... ... ... ... ... ...,

5.1 A Revisit to Fourier Series . . . . . . . . . . . . e

o o ot wm NN

0~ ~

10
11
13
13

17
17
17
18
19
20
21
22
24



MAG650: Advanced Hardy Spaces Theory

Contents

8

5.1.1 Approximation identity (or good kernel) ... .. ..

5.1.2 Dirichlet, Fejer and Poisson Kernels . ... ... ...
5.2 Identification of HP(D) with HP(T) . . . . . . ... ... ... .. ...
5.3 Jensen’s formula and Jensen’s inequality . . . . . . .. ... ... ...
5.4 The boundary uniqueness theorem . . . .. .. .. ... ... .....
5.5 Blaschke Product . . . . . . .. . ...
5.6 Non-tangential boundary limits and Fatou’s Theorem . . ... .. ..
5.7 The Riesz - Smirnov canonical factorization . . . . .. ... ... ...
5.8 Approximation by inner functions and Blaschke products . . .. . ..

5.9 Exercises . . . . . e e

Szego infimum and generalized Phragmén—Lindel6f principle

6.1 Szegd infimum and weighted polynomial approximation . . . ... ..
6.2 Properties of Outer functions . . . . .. ... ... ... ... ...,
6.3 The Nevanlinna (N) and Smirnov (N4 ) classes . . . . ... ... ...
6.4 A conformally invariant framework . . . . . ... ... ... ...
6.5 The generalized Phragmén—Lindelof principle . . . . . . .. ... ...

6.6 Exercises . . . . ... e e e

Harmonic analysis in L?(T, p)

7.1 Skew projections . . . . . . ... e
7.2 Bases of exponentials in L2(T,pt) . . . . o oo v i i i
7.3 Riesz Projection . . . .. . ... . ...
7.4 Harmonic conjugates . . . . . . . . . ... e
7.5 Different formula for @ . . . . . . ..o
7.6 The Helson-Szegd theorem . . . . . . . . ... ... .. ...
7.7 Anexample . . . ... L

Transfer to the upper half-plane

8.1 A unitary mapping from LP(T) to LP(R) . . . . . . .. ... ... ...
8.2 Cauchy kernel and Fourier transform . . . . . . .. .. ... ... ...
8.3 The Hardy space HY = HP(C+) . . ... ... ... .. ........
8.4 Canonical factorization and other properties . . . . . . . .. ... ...
8.5 Invariant subspaces . . . . . . . . ... L e
8.6 Duality between translation and multiplication by characters . . . . .
8.7 Cauchy kernels and LP- decomposition . . . . . .. .. ... ... ...

8.8 Exercises . . . . . e e



MAG650: Advanced Hardy Spaces Theory Contents

9 Problem Sets 98
9.1 Problem Set I . . . . . . . . . . e 98
9.2 Problem Set IT . . . . . . . . . . . e 101
9.3 Problem Set IIT . . . . . . . . . . . . e 104
9.4 Problem Set IV . . . . . . . e 105



MAG650: Advanced Hardy Spaces Theory Contents

Preface

These notes were prepared for the course MA650 (Jan—May 2022) at IIT Guwahati. Their aim
is to introduce Hardy spaces as a meeting point of complex analysis and harmonic analysis, and

to develop, in a self-contained way, the structural results that make the theory so useful.

Prerequisites. A reader should be comfortable with the basics of complex analysis (holomorphic
functions, Cauchy’s integral theorem and formula, power series) and real analysis (Lebesgue
integration on R, LP spaces, and elementary Hilbert space theory). When we use a more advanced

tool from functional analysis, it is stated explicitly and proved or referenced.

How the notes are organized. After preliminaries, we study shift-invariant subspaces of
L?(T, 11) and the Beurling-type picture that underlies Hardy spaces. We then develop the canonical
(inner—outer) factorization in HP(D), discuss Szeg6-type theorems and the Nevanlinna/Smirnov
classes, and finally transfer the theory to the upper half-plane HP(Cy), where the Fourier

transform and the Cauchy kernel provide a complementary viewpoint.

Notation and conventions

e D denotes the unit disk, T the unit circle, and m the normalized arc-length measure on T.
o For 1 <p < oo, LP(T) means LP(T,m) unless another measure is specified.

o For f € L'(T), the Fourier coefficients are
N 1 e
Fin) = / 20 () dm(z) = — / FléMe ™ dt,  nez.
T 2m Jo

o We use the standard Hardy space notation H?(D) (analytic functions on D with LP boundary
control) and HP(C,) for the upper half-plane model.



Chapter 1

Introduction

Hardy spaces form a bridge between complex analysis and harmonic analysis. They encode the
boundary behaviour of holomorphic functions on the unit disk and the upper half-plane, and
they interact in a precise way with Fourier series, singular integrals, and shift operators. These
notes develop the basic structural results (Beurling-type theorems, inner—outer factorization,
and canonical factorization) and then use them to study problems of approzimation and

invariant subspaces.

Learning objectives.

o Understand the definition of HP(D) through boundary values and Poisson extensions.

e See how Fourier analysis and the shift operator lead naturally to invariant subspaces and

inner functions.

e Learn the role of inner-outer and canonical factorization in approximation and extremal

problems.

Hardy introduced these spaces in 1915 in the context of power series and boundary growth.
Over the subsequent decades, the subject was developed by many authors—mnotably the Riesz
brothers, Szegd, Kolmogorov, Paley—Wiener, and later Beurling, Helson, and others—into a
central toolkit of modern analysis. From the viewpoint of this course, the historical remark is
mainly a guide: Hardy spaces are useful precisely because they package analytic information

(holomorphy) together with quantitative boundary control (an LP condition).

1.1 What is a Hardy space?

For 0 < p < o0, the Hardy space HP(DD) consists of holomorphic functions f on D whose boundary

values are controlled in LP(T). One convenient definition is via radial means:

£l = sup ([ 1700 am©) ", ©<p<o0)

5



MAG650: Advanced Hardy Spaces Theory Introduction

with the usual modification for p = co. A key theorem (Fatou) states that such f have non-
tangential boundary limits f* € LP(T) and that f can be recovered from f* by the Poisson
integral. Thus HP(ID) may be viewed as a closed subspace of LP(T) consisting of functions whose

negative Fourier coefficients vanish.

1.2 Invariant subspaces and inner functions

On L?(T), multiplication by z is an isometry (the shift operator). The closed subspaces invariant
under this shift are governed by Beurling’s theorem: every nontrivial closed subspace E C H?
with zE C E has the form E = © H?, where O is an inner function (analytic in D with unimodular
boundary values a.e.). This result is one of the main structural pillars of the subject, and it

explains why Hardy spaces are a natural playground for operator theory and functional analysis.

1.3 Organization of the notes

We begin with measure-theoretic preliminaries and the basic Fourier-analytic model of H?. We
then study shift-invariant subspaces of L(T, u) (Wiener, Wold-Kolmogorov, Helson) and derive
first applications such as inner—outer factorization and Szegé-type extremal problems. Next we
develop canonical factorization in HP(D), including Blaschke products, singular inner factors,
and the Nevanlinna/Smirnov classes. Finally, we transfer the theory to the upper half-plane
HP(C,), emphasizing the Fourier transform and the Cauchy kernel as complementary tools.

Throughout, exercises and problem sets are included to help consolidate the ideas.



Chapter 2
Preliminaries and notation

These notes use standard notation from complex analysis, measure theory, and basic functional

analysis. For the reader’s convenience we fix conventions that will be used throughout.

2.1 The unit circle and normalized Lebesgue measure

We write
T:={zeC: |z| =1}, D:={zeC: |z| <1}.

The parametrization z = €', t € [0,2n) identifies T with the quotient group R/(27Z) via the
homomorphism t — e®. Accordingly, any function f : T — C may be viewed as a 27r-periodic
function on R by setting f(t) := f(e%).

We denote by m the normalized arc-length measure on T, i.e.

/fdm _ 1 27rf(eit)dt, f e LYT,m).
T

21 Jo
With this normalization m(T) = 1 and m is translation invariant:
27

f(t—to)dt = 7 f@tydt,  toel0,2m).
0 0

2.2 Complex Borel measures and total variation

Let B(T) be the Borel o-algebra of T. A (finite) complex Borel measure on T is a countably
additive map p : B(T) — C with pu(2@) = 0 and

p(Bj) for every disjoint family {B;};>1 C B(T),
1

w(U B;) =

o] o]
J=1 J=
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where the series is absolutely convergent. The Banach space of all finite complex Borel measures
on T will be denoted by M(T).
The total variation of u € M(T) is the positive measure |u| defined by

o0
1I(T) = sup{ 3" [1(By)| : {B;};>1 disjoint and | J B; = T}.
=1 i>1
The quantity ||u|| := |u|(T) is the total variation norm, and (M(T), || - ||) is a Banach space.

Exercise 2.2.1. Show that the definition of |u|(T) is unchanged if the supremum is taken only

over finite Borel partitions of T.

Every p € M(T) defines a bounded linear functional on C(T) by

T, (f) = /T fdu,  feC(T),

and ||T,]| = ||u||. Conversely, every bounded linear functional on C(T) arises this way.

Theorem 2.2.2 (Riesz representation theorem). For every bounded linear functional T on
C(T) there exists a unique p € M(T) such that T(f) = [7 fdu for all f € C(T). Equivalently,
M(T) = C(T)* isometrically.

2.3 The weak-* topology on M(T)

Via Theorem 2.2.2 we identify M(T) with the dual space C(T)*. The corresponding weak-*
topology on M(T) will be denoted by w*.
A typical w*-neighborhood of pg € M(T) is of the form

Upo; f1,-- -5 fni€) i= {MGM(T)i (1 — po, fr)| <e, kzlv'”aN}a
where fi,..., fv € C(T), e > 0, and (i, f) := [ f dp.

We record a basic duality fact that will be used repeatedly.

Proposition 2.3.1. Let E be a Banach space. A linear functional ® : (E*,w*) — C is continuous
if and only if there exists x € E such that ®(f) = f(x) for all f € E*. Equivalently,

via the canonical embedding x — (f — f(x)).

Proof. If x € E, then f +— f(x) is w*-continuous by definition of the weak-* topology.
Conversely, suppose ® is w*-continuous. Continuity at 0 means that there exist z1,...,zxy € E
and € > 0 such that
(If @)+ +If @) <o) = [o(f)] < 1.

8
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In particular, ®(f) = 0 whenever f(x) = 0 for all k, i.e. Nj_, ker(ev,, ) C ker(®). Therefore ®
factors through the finite-dimensional quotient E*/ ﬂszl ker(evy, ), and hence can be written as

a linear combination of the coordinate functionals f +— f(z)). That is,

N N
O(f) = chf(xk) = f(z ckxk> for some cq,...,cy € C.
k=1 k=1
Setting z := | cpxy, gives the desired representation ®(f) = f(x). O]

Corollary 2.3.2. The dual of (M(T),w*) is canonically isomorphic to C(T).



Chapter 3
Invariant subspaces of L*(T, 1)

In this section, consider shift-invariant subspaces of square integrable functions on T. Let
L*(T,u) = {f : T — C is measurable and|| f||3 = / |f|2dp < oo},
T

where p is a finite positive Borel measure on T.
For f € L'(T,m), we define the Fourier coefficients of f by

—~ 1 27 ) )
f(n)ZAz"f(z)dm(z) — [T feMemtar,  nez.

:27T0

where n € Z, and the corresponding Fourier series is f ~ % et f (n). Consider an operator S
on L?(T,m) defined by
S(f)(z) = 2f(2), (3.0.1)

where z € T. Then (Sf)(n) = f(n — 1). That is, the Fourier coefficients got a right-shift due to
the action of S. The operator S is known as the shift operator. The following question can be

raised.
Question 3.0.1. What are the shift-invariant subspaces E of L*(T,u)?

That is, when zE C E? We shall use the notation clos E for the closure of E, and E, the

complex conjugate of E. We always consider F to be a closed subspace unless it is specified.
Example 3.0.2. When f € L?(u), the space E; =span{z"f : n > 0} is shift-invariant.

Further, what are f € L?(u) such that Ef = L?(u)? If so, we say f is a cyclic vector. More
generally, we consider identifying f € L?(u) such that 2E; = Ey.

Let E be a closed subspace of L?. Typically, we discuss the characterization of the following
two distinct cases.

We say E is simply invariant (or 1-invariant) if zF C E and zE # E. On the other hand,
when zFE = E, we say F is doubly invariant (or 2-invariant). Note that zE = E if and only

10
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if ZE = E (since zz = |z|> = 1). This means zF C E and zE C FE, and hence E is known as
reducing space as well.

For a measurable set o C T, the space E, = xo L?(1) = {xof : f € L*(p)} = {f € L*(p) :
f =0 p-ae. on T\ o} satisfies zE, = E,.

Question 3.0.3. Does every reducing subspace look like E,?

Theorem 3.0.4. (Norbert Wiener) Let E C L*(T, ). Then zE = E if and only if there exists a

unique (up to set of measure zero) measurable set o C T such that E = x,L*(p).

Proof. Suppose zE = E. Let Pg be the orthogonal projection of L?(p) onto E. Set y = Pgl
(the evaluation of Pg at the constant function 1). Then y € F and 1 — x = (I — Pg)l € E+.
But 2"E C F, implies z"x € E and hence 2"y 1L 1 —x, Vn € Z. That is,

/ (1= ¥)du = 0, ¥n € Z. (3.0.2)
T

Let g = x(1 — X), then dv = gdp is a finite complex Borel measure because of x € L!(u). Thus

by (3.0.2), T, : L?*(u) — C defined by T,,(f) = [ fdv satisfies T, (z") = 0. Since trigonometric
T
polynomials are dense in C(T), it follows that T, (C(T)) = {0}. By Riesz representation theorem,

T, = 0 and hence v = 0. (Note that |7, || = ||v||). That is, g = x(1 — x) = 0. This implies that
X = |x|?. Thus, x takes values either 0 or 1. Let 0 = {t € T : x(¢) = 1}. Then ¢ is measurable.
For simplicity, let P denotes the space of all trigonometric polynomials on T. Since x € E, we get
2"y € E and hence xIP C E. This implies clos(xP) C E. On the other hand, clos(xP) = xL?(u),
as we know clos P = L?(y). Thus, xL?(i1) C E. Therefore, it remains to show that xL?(u) = E.

For this, let f € E and f L 2"y, Vn € Z (since clos(xPP) = xL?(u)). Since z"f € E and
1—x L 2"f, Vn e Z. It follows that

/ fxz"du = / 2"f(1—x)du =0 (3.0.3)
T T

Vn € Z. Thus, (3.0.3) is satisfied by every polynomial p € P, and hence for every function
g € C(T) in place of p. By Theorem 2.2.2, we get fx = f(1 — %) = 0 a.e. u. This implies that
f=0a.e. p. Thus yL*(T) = E. O

3.1 Simply invariant subspaces of L?(u)

Let B = {2"},ez. Notice that the Fourier series of f € L2(T,m) with respect to the orthonormal
basis B is f ~ Zf(n)z”, where f(n) = [ fz"dm. This implies that L?(T,m) can be identified
T

—

with (2(Z). Since (zFf)(n) = f(n — k), multiplication operator f — zf acts as a right-shift

11
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operator on [2(Z). And hence it is legitimate to consider the space
H? =span{z": n >0} = {f € L*(m) : f(n) =0,n < 0},

known as Hardy space. The space H? is a simply invariant subspace of L?(m), and plays a
prominent role in complex and harmonic analysis H?2.
The following theorem says that all the simply invariant subspaces have a somewhat similar

structure.

Theorem 3.1.1. (A. Beurling, H. Helson) Let E be a closed subspace of L*(T) and zE C
E, zE # E. Then there exists a unique © (up to constant of modulus 1) with |©] =1 a.e. m on
T such that E = ©H?.

Notice that f — ©f is an isometry on L*(m), and hence ©H? is closed.

Proof. Since zE C E (zFE # E), we consider the orthogonal complement of zF in E, and denote
it by E© 2FE = (zE)*. Then E © zE is non-trivial, and consider © € E © zE with ||©]]z = 1.
Notice that © € ' and © L zF. Hence z2"0© € zE,Vn>1and © L 2"0,Vn > 1.

2w

_ 27
00z"dm = / 1©22"dm = 0, Vn > 1.
0 0

By taking complex conjugate, we have

2
/ 10122"dm =0, Vn > 1.
0

—

This implies that (|©?)(n) =0, Vn € Z ~ {0}. By the uniqueness of Fourier series, it follows
2m
that |©|2 = ¢ (constant) a.e. m, and we get 1 = [ |©]?dm = c. Thus, |©| = 1 a.e. m. Clearly,

f — Of is an isometry. Note that © € FE. He?nce 2" € E,Vn > 0, implies linear span
of {2 : n > 0} has the same property. Let P, = span{z" : n > 0}. Then ©P; C E and
clos (OP,) = O clos(P;) = ©H?. Thus, ©H? C E. It only remains to show that © H? coincides
with FE.

Let f € E and f L ©H?% We claim that f = 0. Since f L ©H?, we get f L 02", ¥n > 0.
Also, f € E implies z"f € zE,Vn > 1 and hence 2"f 1. ©,Vn > 1 since © 1 zE. Thus,

/ fOz"dm =0,Yn>0 and/ 2" fOdm =0,Vn > 1.
T T

—

That is, (f©)(n) =0, Vn € Z. This implies fO = 0 a.e. m. Since |0 =1 a.e., we get f =0 a.e.
m.

Uniqueness: Let ©H? = ©3H? and |©1] = [©3] = 1 a.e. on T. Then ©,0,H? = H? and we
get ©10, € H2. Also, by symmetry ©,0; € H2, or ©,0, € H2. But H2 N H2 = constant.
(Hint: If f € H?, then f(n) = 0,n < 0 and f € H?, then (?)(n) = f(~n) = 0, n < 0. This

12
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means f(n) =0,Vn € Z~ {0}.) Hence ©10, = ¢. Since |01]|02] = 1, we have ©; = ¢ Oy, where
le| = 1. O

Corollary 3.1.2. (Beurling theorem) Let E # {0}, E C H? and zE C E. Then there erists
© € H? with |©| =1 a.e. on T such that E = OH2.

Proof. 1t is impossible that ZE C E. On the contrary, suppose this could be the case. Then for
f € E with f # 0, there exists n € N such that f(n) # 0. By assumption, z"*! f € E. However,
(éﬁrl\f)(—l) = f(n) # 0 implies 2" f & H? leads to a contradiction. This means F is simply
invariant, and in view of Theorem 3.1.1 (Beurling-Helson), it follows that F = ©H? and © € H?
by definition of H 2, O

Definition 3.1.3. A function © € H?, with |©| =1 a.e. is called inner function.

3.2 Uniqueness theorem in H?

Theorem 3.2.1. If f € H? and f = 0 on a set of positive measure, then f =0 a.e. on T.

Proof. For f # 0,E; =span{z"f :n > 0} C H? and 2E; C Ey = ©OH?, where O is an inner
function. Let 0 = {z € T : f(z) = 0}, Then m(c) > 0. Let us verify that gl =0, Vg € Ey.
Since g € Ey, there exists sequence p, € P, (the space of all polynomials) such that p,f — ¢ in
L?(m). Hence

0= [lgPdm = [ 1g=pufl* < llg = puf 15— 0 as n - x.

Implies g|, = 0 a.e. m. In particular, for g = 6, ©|, = 0, which is a contradiction. O

3.3 Invariant subspaces of L?(j)

(Absolutely continuous and singular subspaces)

Let u be a finite Borel measure on T, and E C L?(u) with zE C E. We consider invariant
subspaces of L?(;) which are based on Lebesgue decomposition of y. A measure v is called
absolutely continuous with respect to m if m(B) = 0 implies v(B) = 0, where B € B and we

write v < m. By Radon-Nikodym theorem, there exists a positive integrable function w such

that dv = wdm. That is,
/ fdv = / fwdm
T T

for each Borel measurable function f on T.
A measure v is called singular with respect to m if it is concentrated on a set C' of Lebesgue
measure zero. That is, v L m if v(B) = m(B N C) for every B € B(T). Let u be a finite and

13
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positive Borel measure on T, then by Lebesgue decomposition,
= g + ps, where pg, < m and ps L m.

So, if f € L?(u), then
L1rPan= [ 1fPdua+ [ 152dp,
T T T

By this, we can construct an orthogonal decomposition of f. Let o be the concentration set for
ts. Then
L*(us) € L*(p) and L*(pa) C L*(p) and L*(ps) L L*(pta)- (3.3.1)

Now, f = fx1<o + fXo = fa + fs. This means
L*(p) = L*(pa) @ L*(ps)- (3.3.2)

The subspaces L?(j,) and L?(u) are invariant subspaces and are known as absolutely continuous
and singular spaces, respectively.

We need the following results in order to prove the main result about invariant subspaces of
L ().
Lemma 3.3.1. Let pu be a finite complex Borel measure on T.

—

(i) If (du)(n) = [e ™ du(t) =0 for alln € Z, then pu = 0.
T

—

(i) If (dp)(n) = 0 for all n € Z ~ {0}, then du = cdm.
Proof. (i) Let f € C*(T), then f is Borel measurable and we have
T.(5) = [ fOdu(t
= [ (X Fem)due)
T ez

= Z f(n) / e du(t) (by Fubini’s Theorem)
neZ T

= 0 (by assumption).
Hence T,(f) = 0 for all f € C*(T). Since C*(T) is dense in C(T), by Theorem 2.2.2, we get

uw=0.
(ii) From the given condition and similar to the proof of case (i), we can write

| duv) = f0) [ dn=pum) [ royar

Thus dp = p(T)dm, where dm = dt. O

14
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Let T': H — H be an isometry (or 7" € iso(H)) on the Hilbert space H. A subspace D of H
is called wandering if 7*'D L T"D for m # n(m,n > 0).

Lemma 3.3.2. (H. Wold, A. Kolmogorov) Suppose T' € iso(H) and TE C E. Let D = ESTE.
Then D is a wandering subspace of T, and E = ( > @T”D) & ( N T"E) = Fy @ E, where

n>0 n>0
T|g., is unitary, and T|g, is completely non-unitary (i.e. if E' C Ey and TE' C E' implies T'| g

is not unitary).

Theorem 3.3.3. (H. Helson 1964) Let du = wdm + dus be the Lebesque decomposition of a
positive finite Borel measure i and let E C L*(u) be simply invariant. Then there exists o C T

with m(o) = 0 and a measurable function © such that
E=FEy® E, = OH? ® xoL*(11s), where

OH? C L*(pa), XoL*(11s) C L*(us) and
0w = 1. (3.3.3)
Conversely, if o is measurable and © verified (3.5.3), then OH? @ x,L?(us) is simply invariant.

Proof. Set D = E© zE = (zE)* # {0} and let E = ( > z"D) & ( N Z"E) = Ey @ Ex be
n>0 n>0
the Wold-Kolmogorov decomposition of E. Let © € D with ||©]|2 =1, then © € E and © L zE.

This implies 2”0 € zF, Vn > 1, and hence 2”0 1 ©Vn > 1. That is,

/(z”@)(:)d,u = / 10122"dp =0, Vn > 1.
T T

And by conjugation
/ |0122"dp =0, Vn > 1.
T

Thus (!@Tﬁu)(n) =0,Vn € Z~ {0}. By Lemma 3.3.1 (ii), we get |0|?du = cdm. But, 1 =
[10)?du = ¢ [ dm = c. Thus,
T T

dm = |O|%du
= |0 du, + O du,s
= |OPwdm + |©|*dus. (3.3.4)

Implies [©]> = 0 a.e. ps on T (because m has no singular part) and dm = |©[?>wdm implies
|0|>w = 1 a.e. m. By Wold-Kolmogorov Lemma 3.3.2, restriction z|z_ is unitary, zFE C
E = Ex @ Ey, and z|g, is non-unitary on every section of Ep, etc. Thus, we conclude that
2E+ = Es. By Wiener theorem, Eo, = x,L?(1) for some ¢ C T. As© € D C Ey L E,, implies
O L xoL*(u). In particular, this implies [ ©Odu = [|0[2du = 0. Hence ©|, = 0 a.e. u. But
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© # 0 a.e. m implies m(c) = 0 (since dm = |©|%dy). Thus, in view of (3.3.2) we obtain

Eoo = XoL? (1) = X L?(1ts) € L (1)

We have already shown that D C L?(u,), because D C Ey 1 Eo, = L?(ps) implies D C L?(uuq).

Therefore, Eg = 5. ©2"D C L%(pg). Also, span{z"0 : n > 0} C Ep, since © € Ey. We claim
n>0
that Ey = span{z"© : n > 0}.

On the contrary, suppose there exists f € Fy ©span{z"© :n > 0}. Then f L 2”0, Vn > 0.
Recall that © 1 zFE. But f € F, implies 2" f € E and hence z"f 1 ©, Vn > 1. Thus,

/fz"@duzOVnZO and/z”f(:)duzo, Vn>1.

That is (fOdu)(n) = 0V n € Z. By Lemma 3.3.1(i), it implies that fOdu = 0. Since © # 0 a.e.
m and f € Eg C L?(p,), it follows that f = 0. Now, by Parseval identity, it is easy to verify that

span{z"0© :n >0} = { Z anz"0 : Z lan)? < oo}

n>0 n>0

(Notice that {2"0},>¢ is an orthonormal set in L?(yu,), since du, = wdm and |O*w = 1.)

Further, it is easy to see that

Ey = @{ Zanz” : Z ]an|2 < oo} = OH?.

n>0 n>0

Indeed, f +— Of is an isometry from L?(T,dm) onto L?(dus) = L?(wdm). That is,

| iam = [ 1er2du.
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Chapter 4
First Applications

We have seen that there is one to one correspondence between simply invariant subspace of L2 (1)
with the set of measurable unimodular functions (inner functions) due to Helson’s theorem. This
congruence opens many possibilities to apply Hilbert space geometry and operator theory to
L?(ut) and vice-versa. Here we discuss inner-outer decomposition of the Hardy class functions,
Szegd infimum, and Riesz brother’s theorem for “analytic measure". That is, for which positive

measure g on T, the “analytic half' P, = span{z" : n > 0} is dense in L?(T, u1).

4.1 Some consequences of Helson’s theorem

Let p be a positive Borel measure on T with du = wdm-+dus. Notice that if 2 C E C L?(u), then
E = E, ® E,, where zE, C E, C L?(i14), because E = OH? @ x,L*(1s), where ©H? C L?(u,)
and xo L?(p1s) C L?(pss)-

(a) If = ps, then 2E C E C L?(us), implies zE = E, because, by Helson’s theorem 3.3.3, we
already have E = x,L?(ps), which is 2-invariant.

(b) Show that for du = du, = wdm, the followings are equivalent:

(i) There exists E such that zE C E C L?(u,).
(ii) There exists © such that |0]?w = 1 a.e. m.
(iii) w > 0 almost everywhere m.

(iv) m is absolutely continuous with respect to fi,.

(c) If dy = dpg = wdm and zE C E C L*(j1g), then E = OH? with |0]?w =1 a.e. m.

4.2 Reducing subspaces

Let f € L?(u) and du = wdm + dus. We look for sufficient conditions that ensure that Ey
is reducing. If there exists measurable set e C T such that m(e) > 0 and f| = 0. Then

17
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E; is a reducing subspace, and there exists ¢ C T \ e such that Ef = x,L*(u). In fact,
o ={z€T: f(z) # 0}. On the contrary, suppose zE; C E;. Then by Theorem 3.3.3 we get
E; =0©H?® yxL*(us), and hence f € Ey implies f = f, + fs, where f, = ©h, h # 0 a.e. m (by
Theorem 3.2.1, since h € H?). This implies f, # 0 a.e. m, which is impossible because f|. =0
and m(e) > 0 implies fy|c = 0 with m(e) > 0. Thus, E;y = 2Ef = x,L?*(p) for o C T (by Wiener
theorem). Notice that E; = span{z"xr.cf : n > 0} = x1Ef = xoL*(p) and 1 € L?(u),
implies 0 C T'\ e. Indeed 0 = {z € T : f(2) # 0}, which is defined up to a set of u measure zero.

4.3 The problem of weighted polynomial approximation

We know that the space of trigonometric polynomials P = span{z" : n € Z} is dense in LP(u)
for every positive and finite measure p and 1 < p < co. Let Py = span{z" : n > 0}. One of the
main problems is describing the closure of Py in L?(u). Denote H?(p) = clos Py |12(,,). The most
important part of this problem is to distinguish between the completeness case H?(u) = L?(u),

from the incompleteness case H?(u) & L?(u).
Corollary 4.3.1. H?(u) = H?(pa) © L?(ps).

Proof. H?(j1) = span{z" : n > 0}. By Helson decomposition H?(u) = E, ® Es with E, C L?(u)
and E; C L?(us). Since we know that 2Fs = Eg, by Wiener theorem, E; = x,L?(us) with
m(c) = 0. Since 1 € H?(u), we have 1 = 1, + 1, with 15 # 0 a.e. pus. But 1, € By = oL (1)
implies o L2 (us) = L%(ps), i-e., B = L*(ps).

Further, (P, ), C E, implies clos (Py), = H?(u,) C E,. But, for f € E, C H?(u) implies
there exists p, € P, such that | f — pullz2(,) — 0. Since ||f —aniz(“) = |f _an%2(ﬂa) +
I.f _PnHiz(us) = |If _an%Q(Ma) + Hp”H%Z(us) (since f = 0 ps-a.e.) and |f _an%z(Ma) <
”f _an%2(ﬂa) + Hpn”%z(ﬂs) = ”f _an%2(ﬂ) — 0 we get f € Hz(,ua).

0

Remark 4.3.2. Note that for H?(u,), the closure of P in L?(u,) has two possibilities:

(i) 2H?(pq) = H?(pe) and hence by Wiener theorem H?(11q) = XoL?(tta) = L?(14), because
14 € H?(u,) implies that there does not exist ¢ C T such that m(T \ o) > 0.

(i) 2H?(pa) S H?(p1a)(C L*(i1a)), and hence H?(p,) = OH? with |0]%w = 1.
The following results help to distinguish the above two cases.
Lemma 4.3.3. H?(u) is reducing (and hence H?(p) = L?(p)) if and only if z € H?(p).

Proof. If H?(p) is reducing, then z € H?(yu) is trivial. Suppose z € H?(u), then exists p, € Py
such that ||z — pul/z2(,) — 0. Let ¢ € P4. Then

Vg = apaPau < gl [ [ =pul? > 0 as o,
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This implies 2P, C H?(u), or Py C zH?(u) (closed). Hence H?(u) C zH?(p), i.e. zH?*(u) C
H?(u). But zH?(p) € H?(u) implies zH?(u) = H?(u). Now, it is clear from Wiener theorem
and theorem 3.2.1 that H?(u) = x,L?(p) = L?(p). O

Corollary 4.3.4. H?(uu) = L?*(p) if and only if dist(1, H3(u)) = 0, where HZ(u) is the closure
of span{z" : n > 1} in L?(u).

Proof. Let H?() = L?(p), then z € H?(p), implies dist (1, H3(u)) = dist (z, H?(u)) = 0. On the
other hand, if dist (1, H3(x)) = 0, then z € H?(u1), and hence H?(u) = L?(u). O

Note that the quantity

dist> (1, H3(n)) = inf /|1 — pl?du
peP).
is known Szeg6 infimum, where P} = span{z" : n > 1}.

It can be seen that dist(1, H3(u)) depends only on the absolute part of the measure u. Let
dp = wdm + dus be the lebesgue decomposition of p. As similar to Corollary 4.3.1, it can be
seen that HJ(p) = HE () ® L?(us). We also use the fact that if M; and My are subspaces of a
Hilbert space H such that M; 1L Ms, then Pyrgar, = Py, + Pu, for My L M. Thus, we can

write

dist®(1, Hy (1)) = 1Pr ) L 1”%2(@

= (Prz(u) @ Prau,)) L (1o +1s) 12
1Pz () L+ Lall72 () ( since 15 € L*(uy))

= inf /|1—p|2wdm.
pe]P’(jr T

The evaluation of Szegd infimum is intimately related to the multiplicative structure of H?2.

4.4 The inner-outer factorization

Recall that a function f € H? is called inner if |f| = 1 a.e. on T. On the other hand, f € H? is
called outer if £y = H?.

Theorem 4.4.1. (V. Smirnov, 1928) Let f € H? and f # 0, then there exists an inner function
finn € H? and an outer function fous € H? such that f = finnfour. Moreover, this factorization

is unique and Ey = finnH

Proof. Note that Ey C H? Ef # {0}, and E; is not reducing, else z € H?. Here, E; =
span{z"f : n > 0} C H? By Theorem 3.1.1, we have E; = ©H?, where || = 1 a.e. m. Let
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finn = ©, then f = Og, where g € H2. We claim E;, = H?. Let h € H?. Since Er = ©H? and
©h € ©H?, there exists p, € P, such that p,0g = p,f — Oh in L?. But, multiplication by an

inner function is an isometry, we get

Hpng - h”Q = He(png - h)HQ — 0.

Hence, E; = H?. Here g = fou is desired outer function.

Uniqueness: Take f = fifs, where fi is inner and fy is outer. As f; is inner, h — fih is an

isometry, and hence as Ky, = H 2 we get
finnH? = Ey =span{z"fifo: n >0} = fispan{z"fo: n >0} = fLH?

By the uniqueness of the representing inner function of the simply invariant space E; (cf.
Theorem 3.1.1 and Corollary 3.1.2), we get finn, = Af1 with |A\| = 1, and A\ f; four = f1f2 implies
fout - X](.2 O

4.5 Arithmetic of inner functions

Definition 4.5.1. Let O, O3 be two inner functions in H2. We say ©; divides Oy if 8—? € H?.

Equivalently, ©; divides ©, if and only if ©1H? D ©,H?. For this, if Oy = ©0;, then ©
is necessarily inner, and ©;H? = ©:0H? C ©1H?, since ©H? C H?. On the other hand, if
©1H? D ©yH?, then we get O3 € ©1H? implies © = 8—3 € H?.

We deduce the following two elementary properties:
Theorem 4.5.2. Let © = ged{O1, ©2}, the greatest common divisor of ©1 and ©2. Then
(i) span {©1H? ©,H?} = OH?
(i) ©1H? N OH? = OH?, where © = lem{O1,0,}.

Proof. (i) ©,H? C span{©;H? 0;H?} = ©H?; k = 1,2 for some inner function © (by Beurling’s
theorem) implies © divides O ; k = 1,2. Let ©' be another divisor of O : k¥ = 1,2. Then
©'H? 5 ©,,H?, and hence ©'H? D span{0,H?; k = 1,2} = ©H?. This implies ©’ divides © and
thus © = ged{Oy; k = 1,2}. The proof of (ii) is similar to (i). O

Definition 4.5.3. Let {O; : i € I} be a family of inner functions.

(i) © = gcd{©; : i € I} if © divides each ©;, and © is divisible by every other inner function
that divides each ©;.

(ii) © =lem{©; : i € I} if each ©; divides © and O divides every other inner function that is
divisible by each ©;
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Convention: In case the ged or the lem does not exist, we write ged{©; : i € I} =1 and
lem{O©; :i € I} =0.

Corollary 4.5.4. span{0; € H? : i € I} = OH?, where © = gcd{©; : i € I} and NO;H? =
OH?, where © = lem {©; : i € I}.

Corollary 4.5.5. Let F' be a proper subset of H2. Then span{z"F : n > 0} = ©H?, where
© = ged{ finn : f € F\{0}}, and finn stands for inner factor of f.

Proof. We have span{z"F :n > 0} = span{ fin, H? : f € F'\ {0}}. (By Smirnov’s theorem). By
applying Corollary 4.5.4 we get the required. O

4.6 Characterization of outer functions

Theorem 4.6.1. (Integral Mazimum Principle) Let f € H?. Then the followings are equivalent:
(i) f is outer

(ii) f is a divisor of the space H?, i.e. if g € H? and % € L?, then % € H?.

Proof. (ii) = (i): Let f = finnfour be an inner-outer factorization of f. Then fi,, = ﬁ =

% € L? because of fi,, € H?> C L?. By (ii), we get finn € H?. But fin, € H? implies
finn = A (constant) with |A\| = 1. Hence f = Mout-
(i) => (ii): Given f is outer, we have E; = H?. Since 1 € H?, there exists p, € P such that

pnf — 1in L2, Let g € H? andh:%eL? Then

Lipag =t = [ 1paf =1 < Ipuf = 1lzllbls = 0 a5 m — oc. (4.61)
But p,g € H?, implies @(k) =0 if k < 0. Since ¢ — ¢(k) is continuous linear functional on
LY(T) for each k, by (4.6.1) we get (h)(k) =0, Vk < 0. Thus h € H2. O

Corollary 4.6.2. If two outer functions fi and fa verify |f1| = |f2] a.e. on T, then fi = \fa
where |\ = 1.

Proof. Since fo is outer, f; € H?, and \%\ =1 ¢ L?, by Theorem 4.6.1, we get % € H?. In the

similar way % = % € H? implies % = A (constant) and hence f; = Afs with |A] = 1. Thus, an

outer function is completely defined by its modulus. O

Corollary 4.6.3. Let w > 0, w € L(T). If there exists f € H? such that |f|? = w a.e. T, then

there exists a unique outer function fo € H? such that |fo|?> = w a.e. T.
(Hint: By Smirnov theorem, f = finn four etc.)

Corollary 4.6.4. If f € H*(T) is simultancously inner and outer then f is constant.
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Proof. Since f € H*(T) is inner |f| = 1 and hence 1/f = f € H%(T) by the Theorem 4.6.1.
Since f, f € H?(T) hence f is constant. O

4.7 Szego infimum and Riesz Brother’s theorem

Here we consider two theorems in two different settings by using the fact that in an orthogonal
complement of the analytic polynomials P, the absolute component of a measure is only

important.

Theorem 4.7.1. (Szegd and Kolmogorov) Let p be a finite Borel measure on T with Lebesgue
decomposition du = wdm + dus, where w € LY (T). Then

(i) either there does not exist any f € H? such that |f|* = w a.e. m, then

inf / |1 —p|*du = 0.
T

peP}
(ii) or there exists (unique) f € H? such that |f|> = w a.e. m, and f is outer, then

int [ 1= pPdu = |fOP.

0
pePy

Proof. (ii))We know that the Szeg6 infimum I will satisfy

12 = dist®(1, B3 (n)) = dist®(1, H3(1a)
= inf /]1—p[2wdm.
pEPﬂ, T

Given that |f|?> = w a.e. m, and f is outer. Hence

2= inf / \f — pf|2dm.
pePﬂ, T
As f is an outer function, we can verify that span{z"f : n > 1} = zH?. Hence I = dist 2 (f, zH?).
Note that f = Y f(n)z" = f(0) + g, where g € zH?. Since f(0) L zH?2, it follows that
n>0

I = disty2((0), zH2) = | f(0)].
(i). Now, we consider the invariant space E, = Hg(u,). If zE, # E,, then there exists © such
that E, = ©H? with |©]?w = 1. But z € E, and hence z = Of for some f € H2. This implies

that |f|? = ‘9% = w (since |z| = 1), and this leads to case (ii). Hence, case (i) is possible
only if 2E, = E,. But, then E, = L?(u,) by Remark 4.3.2(i). Hence dist(1, HZ(x)) = 0, since
le LQ(Ma) = Hg(ﬂd)' o
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The above Theorem (Szegd and Kolmogorov) leads to the problem of computing |f(0)|? in
terms of w. In order to do this, we have to consider H? as a space of analytic functions on the
unit disc, which we do later.

Riesz Brother’s result is an important consequence of Helson’s theorem. For that, we need to
recall an important result related to the Radon-Nikodym derivative.

Let |u] be the total variation measure of a complex-valued Borel measure p on T, i.e.

|p|(o) = sup { Z |p(oi)| = {oi}ier is a partition of o in B(T)}.
i€l

Suppose p is absolutely continuous with respect to a positive measure A on B(T). Then there
exists ¢ € L'(\) (the Radon-Nikodym derivative of ;1 with respect to \) such that

(o) = [ Ielax

Theorem 4.7.2. (Riesz Brother’s, 1916) Let pu be a complex-valued Borel measure on T such
that
/ 2"dp =0,Vn > 1.
T
Then i < m and dp = hdm, where h € H* = {f € LY(T) : f(k) = 0, k < 0}.

Note that, a measure p that satisfies [ z"du = 0 for n < 0 will be called analytic measure.
T

Proof. Tt is clear that u < |u|. Let g € L'(|u|) be the corresponding Radon-Nikodym derivative
of u with respect to |u|. We claim that |g| =1 a.e. p. For § > 0, set o = {t : |g(t)] < 1—4}. Then
lu|(o) = [gld|n] < (1 —08)|u|(o). Implies |u|(o) = 0. Similarly, the case o’ = {t : |[g(¢)| > 1 —d}.

This proxcfres the claim. As a consequence of the Corollary 4.3.1, we get
Hi(lul) = H*(|ula) @ L2(|nls)- (4.7.1)
But |g| =1 a.e. |u| implies g € L?(|u|), and
(2", 9) L2 = /Ez”gd\,u\ = /Ez”d,u =0,n>1

In other words, g L 2™, n > 1 in the Hilbert space L?(|u|), and hence g L HZ(|u|). In view of
(4.7.1), we obtain g | HZ(|u|s). Now, by construction, |g| = 1 a.e. ||, which implies |g| = 1 a.e.
|pt|s- This is impossible ( since g 1 HZ(|p|s) ), unless |u|s = 0. Finally, u < |p| implies

p(o) = [ gdiul = [ gdlula = [ gudm
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for each o € B(T). That is 4 < m with Radon-Nikodym derivative h = gw € L*(T), and

~

h(k‘):/Zkhdm:/ikgwdm:/ikdu:O if k< -—1.
T T T

Hence h € H!. O

Question 4.7.3. *

For g € L'(T), define gy = span{z"g : n > 0}|z1(r)- Characterize all possible g € LY(T) such
that inf |1 —pg|1 =0.
peP?

4.8 Exercises
Example 4.8.1. by = % where A € D is an inner.

Proof. by = X — zznzoxnz”(]z\ = 1) and clearly by(k) = 0 for k < 0, and > k>0 [bA(K)|? < oo;
hence by € H?(T). Moreover, for |z| = 1 we have |\ —z| = [\ —Z| = |1 — \z|, thus |[by(2)| = 1. O

Example 4.8.2. f = Hszlek is an inner.

Proof. For f,g € H*® we have ||fg|lco < ||fllocllg]lco hence H*®.H*> C H*, a product of inner

function is inner. O

Example 4.8.3. S, = exp(%) where a > 0, € T.

Proof. As Re (gfi) = \IC_lez >0 for any ( € T, |2|] <1,z # T, we obtain that |S¢ 4| =1 on T.

Moreover for every n > 0 we have §C,a(—n) = [p 2"S¢.a(2)dm = lim,—; [ fr(2)dm = 0 where
f(z) = 2"S¢a(2) and fr(2) = f(rz),0 <r <1 (f+(0) = 0 since f, is analytic in |z| < 1/r and

£(0) =0 O

Example 4.8.4. f = Hé\;l Sty,ar, Where ai >0 ¢ € T.

Proof. See the proof of (ii). O
Examples related to the outer functions you will get in Chapter 6, Subsection 6.2.

Exercise 4.8.5. For every f € L? prove that f- H®(T) C E; = span{f, zf,22f,...}.

Proof. Clearly fP, C Et, where P, is the space of analytic polynomials. It only remains to show
(fP.)* C (fH*®)* (orthogonal complement in L?). Let g € (fP,)*, i.e. [ gfpdm = 0 for any
polynomial p € P,. Thus for any h € H*, [-gfhdm = 0 because gf € L' and h is a weak limit
o(L®, LY) of its Fejer’s polynomials. () O

Example 4.8.6. If f € H?(T) such that 1/f € H>(T), then f is an outer.

24



MAG650: Advanced Hardy Spaces Theory First Applications

Proof. By the exercise 4.8.5, 1 = f-1/f € Ef hence Ef = H?(T). O

Exercise 4.8.7. Let f,g € L*(T) (thus fg € L'(T)). Show that for every n € Z, fg(n) =

> kez (k) f(n — k); the series converges absolutely.

Proof. By Cauchy Schwarz’s inequality || f(g—¢")|| < ||f]l2llg —¢||2, the multiplication M, f = fg
is continuous L?(T) — LY(T). Moreover the Fourier series g = 3",.c7, G(k)z* converges for the norm
of L?(T). Hence fg = >z §(k)2" f converges in L*(T), wich implies E(n) =Y kez 9(k)(ZFf)(n).

~

The calculation follows from (2%f)(n) = f(n — k). O

Exercise 4.8.8. Let f = fin four € H?(T). Show that sup{|g(0)| : ¢ € H*(T), |g| < |f| a.e. on T} =
‘fOut(O)’

Proof. From the previous exercise o1h(0) = $(0)9(0) for all ¢, € H2(T). Moreover for every
inner function h, we have [(0)] < ||hlly = 1. Given g € H2(T,)|g| < |f|, which implies
@(0) = ’gin(o)gout(o)’ < ‘.aout(o)" Then by Theorem 4.7.1

GO < 30ua(O)F = it [ 1= pPlgPdm < ing [ 1= pIfPdm = | four(0)
PEPa JT pEPa JT
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Chapter 5

Canonical factorization in HP(D)

In this section, we discuss the canonical factorization of functions in HP- spaces on the open unit
disc as a product of three factors, namely a Blaschke product, a singular inner function, and an
outer function in its Schwarz-Herglotz representation. This will help us analyze the questions

raised earlier. In particular, Szegd infimum etc.

Definition 5.0.1. Let D = {z € C: |z| < 1} and Hol(D) denotes the space of analytic functions
on D. For p > 0, set

HY(D) = {fGHol(D):HfH%pz sup | 2”|f<re“>rpdt<oo},
0<r<170

and H*(D) = {f € Hol(D) : || f|| g = sup|f(z)| < oo}. Here dt is the normalized measure on T.
z€D

A

For p > 1, set LP = LP[0,2x| = (LP[0,27],dt) and HP = {f € LP : f(k) =0, k < 0}.
The space HP (D) and HP are called Hardy spaces of the disc and Hardy space respectively.

Later on we canonically identify these two spaces as same.

5.0.1 Properties of H? spaces
(i) HP(D) is a linear space.
(ii) f+— || fllgr is @ norm if p > 1.
(iii) HP(D) c HY(D) if p > q.

(iv) For p =2, let f € Hol(D), and

f(z) =3 f(n)z", f(n) € C.

n>0
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By Parseval’s identity

27
/ Fre) 2t = 57 | (n)[2r2n, 0 < r < 1
0

n>0

and we have

27
sup/o| ")2dt = 3 | F(n)

0<r<1 n>0
Thus for f € Hol(D), we have f € H%(D) if and only if Z |f(n)? < 0.
n>0

(v) If 1 < p < oo, HP is a Banach space, and 0 < p < 1, H? is a complete metric space [12](p.
37). If p < 1, then |.||, is not a true norm, in fact H? is not normable. However the

expression d(f,g) = ||f — g||}, defines a metric on H? if p < 1.

Example 5.0.2. The function f(z)=11 is analytic on D but is not in H*(DD).

Proof. Since i = > 2", the coefficients of f are not square-summable. O

For f € H,|[f|2 = supocry Jx |f(rO)Pdm(Q) < [IfI% < 00 — f € H2, hence H* C H.

Example 5.0.3. The inclusion H*(D) C H*(D) is strict since the function f(z)=log ;= is an

unbounded analytic function on D but it is member of H?(ID), because it has a Taylor series:

1 n

>
—Z n

lo
51
has square summable coefficients.

5.1 A Revisit to Fourier Series

The functions in LP[0, 27| can be thought of as functions on (0, 27), which can be extended

periodically to real line R.

Lemma 5.1.1. Let f € L'[0,27], g € L?[0,27], 1 < p < oo. Then
(i) for almost every x € (0,2m), y — f(z —y)g(y) is integrable on (0,27).
(ii) fxg(x)= 02” f(z —y)g(y)dy is well defined and belongs to LP|0, 27].

(i) |1f *glly < £l llgllp-

Proof. Note that (x,y) — f(z — y)g(y) is measurable, and by Fubini’s theorem |f * g(x)| <
J1f(x—y)llg(y)|dy < oo a.e. x. By Minkowski integral inequality,

| [ 1@ =nawds]| < [ 15 = p)9@lads = ol A1l
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—

Further, if f € L'(0,2x) and f(n) = 027r F(t)e~™dt, then (f * g)(n) = f(n)§(n), whenever
g € LP and 1 < p < oo (using Fubini’s theorem). O
5.1.1 Approximation identity (or good kernel)
(i) If a family (E,) C L' satisfies
(a) sup | Eall < oo
(b) lim E,(n) =1,

then lim |f — f+Eqllp =0for f e LP(1 < p < oo). This is still true for p = oo, if f € C(T)
(called approximate identity of LP.)

(ii) If (E,) C L' satisfies

(a) sup||Eqll1 < 00
«

27
(b) lim Eq,dzr =1
@ Jo
(c) lim sup |Eq(x)|=0,Yd>0.
@ s<|a| <

then conditions of (a) and (b) of (i) is satisfied and we get lign |f — f*Eqllp,=0.

5.1.2 Dirichlet, Fejer and Poisson Kernels

(i) Dirichlet kernel

ULR sin(m + $)t
D — ikt — 2
m k;_m ¢ sin(t/2)
(ii) Fejer kernel
1 & & k] N\ 1 sin g2
D, (t) = Dy, = 1— i — =)
n(t) n—i—lmzz:o " k;n( n—l—l)e n—l—l(sin(t/Q))
(iii) Poisson kernel
1—-r

= Zr|k|eikt, 0<r<l.

T oit2
|1 — rett| P

Result: If f € L', then

1. fxDp(t) = Z f(k)e™ = S,,(f;t) (Partial Fourier series sums of f)

k=—m
3y Gl e 1§ : : -
2. fx®,(t) = Z f(j)(l — m)e =11 Z S (f;t) (Arithmetic mean of partial sum
m=0

of Fourier series of f)
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3. fxP.(t)= Z FE)r*lett 0 < < 1.
keZ

4. (Py)n>1 and (Pr)o<r<1 are good kernels, and || P||1 = [|®y]|1 = 1.
5. Ppx P = P for 0 <r,r <1 (semi group property).

Corollary 5.1.2. If f € LP; 1 < p < o0, then Tllggo |f — f* ®ull, = 0. Hence trigonometric
polynomials are dense in LP. (Hint: This follows from the property of the good kernel.)

The same is true for p = oo, if f € C(T).
Corollary 5.1.3. If f € L', f(n) =0, Vn € Z, then f = 0.

Notations: For f € L', set f, = f* P, 0<r < 1.
For f € Hol(D), we set fy(2) = f(rz), if |2| < 1,0 <r < 1. Clearly f(r) 1s analytic in bigger
domain: |z| <1< 1+e.

Corollary 5.1.4. If0<r<p<1land f e L?, 1 <p < oo, then }1_>rri | fr — fll, = 0. Moreover,
| frllp < N follp < 1 fllp(using mazimum modulus principle).

If f € Hol(D), then || fimllp < I fip)llp and the limit (possible infinite) P_ﬂ I fryllp < o0, exists.
In fact, 71}_)1]% | foyllp = [ fll ey if f € HP(D). (It follows due to P, is a good kernel.)

5.2 Identification of H?(D) with H?(T)
Theorem 5.2.1. Let 1 < p < oo.
(i) If f € HP(D), then }1_)11% foy = f exists in LP(T) and f € H?(T). (For p = oo, the limit
holds in the weak* topology of L°°(T) i.e. in o(L>, L').)
(i) f v f is an isometry.

(iii) f and f are related by foy = (f)r = f* P,
The function f is called the boundary limit of function f.

o0
Proof. Let f = Z anz" € HP(D), then

n=0

M = sup ||fillp < oc. (5.2.1)
0<r<1

(i) For 1 < p < oo, by Banach Alaoglu theorem (5.2.1) implies that (f(;))o<r<1 is weakly rela-

tively compact in LP(T). Since LP = (L¥')*, ]%—i— ]% =land f,) € LP; M = sup ||[Af] <
0<r<1

o0, where Af,) € (LP")*. This gives a limit point f € LP(T) of (f(r))re—1 in the weak topol-
ogy of LP. We claim that the convergence takes place in LP. As the functional ¢ — gzg(n)
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is continuous on LP ( since |@(n)| < ||l¢|jrer ) for e > 0,0 <r < 1,37, with r < rp <1
such that |f(r) (n) — f(n)| < e. Note that

1y = Fllp < £y = Foollp + 1 fry = Fllp = 0 as v — 1,

if we suppose f,,) — fin LP. But then as r — 1, f'(r) (n) = apr™ — ap, n € Z with a, =0
if n < 0. Hence a,, = (f)(n), which implies f € HP(T).
We deduce that f does not depends on (rk)k>1 and for £ € T,

—

(f*P)E) =D anr®e™ =3 (H(n)r"le™ = fi,(€). (5.2.2)

Now, by property of good kernel P, we get

Hf(r) _JEHP = H(Jz)r _JFHp — 0asr — 1.

That is f(,) — f in LP.

For p = oo, the similar reasoning gives the convergence f(,y = ( f)r — f in weak* topology
of L.

Case p = 1 : The space L'(T) can be regarded as a subspace of M(T), the space of all
complex measures on T. As M(T) = C(T)*, by Banach Alaoglu theorem, the balls of M(T)

are weak™ relatively compact.

We again get the existence of limit f € M(T) as lim1 fo) = f, but this is weak* limit
r—

in M(T). That is, [ fyg — [ fg, g € C(T). As before take g(t) = e=™, then (f)(n) =
j(n) = li_}m1 f(,,) (n), n € Z, and hence fi(n) = 0 if n < 0. By Riesz Brother’s theorem we
get p << m, and the corresponding Radon Nikodym derivative of p with respect to m

is equal to f € H'. Using the same argument as in the beginning of the proof, we get

(f)(n) =an, n >0, fr = (f),. Hence
tim [|f = filh = 17 = (Pl 0

because f., — f in LP for 1 < p < oo by Corollary 5.1.4.

Let us first consider the case p < co. Since f = lini fr), we get using Corollary 5.1.4,
T—
171l = Y 1y lp = 10w
For p = 0o, observe that as f is weak® limit of Jr), we get

1 flloo < T inf [ fipylloo = Il fll 2o ) -
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On the other hand f(,) = f P, we get
lim sup [| fzylloo < 1| flloo-
r—1

Hence, we conclude that || f[| oo (p) = ||f||Hoo(’]I‘) =1 f]lso-
(iii) has been given in (5.2.2).
O

Convention: Thus in view of Theorem 5.2.1, for p > 1 we can identify f € HP(D) and its
boundary limit f by

f(r):fr:f*Prandf:Zf(n)zn

n>0

Now f (n) represents Fourier coefficient of f at n and Taylor’s coefficient as well. Note that if
f € HP(D) then f(0) = f(0) always.

Corollary 5.2.2. For every § € D, the point wise evaluation map ¢ : HY(D) — C, defined by
oe(f) = f(&), f € H'(D), is a continuous linear functional on H' (and hence on HP, 1 < p < 00).

Proof. Let f be the boundary limit of f € H'(ID). Write & = re’, 0 < r < 1. Then

ezt) _ Zf(n)ezntr\m _ Zaneintrn _ f(T)(eint) _ f(reint) _ f(é—)

1+ (¢
1— ¢

Remark 5.2.3. If f, — f in HP,1 < p < oo, then f,, — f uniformity on compact sets in D.

Thus |f(€)] < | FIlIP e < [1F11

Proof. For [A] <1 < 1, [fu(\) = FN| < |fa = FITERE = I — FlITEH — 0 as n — oo, since

| 7n — Il = 0. Any arbitrary compact set K C {|\| < r}, hence f,, — f uniformly on K. O

5.3 Jensen’s formula and Jensen’s inequality

Lemma 5.3.1. Let f € H' with f(0) # 0 (because f(0) = £(0)) and let A, be the sequence of
zeroes of f in D counted with multiplicity. Then

08 (0] + Y tog 51 < [ 1og ()| dm().

n>1

In particular

log | £(0)] < /T log | £(£)|dm(t).
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If f € Hol(D14¢), then

08 (0 + Y- loz 37 = [ tog | (0)am().

n>1

Proof. First we consider f € Hol(ID14.). Let us assume that Z(f) NT = 0, i.e.
f has no zeroes on T. Then Z(f) N D=finite={A1, A2, ..., A\n}. Set B(z) = [] [l ()‘f?) . For

j=1 J (17’\_JZ)
By(z) = % ((1)‘__;2), it is easy to see that
1—AA)A - [z
Br(2)?=1- ( = )
BA) T
Thus we set |[B| = 1 on T, and f/B is a zero free holomorphic function on Dj 5 for some

d > 0. Hence, log|f/B| is a harmonic function on D;5 and allow to apply MVT (because
log g(2) = log lg(=)| + i arg(g(2)), if (=) # 0) and we get

log|(//B)(0)| = [ tog|/Blam = [ log]fldm.

As log|(f/B)(0)] =log|(f)(0)] + ) log|A;|~", we get the desired formula.
j=1
For f having zero on T, we consider f,, 0 < r < 1, where f,(z) = f(rz). Note that f, is

analytic in |z| < 1/r < 1+ e. Choose r such that f, has no zero on T. If for all r f, has zeros

on T, then f has uncountably many zeroes on T hence zero set has a limit point in 1" and f is
identically zero. (Note that if A is a zero of f if and only if A\/r is a zero of f,.) For such an r,

apply the previous case:

log | /(0)| + 3 o8 111 /log|fr|dm() (5.3.1)

[An|<r

Now f is analytic in D, so f has finite number of zeroson T. Let Z(f)NT ={§;: i =1,2,...,k}.
Hence f = pg with p = II¥_; (2 — &) and g is a holomorfic functions such that g and é are
bounded on T. However for every r, 0 <r < 1and z € D

& — 2] <& —rz| +|z(1—=7)| <& —rz[ + 1 —r] <2 —r2] <2

1
= Sl& -zl <& -z <2 (5.3.2)

We will calculate for one zero & € T. f.(§) := f(r§) = [r§ — &["g(r§) == log|f(r)| =
nlog|ré — &) +loglg(ré)|
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Now from (5.3.2)

%l&j—ﬂﬁlré—ﬁjl
. 12
r§ = &1 7 1€ =&l

1
log | f(r&)| = — (n log =g + log |9(7“f)|>
j
1
1og|§J at og |g(ré)|
= 2nlog [ — &[ +log|g(r§)| := () say

To apply DCT and take hm inside the integration in (5.3.1), we need to show: [|h(§)|d§ < oo.
This holds since [} log \f §]]d§ is integrable (in fact it is zero, See [7] P. 307, Lemma 15.17).

The general case: Let f € H! and f(0) # 0. In order to pass limit in (5.3.1), note that
|logz — logy| < Ce|z — 9|, if x,y > €. Hence

[log(| fr| +€) —log(|f| + €)| < Ce[|fr| = |f]| on T and

log(|f,| + €) — log(|f| 4+ €) in LY(T) as r — 1.

But from (5.3.1)

log [f(0)]+ Y log /log]frldm</log (| fr| + €)dmi(t). (5.3.3)

[An|<r

As LHS in (5.3.3) is increasing in 7 and RHS is convergent, we obtain

o5 |(0) + Y- tog 13 < [ los(1f]+ €)dm

n>1

for each € > 0. This completes the proof.

Since |A,| < 1 for all n € N hence the “in particular" case follows. O

Corollary 5.3.2. (Generalized Jensen’s inequality)
Letg€ H', g #0, and |¢| < 1. Then

2
l%w@Ns/L_ﬂJ%mwumm. (5.3.4)

Indeed, to begin with, we may assume that g € Hol(D14). Apply the previous result to the
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function

E—z
z) = =,
f(z) 9(1 — 52)
1‘;'52"2 (Hint: Put s = f_—_gt etc.)
Remark 5.3.3. (Confrontation of two Jensen inequalities) Curiously, Jensen’s inequality of

and remark that Jacobian of this change of variable is

Lemma 5.3.1 and Corollary 5.3.2 for the holomorphic functions is, in a way, the opposite of the
fundamental inequality of convexity in real analysis, which also bears the name of Johan Jensen.

In fact, the Jensen convexity inequality states that:

w/gdmﬁ/wdm
T T

for any real integrable function g and any convex function ¢(¢” > 0). Setting g = log|f| and

o(x) = ¥ we obtain the following:

[ 10g11dm < 105 [ |fldm = 10g[71(0)
T T

5.4 The boundary uniqueness theorem

Corollary 5.4.1. If g€ H', g # 0, then log|g| € LY(T). In particular, if g € H* and m{t € T :
g(t) =0} >0, then g = 0.

Proof. Indeed, g € H' may be expanded in its Taylor’s series (when realized on disc D) as
g= Zkz”g(k)zk, where g(n) # 0, and n > 0 is the multiplicity of the zero at z = 0. By applying

Jensen’s inequality to function f = g/2z", we get

/log|g|dm:/log|f]dm> —00.
T T

Since, logz < z if x > 0, we also have

/log lgldm < / lgldm < oo.
T T

Hence log|g| € L'(T). It is clear that if m{t € T : g(t) = 0} > 0, then [;log |g|dm = —oo, which
is possible only if g = 0. O

Remark 5.4.2. The corollary is true for all p > 0. Proof for this using the MVT for harmonic

function is done in the proof of Theorem 5.7.6.

Remark 5.4.3. Recall that we have seen the second statement of the above corollary for f € H?

using a completely different approach.
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5.5 Blaschke Product

Lemma 5.5.1. (Blaschke condition, interior uniqueness theorem) Suppose f € Hol(D), f # 0,
and let (A\p)n>1 be the zero sequence of f in D, where each zero is repeated according to its

multiplicity. Suppose that
liminf/ log | fr|dm < oo,
r—1 T

then 3-,>1(1 — |Au]) < oc. In particular, this holds whenever f € HP(D), p > 0.

Remark 5.5.2. The condition Z(l — |An]) < o0 is called Blaschke condition.
n>1

Proof. Without loss of generality, we can assume that f(0) # 0. But then Jensen’s formula gives

1 .. T
Zlogm—h%{ﬂ Z logm<oo

n>1 An|<r

As |A,| — 1, we have log (ﬁ) ~ (1 — |\,]), and hence the desired conclusion followed. The

HP(D) case is a consequence of the obvious estimate logz < Cpa? for > 0, p > 0, because

liminf/log\fr| Sliminf/ Co|fr]P < 0.
r—1 T r—1 T

For A € D, we define Blaschke factor by

Al (A= 2)
br(z) = ————.
A2 = (1-X2)

(i) If we assume the normalization by ( — &) =1, then for A = 0, we can define by(z) = z.
(ii) Zero set Z(by) = {\}, by € Hol(C\ {% ), 1ba] <1 onD and |by| =1on T.

Lemma 5.5.3. (Blaschke, 1915) If (An)n>1 € D satisfies the Blaschke condition Z(l —[An) <
n>1
oo, then the infinite product

B=[]br, =lm [] b,
n>1 [An|<r

converges uniformly on compact subsets of D and even on compact subsets of C\ Clos{)%}nzl.

Moreover, |B| <1 inD, |B| =1 a.e. onT, and Z(B) = (A)n>1 (counting multiplicity).
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Proof. Set B" = H by, Then for 0 <r < R < 1, we have
[Anl<r

|BE — B"|)? 2 — 2Re(B, B")

) —2Re/BRBTdm

BR
= 2- 2Re/?dm (because |[B"| =1 on T).

So by MVT for holomorphic function glf we get

BE _B"|2=2-2R B® 0)=2-2 A
| s = e 5 (0) = I Ml
r<|An|<R

By Blaschke condition Z log |An| ™! < o0, the product
n>1

[T 17l

n>1

converges, which implies lim H |An| = 1. This shows that (B") is a Cauchy sequence in
"< nl<R
H? C L? for every r = rj, — 1. So we deduce the existence of B = lirq B". Moreover, |B| =1 a.e.
r—

on T because |B"| =1 on T, and B € H2. As the point evaluation is continuous linear functional
on H?, the limit lim, ,; B"(\) = B(\) exists uniformly on compact subsets of D, and hence
|IB(A)| <1, A € D. Using 2 — 1 in H? (easy to see), we get 2 — 1 uniformly on compact
subsets of D as r — 1 and

lim (;)(A) =1. (5.5.1)

This shows that B(A\) =0, |A| < 1 if and only if A = X, for some n > 1 (counting multiplicity).
If A # A\, and B(\) =0, then (5.5.1) will fail.
In order to prove convergence on compact subsets of (C\clos{)%}nzl, the following observation

is enough.

(L= [A))(An + [An]2)

2 A=A +]2) 1= A
A1 = Az)

allz — ]~ Cdist(z, N)’

lbx, — 1] = <

n

where N = clos{/\i in > 1} O

Corollary 5.5.4. (Frigyes Riesz, 1923) Let f € HP(D), p > 0 with corresponding zero sequence
(An)n>1. Then there exists g € HP(D) with g(§) # 0, V& € D such that f = Bg and || fl, = |l9]lp
on LP(T).

This may be thought as the Blaschke filtering of the holomorphic functions.
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Proof. Take B" = H by,, 0 <r < 1. Clearly, % € Hol(D) and for p — 1, we get |B"(p&)| — 1
[An|<r
uniformly on T. Hence,

"= i [ |20 ame) = 151 (5:5:2)

HBT P p—)l T

And thus by definition of HP(D),

([ waan©)" <isl, for every 0 < p < 1.

Fix p, set g = é, and letting » — 1, we obtain

([ Jotoe) am(@)" < 1l

O]

sy N

and hence ||g||, < || f]|p- The other inequality follows from g =

Note: In the proof of equation (5.5.2) we use the fact if f, = f in HP-norm and g, — 1
uniformly as p — 1 then f,g, — f in HP-norm. To prove this use: |f,g, — f| = |fo9p — fo+ fo— f|
and to apply the DCT use Minkowski’s inequalities and g, is uniformly bounded by M.

Question 5.5.5. * Is it possible to replace log| - | in Jensen’s inequality with some suitable

increasing function?

Remark 5.5.6. It is useful to introduce the notion of the zero divisor (or multiplicity function) of
a holomorphic function. For f € Hol(2), Q C C, f £ 0, A € Q, set

0 if f(A\)#O
dp(A) = .
m o if fA) =--- = fD(X) =0 and f™()\) #0.
The value of d¢(\) is called zero multiplicity of A\. We can redefine the Blaschke condition. The
zero divisor of f € Hol(DD) verifies the Blaschke condition if and only if

> A=A <

AeD

The corresponding Blaschke product is given by

H bfl\f(/\) _ H bf\lf()‘n)'

reD n>1

Corollary 5.5.7. Let f € HP,p > 0 then there exists fr € HP; k = 1,2 such that f =
fr+fa, [fellp < [[fllps and fr(2) # 0 for z € D

Proof. If f(z) # 0, we may take f; = fo = %f If f has zeros, we have f = Bg, with g € H? has
no zeros. Thus f(z) = [B(z) — 1]g(2) + g(z). O
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S, =conv{{, sin(d)-D}, 0<6<n/2.

Stolz angle at the point ¢ on the unit circle.
Figure 5.1: A Stolz angle at ¢ € T.

5.6 Non-tangential boundary limits and Fatou’s Theorem

Recall that we have identified boundary limit f of f € H?(D) via
lim || f» = fllp =0, f € H, 1 < p < o0,

We shall see another convergence of f(z) to its boundary values, namely the so-called non-
tangential convergence a.e. on T for f € HP(D) with 0 < p < co.
Let 1 be a complex valued Borel measure on T and p € M(T). Let du = hdm + dus,
h € L'(m) be Lebesgue decomposition of y with respect to m. Then the derivative of u with
respect to m exists at almost every point £ € T, in the following sense.
MO S (e

A—e cea m(A) dm
where A is an arc on T tending to £. Such a point will be called Lebesgue point of p.

Definition 5.6.1. A Stolz angle at the point ¢ € T is the set
S¢ = conv{(,sin(0)D: 0 < 0 < 7/2}

where “conv" represents convex hull of sets.

A limit along a Stolz angle, lim ) f(2) is called a non-tangential limit at a point (.

1
ZGSQZ—}
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1 — 72

Since the Poisson kernel satisfies P(re') = e
—re

for f € LP(T) (1 < p < 00), we have

1—r2

P f(e) = | mf<eis>ozm<eis>

- Z|2 i0 is
/’C (C)qut(zzre 7(26 )

= f* P(z)( write ).

That is P, * f(e¥) = f * P(2), where z = re? € D. Sometimes it is called the Poisson integral
of f.
Now we see one of the most important result about non-tangential limit of the Poisson

integral.

Theorem 5.6.2. (P. Fatou’s, 1996) Let € M(T) and ¢ € T be a Lebesgue point of u, then the

Poisson integral of

P(z) =Pxu(z ),z €D

has a non-tangential limit at the point ¢, which is equal to #(C) i.e.,

2—(,z€8¢ - dm

In particular

ﬁ(g“) m-a.e. on T.

Proof. Since P xm(z) =1 for every z (see Rudin, Real and Complex analysis, 11.5, p. 233) the

lim 2(r¢) =

result is correct for u = m. With a replacement of p if necessary by u — em(c € C) and with
the use of a rotation, it suffices to examine the case u(T) = 1(0) = 0 and ( = 1. Let F be a
premitive of y, i.e. a function on [—m, 7], left continuous and with a bounded variation, such
that ule’®, e?) = F(B) — F(a), F(—7) = F(r). As F is defined upto a constant, we can assume
F(0) = 0. Integration by parts in the integral

Pz / P(2¢7)dF(s), 2 € D.

P*,u(z):—/_ﬂdp(d_zs s)ds —/ E.(

gives
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where E,(s) = —sdp(';esiis). We denote z = re’® where |0] < 7,0 < r < 1, and calculate FE, :
Ez(s):—sil_—ﬁ:—si 1—r? :_(1—r2)3§in(9—s)
ds |1 — rei(0=9)2 ds1+r2—2rcos(d — s) |1 — reil@—s)|4
ssin(f — s)

- (1 —r2) + 4rsin(0 — s)/2P<Z€7is)‘

Let us show that the family {E, : z € S stolz angle} satisfies the conditions (i)-(iii) for an

approximate identity, given in 5.1.1 (ii).

(i) For every z € 5y,

1B = [ |s

|ssin(6—s)|
(1—7r2)+4sin%(6—s)/2 _
Let C' > 0 be such that |§] < C(1 —r) for any z = re? € S; (the existence of such a C' can

be verified as an exercise).

dP(ze™™)

<A P(z _ZS =A
ds / 27r ’

1S € [—m ],z € Sl} . It remains to show that A < oo.

where, A = sup {

|ssin(6—s)| 4C(1—r)|sin(6—s)/2|
(a) If ‘S‘ < 20(1 =), then (1—r)2+rsin?(60—s)/2 = (1-r2)+4sin?(0—s)/2 <C

(b) If |s| > 2C(1 — r) then |s| > 2|0|, and we have

|s sin(6 — 5)| < AslUs[+10D) _ Isl(ls] +16])
(1 —7r2) +4sin?(0 — s)/2 ~ 4sin?(0 — s)/2 ~ 4(|0 — s|/m)2
< Isl(s[ +s/2])

~ A(]s| — 16]/)?
|s.(3/2) 2
< Ao = B3/

A(]s| — 10]/7)?

Therefore A < max(C, 3%2)
(ii) Integration by parts gives:
ds .
g [ B = Jm (1= P -1

(Since P is the real part of an analytic function it is harmonic hence continuous ,then take
the limit inside and P(—1) = 0)

(iii) Let 0 < |s] <. Then for z € S; sufficiently close to 1 we have: || < C(1 —7) < §/2 and

hence
(1 —rz)ssin(0—5)| (1—r)m
11— rei@=—s)[& ' = |1 — reid/2[d’

[E=(s)] = |

which tends to O as z — 1,z € 51
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These properties of E, and the evident relation:

. F(s) 1 du
1 = —_— 1
S50 s 27 dm( )
({571%) = L lim, o M0 Ly FOFO) Ly ng))
as well as (ii) above, imply, when z — 1,z € 5
N F(s) 1 dp >
Pp(z) — o (1) —/_ﬂEz(S)( o o g (1) ds+o(1)

§
Lt
= o<|s|<m

which tends to 0. Indeed by (i), for any € > 0 there exists § > 0 such that

/.

and thus, given (iii) and above,

< max
21 dm

1
F(s) ——d—'u ‘/ s)lds < e2mA,

P p(z) — j;i(l)‘ < e2mA

hmz%l,zEEﬁ

and the results follows. O

Corollary 5.6.3. If f € HP(D), 0 < p < 00, then the non-tangential boundary limits of f exist
a.e. on T. That is,

lim  f(z) = f(€) fora.e. £ €T.

2—&,2E€S5¢

The boundary function & — f(€) is in LP(T), and for p > 1, f(€) = f(€) a.e. on'T (f is defined
in Theorem 5.2.1).

Proof. For p > 1, the claim follows from Fatou’s Theorem (5.6.2) and the Identification Theorem
5.2.1 (because radial limit exists).
Note that for f € LP(T) (1 < p < o0) and du = fdm, we have

1— |2

[ ©Qam(©
— P f©)(let 2 = 7€)
= fr&) = fn(&) = f(r§) — 3%(5) = f(&) as r — 1(Fatou’s Theorem.)

P p(z)

Now by identification Theorem 5.2.1 (i) f, — fin LP, as r — 1. Since convergence in LP, there
exists a subsequence (ry,) such that P u(€) — f(€) as r, — 1 for a.e. & € T ( since convergence

in L? implies there exists a subsequence which is pt-wise a.e. convergence).
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Hence f(&) = f(€) for a.e. £ €T.
B For general case p > 0, we know that f = Bg = B(g'/?)P, where g € HP(ID). This implies

g'/? € HY(D). The result follows from the previous reasoning. O

Notation: From now onward, we identify the functions f € HP(D) with their boundary values
on T, and write HP(D) = HP(T), 0 < p < oo, where HP(T) is the collection of boundary functions
of HP(DD).

5.7 The Riesz - Smirnov canonical factorization

Here we see the main result of the Hardy space theory - a parametric representation of f € HP
as a product of Blaschke product, a singular inner function, an outer (maximal) function. The
last two functions are exponential of integral depending on the holomorphic Schwarz - Herglotz

kernel z — gfi , whose real part is the Poisson kernel.

Theorem 5.7.1. Let f € LP, 0 < p < co be such that log|f| € L', and define

) =exp ([ gjjlogu(owm(c)), 2 < 1.

Then
(i) [f] € HP(D) and |[f]| = |f| a.e. onT.

(i) If 0 # g € HI(D),q > 1, and |g| < |f| a.e. on T, then |g| < |[f]| on D (and hence
g € H?(D)).

(iii) [£] = & and [[f] = [f].
(iv) [f)(z) # 0 in D and for any o >0, [|£1] = [£]".

Proof. (i) For fixed z, |gf§] < 0o*! and log |f| € L! hence [f](z) is well defined. Clearly, [f] is
a holomorphic function on D. Recall that for a finite Borel measure p and a convex function

1, we have the Jensen-Young geometric mean inequality

JooFdy [ Fdp

—_— 5.7.1

a2 Cra) (5.7.1)

[ Proof Let F' : (2,u) — I C R(I is finite or infinite interval), set v = fd Let

A={h:h(z) =ax+b h < onI}. Then h([Fdv)= [hoFdv < [ o Fdv. We get

the inequality since Y(x) =sup{h(z): h € A}. | By apply inequality (5.7.1) to the Borel
—|z

measure dy = IC ZI2 dm((), we get

1— 2\2

117 = e [ 1= EE vgls0Pam(©) < [ L dm)
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Set z = re’. By Fubini’s theorem, we get

[ el st < fusr( [ L myam = 17

Now, by Fatou’s theorem and its corollary there, we have

log [[f](€)] = lim log |[f](r&)| = log | f(¢)] a.e. £ on T.

The modifications in the case p = oo are obvious.

(ii) Given that 0 # g € HY(D), ¢ > 1, and |g| < |f| a.e. on T. This implies log |g| € L', and

hence by generalized Jenson’s inequality (5.3.4), we get

e
oglg(a) < [ 1 0glo(@)ldm(c)

I¢—z
1|2
/T T log | £(¢)|dm(¢)
= log|[f](2)].

(iii) is a direct consequence of the definition.

(iv) It is a direct consequence of the definition. But here we only consider the fact log | f|* € L*,

whereas f* € LP is not considered.

O]

Note: *1]

E+ 2 22 z
> =142 — since |—| < 1.

n=1
Since z €D, z=71££€T

> 1 1
<1423 =142 — 1) =

1—17r 1_T<oo

'£+z
E—=z

n=1

Since r fixed for fixed z.]

Note that from Theorem 5.7.1 to define [f] the condition log|f| € L! is sufficient, but the
extra condition f € LP ensures that [f] € HP(D).

The following result ensures the existence of enough harmonic functions as Poisson integrals

of finite Borel measures.

Theorem 5.7.2. (G. Herglotz, 1911) Let u be a non-negative harmonic function on D. Then
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there exists a unique finite Borel measure p > 0 such that u = P x u, that is

P
)= [ (o),

Proof. By MVT we have for all z in D

= [ Zp@in@ = [ o)

where we have set u,(z) = u(rz), 0 < r < 1, and du, = u,dm. Then p, is a positive measure

and Var(u,) = i (T) = u,-(0) = u(0) < co. Thus the family (ur)o<r<1 is uniformly bounded
in M(T), and has week* convergent subsequence p,, that converges to pn € M(T). Recall that
M(T) is dual of C(T)* with the duality < f,n >= [ fdp. Thus, if f € C(T), f > 0, then

T

/fd,u: lim/furndmZO = u>0.
T n—oo T

EMoreover, since u is continuous on D, for z € D, we have

) 1-— |z]2 - |z
ulz) = Jimulrn?) = Jim, | o= = [ie
BUniqueness of y: Note that P x p(re® Z |n‘ )e™™ . For any v such that P« pu= P xv
nez
implies ji(n) = P(n). Hence pu = v. O

Theorem 5.7.3. (Singular inner function): Let S € Hol(DD), then the following are equivalent:
(i) 1S(z)] <1 and S(z) #0 on D, S(0) > 0 and |S(§)| =1 a.e. on T.
(ii) there exists a unique finite Borel measure pn > 0 on T with p L m such that

C+=z
TC—

S(z) = exp <— du(C)) , z€D.
Proof. (<=) (ii) implies (i) is a corollary of Fatou’s theorem (because of S € H>* (D) by (ii)).
1S(2)] = exp( Jr |1C_ 2:2 (¢ )) ,2€ D and i L m. By Fatou’s theor~em on —log|S(z)| = f(z),
li_%f(r&) = du(¢) = 0 since p L m. li_>rr%log|5’(1"£)| =0 = S =1ae onT. Also
S(2)| = |S(re)| < 1S(6)] = 1.
(=)For (i) implies (ii), let u = log|S| ™!, then by Herglotz theorem, there exists u such that
1— |2

log[5() ™! = [ {7 pdn(©)
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Once again by Fatou’s theorem (and |S(§)| =1 a.e. on T), we get

dp : _
%(5) = }1_)11% u(r§) =0 a.e. on T.
Hence p L m.
B(S(z)| = |Su(2)] in D. S(z) = AM(2)S,(2) with |A(z)| =1 for all z € D, but S(0) > 0 and
S,,(0) > 0 which implies that A = 1 and which further implies that S = S,,. O

Definition 5.7.4. A nonconstant inner function that has no zero in D is called a singular
inner function. A function S verifying (i) or (ii) of the preceding theorem is called a singular
inner function.f The word “singular” is used because of the representation of such functions by

singular measures.

logz,z >1 —logz,0 <z <1

Notation 5.7.5. logt z = { and log™ z = {

0,0 <z <1
Then log = log™ —log™; |log| = log™ +log™ and log™ # < x when 2 > 0. Also |logt x —

0,z >1

log™ y| < |z — y| for ,y > 0.

Theorem 5.7.6. (Smirnov, 1928: Canonical Factorization Theorem) Let f € HP(D), p > 0.
Then there exists a unique factorization f = ABS|[f], where A € C, |\| = 1,B, S and [f] are

defined earlier.

Proof. First set

T~

g:

We will show that any zero free function g satisfies [ log|g|dm > —oco. We may assume g(0) = 1.
Since g has no zeroes in D, log|g(z)| is harmonic in . The MVT for the harmonic function says

that any for any r € (0,1)

0 = log |g(0)] = / log |g(ré)|dm(¢)

—/logJr lg(r&)|dm(€) /log g(r&)|dm(§)

Thus Jy log™ g(ré)|dm(€) = fylog™ [g(r€)ldm(€) < fi lg(ré) dm(€)dm(€) < |lg]l (Canchy Schwartz).
Since g € HP(D), g along with the functions log™ |g| and log™ |g| have radial limits a.e. on T. By

Fatou’s lemma
/log lgldm < hm/log g(ré)|dm(&) < ||yl

which implies that log™! |g| is integrable on T. Simillary log™ |g| and log g is integrable.

Then |f| = |g| a.e. on T, and hence [g] = [f]. Set A\ = [Z](?g) and S = )\[g] Then f = Bg =
BMAS[g] = ABS|f]. As B and [f] are uniquely defined for f, the uniqueness of factorization
follows. O
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Next, we consider the structure of the outer functions in HP.

Theorem 5.7.7. (Structure of outer function) Let p,q,r > 1 and f € HP. Then the following

are equivalent.

(i) There exists A € C, |A\| =1 such that f = A[f].

(ii) for all z € D, the generalized Jensen inequality is equality:

log|/(2)] = [ P(=€)1og| (&)l dm(©) (5.7.2)

(iii) Identity (5.7.2) holds for at least one z € D.

(iv) If g € HY and % € L", then % € H" (Integral Mazimal principle).

If p =2, then (i)-(iv) are equivalent to
(v) the function f is outer in H?(In the earlier sense i.e., Ey = H?).

Proof. (i) implies (ii) is followed from the definition of [f]. The implication (iii) goes to (ii) is
trivial. For (iii) implies (i), suppose (5.7.2) holds for some z, € D. By Riesz-Smirnov factorization
theorem, we have f = ABS|[f], and by (5.7.2), we get

[f (Z0)l = IAB(20)S(20)[f1(20)| == |B(2)5(20)| =1 = [B(20)| = [5(20)] = 1.

By maximum principle, B = S =constant= 1 in D, implies f = A[f].
(i) implies (iv): If g € HY, then g = A1 BS[g] and we get 4 = /\éf[}q][)g] = (%) BS[%] € H" in view
of Riesz-Smirnov theorem and by the hypothesis that g/f € L".

iv) = (i): Let f = ABS|[f] and set ¢ = min(|f]|,1). Then [¢g] € H* and lg] <1lae. onT.
f

By (iv) we get % € H" (r arbitrary). Again, we have % =\ B1S; [%} = /\13151% (because

[lg]] = [g] and [%} = %), we get 1 = A\ BB1SS] = Ay B2Sy with |A2| = 1, where By is a Blaschke
product and Ss is a singular inner function. As |Ba(z)| < 1 and |S2(2)| <1 for all z € D, we get
|B2| = |S2| =1 and hence By = So = 1. Thus, we conclude that B = S = 1, implies f = A[f].

It remains to show that (iv) and (v) are equivalent if p = 2. As (i)-(iii) are independent of

choice of ¢ and r, we get equivalence between (iv) as well with p = 2, and arbitrary ¢, and with

p=q=r=2, (iv) is just earlier characterization of the outer function on H?2. ]

Remark 5.7.8. In the family of Hardy spaces, dividing by an analytic function, even if it does not
have any zero, is a delicate process and the result could be a function that does not belong to
any Hardy space. For example, if S is a singular inner function, then 1/S does not belong to any
Hardy space (easily check!). However, at the same time, its boundary values are unimodular and
one is (wrongly) tempted to say that 1/S is an inner function. The above result (Theorem 5.7.7
(iv), IMP) says that dividing by an outer function is legitimate as long as the boundary values

remain in a Lebesgue space.
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Definition 5.7.9. (Outer in H?) Let f € HP, p > 0 and f = ABS|f]|. The function [f] is called
the outer part of f, and ABS is called the inner part of f. We write [f] = four and ABS = finn.
If f = A[f], then f is called outer.

It is clear from the above theorem that if p = 2, then definition of inner and outer functions

coincide with previous ones.

Corollary 5.7.10. Let w € L1 (T), and p > 1. The followings are equivalent.
(i) There exists f € HP, f £ 0 such that |f|P = w a.e. on T.
(i3) logw € L .

Proof. As HP € H', and p > 1 (i) implies (ii) follows from the boundary uniqueness theorem
Corollary 5.4.1.
Now (ii) implies (i) follows by taking f = [w'/?]. Since if

£2) = [0')2) = exp ([ P8 og (O] Pdm(c) )

then by Theorem 5.7.1 (i), f € HP(D).

Since

£GP = exp ( [ P log u(©)ldm(c) )

by Fatou’s theorem 5.6.2, we get |f|P = w a.e. on T. O

5.8 Approximation by inner functions and Blaschke products

Using Fatou’s theorem, we prove two important theorems on uniform approximation by inner

functions.

Theorem 5.8.1. (R. Douglas and W. Rudin, 1969) Let . be the set of all inner functions. Then
L>(T) = cng)os ((:)HOO NS E) = Spalif (@1@2 191,09 € Z) . (5.8.1)
Moreover, any unimodular function in L*(T) belongs to

%QOS(H) (61@2 101,05 € Z) .

Proof. Tt is enough to show that y, € span; e (@_1@2 : 01,05 € E) for every Borel measurable
set o in T. Let

1
Jn = I:nXO'—"_EXT\g], n=23,...

and A, = {z € C: L < |z] < n}. It is clear that f,(D) C A, (by maximum principle) and
fn(T) C 0A,. Now let ¢1(¢) = C+% for ¢ € C~\ {0}, and w : ¢1(A,) — D be a conformal
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(Riemann) mapping of the ellipse ¢1(A,) onto D. Since the boundary of ellipse is smooth, w can

be continuously extended to clos ¢1(A), and hence
w o ¢1 © fn = 91

is an inner function (because #; € H*(D), and by Fatou’s theorem [6;| = 1 a.e. on T). Since

w~! is continuous on clos(DD), it can be approximated by its Fejer polynomials. Therefore,

1
fon+—=¢10fa=wtob cspan (6} : n>0).
n Lee

f

Doing the same for the function ¢o(¢) = ¢ — %, we get an inner function #y such that f,, — fin €

Span e (0% : n > 0). Hence f,, € span - {0%0% : k,n > 0}, implies
| |2 € 5Pt (9?9;9;19;’7@ s konyl,m > o) .

Thus, 1
Xo + 7 XT~o € SPaN e <91@2 101,02 € E) , forn=1,2,....

Letting n — oo, we get x, € Spalij ((:)192 : 01,05 € E) )
Let u € L®(T), and |u| = 1 a.e. and u; € L°°(T) with |u1| = 1 a.e. and u = u?. Given
n
e > 0, by (5.8.1) there exists ¢,©; € ¥ such that |u; — @g| < €, where g = Zai@j’ a; € C.

j=1
Set © = [[}_; ©;, and observe that g© € H. Since [gO] = [g] (because [gO| = |g|), the

inner-outer factorizations of g and g© are of the form g0 = v[g] and g = w[g|, where v,w € %,

and 1 — e < |[g]| < 1+ e. Now, |u1 — ¢g| = |u1 — 9Ov[g]| < € gives

1 1

€
| < :
i1 ¢Ov[g] ‘ 1—e

Since |u; —a| < € and |u; — b| < € implies that |uf — ab| < |u; — a| + |a||us — b|, we obtain

‘<i
—

1

9]

which completes the proof. O

[u = Gulgloon

Theorem 5.8.2. (0. Frostman, 1935) Let © be a (non-constant) inner function and ¢ € T. Then

bic 0 © are Blaschke products with simple zeros for a.e. t € (0,1), where by(z) = f‘:fz, AeD. In

particular, © is a uniform limit of Blaschke products with simple zeros.

Proof. Let ¢ = 1. Then we need to show that Hy(z) := b, 0 0(z) = f:%(é)) ,z € D is Blaschke

product with simple zeros for all ¢t € [0,1). Let £ € T, then the boundary function |H;(¢)| =

t=0(¢€) t—0(¢€) t—é(f)’ -1 — ﬁt c HOO(T) Hence H; € HOO(D)

‘ 1—t0(¢) ‘ RIGE t—0(¢)
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By the unique canonical factorization of Hy(z), Hi(z) = ABS[H;](%) where

(H)(2) = exp [ £ log [ H(©)ldm(€) = exp(0) = 1

since |Hy(€)| = 1. Hence Hy(z) = ABS. Our claim is to show: S = 1, where

+z
; Zdﬂt(f)) st Lomy g > 0.

S(z) = exp <—

To show S =1 we will show 1(T) = 0.
Then by Jensen’s formula (5.3.1) (and expression of S and S € H*> with ||S|lec < 1), and the
fact |Hy(r&) < |S(ré)| = [S(r&)|7! < |He(ré)|™L, we get the following:

1e(T) = log |S(0) / log | S(re)| " dm(€) < /T log | Hy(r€))| " dm(€) = g(r,?),

for all ¢,r € [0,1). Therefore, it is sufficient to check that lirri g(r,t) =0 ae. t € (0,1). Now
r—

w(T) < g(rt) = fol lim, 1 1 (T) < fol lim, 1 g(r,t)dt = p(T) < fol lim, 1 g(r, t)dt. We
will show the right hand side is zero. For this we will show that

hmgrtdt—hm/ (r,t)d
OT‘

This happens due to DCT: |g(r, t)| = | [y log |H:(r€)|7|d¢ < [qlog |H:(0)|1dE = log |H:(0)| 7! €
LY(0,1). So by DCT we can interchange the limit:

hm g(r,t)dt = hm/ /log|Ht (r&)|dm(&)dt
o r—1
= hm// log |Hy(r§)|dtdm(&) =

since [ log |Hy(r€)| = dt = 0. Let u: D — R, by u(w) = [y log |bs(w)|'dt = — [, log |bs(w)|dt. u

is continuous then

u(T) = _/1 log by (e")|dt

/ {log |t — €| — log [t — @] }dt

Therefore fol log |Hy(€)|"'dt =0 = u(T) = 0.
B The zeros of by o © are simple if A — O(z;) # 0, Vj, where (z;);>1 are the zeroes of ©'.
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Indeed, if b)(O(z)) = 0, then A — ©(z;) = 0 and hence (b) 0 ©)'(z) = b\ (0(2))0'(z) # 0.
Finally, we show thar u is continuous on D. Note that the integrals fol log |1 — tw|dt and

Uog |t — w|dt are similar and for w =z + i , we have
fo g Y

1 1
/ log |t — w|?dt = / log{(t — z)? + y*}dt
0 0

is continuous in z and y ( for instance fol log(t — x)?dt = x(0,1) * log(z?) ). O

5.9 Exercises

Exercise 5.9.1. Show that H2(D)H?(D) = HY(D).

Proof. 1f f,g € H?, then | fgll1 < |l f1ll2llg1]l2]] < co which implies H2H? C H!. For the converse,
let f € H' consider G = % then G # 0 in D. Hence G = g2 for some function g.

Also we have ||G| = ||f| = G € H' = g € H% Take h = Bg. Since B € H*(D) and
g€ H*D) Cc H(D) = h = Bg € H?*(D) and f = GB = ¢*°B = g(Bg) = gh O

Exercise 5.9.2. f € H', f(T) C R then f is a constant.

Proof. Since f € H' for z € D,

£6) = [ LR A Q@)= 25(2)

T |¢ — 2|2

If f(T) C R and the Poison kernal P, () is always real then f(z) is real from the above integration.

But the only analytic function which is real must be constant. O
Exercise 5.9.3. Let f € HY/2. Assume that f > 0 a.e. on T. Then f is a constant.

Proof. Assume f # 0. By the canonical factorization theorem we have: f = Bg where B is the
Blaschke product associated with f and ¢ belongs to H'/2 and has no zeros on . That is why
we can define h = ¢g'/2, and the function h belongs to H' with ||h; = ||g\|% Clearly, f = Bh?.

The condition f > 0 ensures that f = |f| a.e. on T. Hence, since B is unimodular on T, we
have Bh? = h a.e. on T.

Now on one hand we have, Bh € H', and on the other hand h € H'. We know that H! N i
contains only the constant functions. Therefore Bh is a constant function. By the uniqueness of
the canonical factorization this happens precisely when B is a unimodular constant and h is a

constant. Thus eventually h is a constant. O

Example 5.9.4. If f(z) = exp(zﬂ) then f is a singular inner function.

Proof. Recall that || = [eRewtilne| — |eRew| — cRew Hence |f(2)| = exp (Re(:])) =

|2[2-1 < 0 for z € D. Tt follows that |f(z)| < 1Vz € D. Thus f € H*®. Moreover for |z| = 1 and

lz—1]?
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z # 1 implies Re % = 0 and therefore |f(e'?)| = 1 for all # # 0. Since e¥ is never zero for any

complex number w, it follows that f is an inner function with no zeros on D.

O]

Remark 5.9.5. The function f(z) = exp(112) is not an inner. This function is the reciprocal of

the function in earlier example hence |f(e?)| =1 for § € (0, 27). However for 0 < r < 1

1
|f(r)| =exp (—I—:> — oo, uadr — 1~

Although f has unimodular boundary value almost everywhere on T, it is unbounded on ID and
hence is not an inner function. Thus when checking to see whether or not an analytic function is

inner one must be careful to check at first that it is actually bounded on D.

Exercise 5.9.6. Let r > 0,5 > 0, > 0 be such that £ = 1 + 1 Show that H" = H*- H' and
moreover || f.|| = min {||g||s||hll: : g € H*,h € H' s.t. f = gh}

Proof. By Holders inequality, if g € H*(D), h € H'(D) then f = gh € Hol(D) and for every p,0 <
p < 1, we have || f,|| < ||golls||hplle, which implies f € H"(D) and || f||» < ||g||s||h||¢. Conversely, if

f € H"(D), with f = ABV[f] its Canonical factorization, then by g = ABV[f]"/*,h = [f]"/*, we
obtain f = gh and ||f|l, = |lg]ls|Bl:- =

Exercise 5.9.7. Let A € D and ¢, be an evaluating functional on H?, 1 < p < o0, i.e.

@)x(f) = f()‘)vf € HP.
Show that [Jpx]| = (1 — [A]2)~1/P.
Proof. When p = 2,05(f) = f(A) = X>0 f(k))\k = (f, kx) g2, where

kx(z) = Zxkzk,z eD,
k>0

is the Szego reproducing kernal of H?, hence ||ox|| = |[kall2 = (1 — [A|?)~'/2. When p-is arbitrary,
recall that for every function f, |f(A\)| < [[f]A| and ||f]l, = H[f]p/QHg/p which leads to:

loall = sup{|f(\)] - £ € HP, || fllp < 1} = sup{|[FIP2 (V)PP < [FP72] < 1}
= (=),

O

Exercise 5.9.8. ( Neuwirth and Newman, 1967 ) Let f € HP(D),p > 0. Show that f = constant
if and only if the following hypothesis is verified:
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(i) p>1and f(¢) is real a.e. ( € T.
(i) p>1/2 and f(¢) >0 ae. ¢ €T.
Show that the conclusion no longer holds if p < 1.

Proof. Case (i) is evident, because in this case f, f € H!(T), which implies f=constant.
For (ii) see Exercise 5.9.3.
For the last assertion, consider the function f; = 21+Z respectively fo = f2. It is easy to see

that f; € HP(D) for any p < 1 and f» € HP(D) for any p < 1/2. O

Exercise 5.9.9. Let f,g € H2 and h = fg. Show that |h(n)| < > ktj=n |F(B)] - [3()]-

Proof. The Fourier series g = 3¢y g(2)27 converges in L?(T) hence by Cauchy Schwartz’s
inequality the series h = fg =>",c,9(2) fz7 converges in L'(T) and by continuity of h iAL(n),
we obtain h(n) = ez F(n —§)3(j); the result follows. O

Exercise 5.9.10. Let ¢(e) = i(t — 7)) for 0 < t < 27. Find the Fourier coefficients of ¢.

Proof. $(0) =0 and for k # 0,

2m .
B(k) = / i(t — m)e *tde j2r
0
X 2T 2T .
= [—(t —W)G_Zkt/Qﬂ'kJ} —l—/ e M dt )2k
t=0 0

— —1/k

Exercise 5.9.11. (The Hilbert Inequality, 1908) Let f,g € H2. Show that

fR)gk) | _
Z k:+ +1

k,7>0

< 7l fli2llgll2-

Proof. For F,G € L*(T) and ® € L>(T) just as in (a) above, we have (®F, G) = D itith—o P(1 VE(K)G()),

which gives

(pf,7g) = Z
k] >okj+]+1

Then the result follows from

(0 f,29)| < llefll2lZgll2 < lelloll fll2llglle = 7l Fll2llgll2-
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Exercise 5.9.12. (The Hardy Inequality, 1926): For every function h € H', Y71~ V]z(Tkl)' < llh|y-

Proof. By Exercise 5.9.6, h = fg with f,g € H? and || f||3 = ||gl|3 = ||k|l1 and by Exercises 5.9.9
and 5.9.11

o~

5 0] _ 5~ Ty SOIIGO)

k20k+1_k20 k+1

<l flizllgllz = =l[Rll1-

O

We have seen that every HP function f(re') converges almost everywhere to an LP boundary
function f(e?). It is important to know that whether f(re'®) always tends to f(e?) in the sense

of the LP mean or not.

Exercise 5.9.13. (Mean convergence theorem) If f € HP(0 < p < c0) then

i [ 1 = [ e (5.9.)

T1_>1'ri 0 re = 0 € J.
and o

lim [ | f(re®) - Fe)"do =0 (5.9.2)

T— 0

Proof. First let us prove 5.9.2 for p = 2. If f(2) = 3. a,2" is in H?, then 3 |a,|? < co. But by

Fatou’s Lemma

27 ) ) 2T . .
[ 15e) = fePds < tim ing [ 15(re) - f(pe) 2o
0 p=1Jo
=27 Z lan|?(1 — )2,
n=1

which tends to 0 ar » — 1. This proves (5.9.2) and hence (5.9.1) for p = 2.
WIf f ¢ H?(0 < p < o), we use the factorization f = Bg. Since [g(2)]P/? € H?, it follows

from what we have just proved that

21 ) 27 . 27 . 2T .
| sty < [T lgtreyras [ igtetyras = [ iepag
0 0 0 0

This together with the Fatou’s Lemma proves (5.9.1)
The following lemma can now be applied to deduce (5.9.2) from (5.9.1).
O

Lemma 5.9.14. [12][p. 21] Let Q be a measurable subset of R and let ¢, € LP(w),0 < p <
oo;n=1,2,... Asn — o0, suppose pn(x) = p(z) a.e. on Q and

| len@Pds = [ foa)rde < oc
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then
[ 1ea@) = el@)da 0.

Corollary 5.9.15. If f € HP for some p > 0, then

2w . .
lim/ ’logJr |f(re?)| —log™ |f(e’9)]‘ dd =0
r—1Jo
Proof. Immediately follows from Mean convergence theorem 5.9.13 and the following inequality:
1
|log™ a —logtb| < —|a —bP,a>0,6>0,0<p<1
p

For the proof the inequality see [12][p. 22] O

Exercise 5.9.16. [12][p. 34] A function f analytic in D is representable in the form f(z) = P¢(2)

1.€.
1 2

=— | P.(0—t)f(e")at
1) i= o [ PO - 05"
as a Poisson-integral ¢ € L! if and only if f € H'. In this case p(t) = f(e') a.e.

Proof. If an analytic funcition f(z) has the form f(z) = Z¢(z) then

2 . 2
| sty < [ lptar
0 0

so that f € H'.
Conversely, suppose f € H', and write

1 2

D(z):= — P(0 —t)f(e)dt
21 Jo
For any fixed p,0 < p <1
1 27 ;
F02) = 5 [ B0~ )7 (peyat
™ Jo

But by the Exercise 5.9.13 fo% |f(pet) — f(e)|dt — 0 as p — 1, so f(pz) — ®(z). Hence
O(z) = f(z). O

Corollary 5.9.17. A function f(z) is analytic in |z| < 1 is the Poisson integral of a function
p € LP(1 <p<o0)ifand only if f € HP.
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Chapter 6

Szego infimum and generalized

Phragmén—Lindelof principle

In this section, we consider two applications of the canonical Riesz-Smirnov factorization. Namely,
the Szegd infimum dist(1, H3(u)) is expressed in terms of measure u, the cyclic functions of L?(T)
are described. The classical logarithmic integral criterion for completeness of the polynomials,
the case of incompleteness, and the closure of the polynomials H?(u) is described in terms of
the outer function related to Radon-Nikodym derivative w = c%’ We consider outer functions,
their extremal and extension properties, and distribution value properties. The important
Smirnov subclass of Nevanlinna functions is considered. After transferring these results to an
arbitrary simply connected domain of C, we use these techniques to get a remarkably general

Phragmén—Lindel6f type principle due to Smirnov (1920) and then by Helson (1960).

6.1 Szego infimum and weighted polynomial approximation

Theorem 6.1.1. (Szegd, Kolmogorov) Let dp = wdm + dus be a Borel measure. Then

inf / 11— p’dp = exp (/ logwdm) .
peP? JT T

Proof. By the Theorem 4.7.1 two cases are possible

(i) If there exists f € H? such that |f|*> = w a.e. m then dist? = 0; otherwise

(i) dist? = |£(0)?
By the Corollary 5.7.10, Case (ii) <> logw € L' holds if and only if logw € L! and in this case:

+ z

NI

(§)dm(¢)

log w
TE—2

fe) = [ £
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Since f € H?, f(0) = f(0) and [£(0)[* = [ £(0)[* = exp [y log wdm.
]

Let f € L?(T), and write Ey = span{z"f : n > 0}. If E; = L*(T), we say f is a cyclic
vector. Note that the half of the trigonometric system (z"),>¢ is far from being complete
in L2(T), but multiplying by a suitable function f one can get completeness property i.e.
span{z"f :n > 0} = L?(T). It may happen that for different halfs of (2™),cz, nothing similar is

true.

Corollary 6.1.2. Let f € L. Then E; =3span{z"f :n > 0} = L? if and only if f(£) # 0 a.e.
on T and [log|fldm = —oo.

Proof. Two cases may possible: Either zEy = Ey or, zEy C Ey. In the first case by N-Weiner
Theorem 3.0.4 there exists o C T such that E, = x,L?(u). If the second case holds: zE; C Ey. <
there exists  such that || =1 and Ef = 0H?. Since Ef = L? = zFE; = L? again, hence only
the first case is possible, so second case does not possible, i.e., V0 such that || =1, Ef # 0H RIREN
there does not exists g € H? such that z"f = 0g Vn < 1.|f| = 1.|g| & |f| = |g| < log|f| € L!
by Corollary 5.7.10.

(<= ) there exists o € T such that Ef = x,L*(T). As f € x,L*(T) and f # 0 a.e. on T we
get 0 =T, and then Ef = L*(T). O

Example 6.1.3. (a) If f(e) = |1 — €%, o > —1, then E; # L*(T).
(b) If f(e") = exp (ﬁ), then Ef = L*(T).

The following two theorems are final statements on weighted polynomial approximation on
the circle T.

Theorem 6.1.4. Let p be a positive measure on T and let w = j—ﬁl its Radon-Nikodym derivative.
Then polynomials P are dense in L?(u) if and only if logw & L*(T).
Proof. Polynomials are dense in L?(p) if and only if the Szego distance is zero follows from

Corollary 4.3.4. This holds if and only if there does not exists an outer such that |f|?> = w (

using Theorem 4.7.1), which is immediate from Corollary 5.7.10. O

Theorem 6.1.5. Let u be a positive measure on T, let du = wdm + dus be its Lebesgue
decomposition and suppose that logw € LY(T). Let ¢ € H? be the outer function defined by
o= [w%] Then closure H?(u) = closzz2,) Py ids given by

H*(4) = L(us) ® (67 H?) = L*(u) @ {f € Hol(D) : fo € H?}.

Proof. Indeed, Corollary 4.3.1 gives H?(u) = H?(wdm) ® L?(u1s) and Lemma 4.3.3 and Theorem
6.1.1 show that H?(wdm) is 1-invariant (non-reducing) subspace of L?(wdm) ( see also Remark
4.3.2). & H*(wdm) = OH? for some 6§ such that |f|?w = 1 by the Helson Theorem 3.3.3
= 0= [w%]_l = -1 Hence H?(wdm) = #HQ = o H? since ¢ = [w'/?]. O

w?2
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6.2 Properties of Outer functions

Note that from Theorem 5.7.1 to define [f] the condition log|f| € L! is sufficient, but the extra
condition f € LP ensures that [f] € HP(D). In general, the definition of the outer function is

defined as follows:

Definition 6.2.1 ( Outer functions ). Let h be a measurable function on T with log |h| € L1(T).
An outer function ( of absolute value |h| ) is a function f = A[h] with |A\| = 1 and, as in Theorem
5.7.1:

C+ =z
() = exp ([ S 0 h(Oldm(() ). I2] < 1.
T(—2
Below we are discussing few properties of outer functions:

Properties 6.2.2. (i) An outer function f admits non-tangential boundary limits f. Moreover,
f e HPD) < feLP(T)

Proof. By Fatou’s theorem lim, 1 log |[f]|(7§) = lim, 1 [3 Pre(€) log | f|({)dm(¢) = log |f|(£)
exists non-tangentially a.e. on T. Hence |[f](€)] = |f(&)] = |[f]| = |f|.

If f € LP(T) then [f] € H?(D) follows from the Theorem 5.7.1 (i). If [f] € H?(D) then
F e 17 since |If]] = | n

(ii) Let f € HP,p > 1. Then f is outer ifand only if £y = closy»(fP,) = HP(& f is cyclic in HP)
(iii) If f € H? and % € H?(p > 0,q > 0), then f is outer.

Proof. f = MBiSi[f] and ; = MBaSl;] = gpay = bS] = 1=

ABS[%] =ABS — B =1,5 = 1(since |B| < 1,|S| < 1on T) Similarly, By = By =1

and S1 = S = 1. Hence f is an outer (% is also an outer.) O

Theorem 6.2.3. (Smirnov, 1928)

(a) If f € Hol(D) and Re f(z) > 0 for all z € D, then f € HP, 0 < p < 1 (but perhaps
f ¢ HY(D)) . Moreover, f is an outer.

Proof. Note that Re f(z) > 0,Vz € D = Re f(z) > 0,Vz € D. Indeed if there
exists a point zp € D such that Re f(zp) = 0 then by maximal/minimum principle
for harmonic functions Re f = 0 on D, so f is constant, identically equal to 0, a
contradiction [see [11] p.150.]

As the values of f are in the right-half plane:

Ct ={z€ C:Re(z) >0}
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(b)

(¢)

the function z — (f(z))? is analytic and we can choose arg f(z) such that | arg f(z)P| <
pr/2, z € D. Hence if 0 < p < 1, then there exists ¢, > 0 such that [f(2)P < ¢,
Ref(2)P [since Re f(2)P = |f(2)|P cos(arg(f(z))P)]. The MVT applied to the harmonic
function Ref(z)P gives

2 . 2T .
[ 1ten P s < [T R costmp/2) 5 = RelF(0)) costnp/2)

2 0

for 0 <r < 1. Hence f € H’(D),0<p < 1.
BMoreover, since Re ( e )) > 0in D, we have f and in HP, 0 < p < 1. By Property

(iii), f is an outer function. O
More generally, if f € Hol(D), f(z) # 0 and o := > cp|arg(f(2))| < oo then f is
outer and f € HP(D) for every 0 < p < m/2a (but perhaps f # Hza (D).)
Proof. Apply the first case to g = f™/2. O
For every h € LY(T), Th € No<p<1 HP(D) for every 0 < p < 7/2a where
C+=z
Th(z) = h(¢)dm(¢)
TC—2

Proof. If h > 0 then Re T'h(z) > 0 in D, hence T'h € No<p<1 HP (D). The general case
follows from h = hy — hy 4 ih3 — ihy where 0 < h; < |h]. O

Remark: By the Herglot’z Theorem 5.7.2, the general form of a function f € Hol(D)

with Re(f) > 0 is
C+=z

TC—

where 1 is a positive measure on T and c € R.

Lu(z) = ~du(C) +ic

Example 6.2.4. (Herglotz Integral) Let u € M(T) such that

Then f, € H?,0 < p < 1 since Re f,(2) = [; |1£ E{Qd = [p P.(§)dp > 0 if ;> 0 and
= i1 — p2 +ipg — ipg where 0 < py < |pul.
B If 1 > 0 then also Re( ) >0 = + € HP, hence f, is an outer.

Ju
Example 6.2.5. (Cauchy Integral) If f is integrable then F(z) = 27” fT £&) —d¢ =
it 'Lt
2}” 027r eel]:(z)dt = F( ) = 2711'2 0 elifzdu() It H > 0 then Re{ it— z} =

%>0 Hence f € HP,0 < p < 1.

(v) If fe H*® and || f]|co <1, then 1+ f is outer.
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Proof. Re(1+ f) > 0 and apply Theorem 6.2.3 (a) O
(vi) The set of outer functions is a commutative group for standard point-wise-point multiplica-
tion.
(vii) Let f, g € HP(p > 0)
(a) Then fg is outer if and only if f, g are outer.

Proof. Let f = A1 B1S1[f] and g = A\aB2S3[g], hence fg = (A A2)B1B2S152(fg], then

use the uniqueness part of the Smirnov Canonical Factorization Theorem 5.7.6. [
(b) Let f be an outer function and let |f| < |g|, then g is an outer.

Proof. Obviously, 5 € H*° and 5 has no zeros in D. By Theorem 5.7.6 we get the
representation 5 = ASF, where F' is outer. Suppose that ¢ is not outer. Then
g = A1S1F) with S; is a non-trivial singular inner function and f = (A\1)(SS1)(FFy)
with SS7 # constant, which contradicts the hypothesis. O

(c) If f € HP(D), p > 1 and 1relﬂf)|f(z)\ > 0, then f is outer.
z

Proof. 1t is clear that for g € HY (¢ > 1) we have % € HY and hence by Theorem 5.7.7

(iv) f is outer.
Theorem 6.2.6. Let p > 0.

(i) Let f, € HP be a sequence of outer functions with f,(0) > 0. If |fn| \ on T, then
f(z) = nh_}ngo fn(2), z € D exists uniformly on compact sets. Moreover, if nh_{]go fn(0) =0,

then f =0, otherwise f is an outer HP function.

(ii) Let f € HP be an outer function. Then there exists a sequence of outer functions f, € HP
and inf |fr,(2)| >0, n > 1, |fn| \(|f] on T (and hence on D) and f(z) = lim f,(2), z € D.
z€eD n—00

Proof. (i) As the functions f, are outer, we have

log | fu(2)] = [ P(:€) log | (&) dm(¢).

To show the uniform convergence of f,, it is enough to show that f, is uniformly Cauchy
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sequence. For this, we will show log |f,(z)| is a uniformly Cauchy.

G
|fn+p<5>rdm(§>‘
£a(©)

‘fn—l—p

[log | fu(2)] = log | futp(:)| = | | P(:6)lo

< sup |P(zf) !/‘10?,

‘d’m
|2|<R

= const /10g () dm(§)

|fn+p

= const /log\fn ]dm /log|fn+p &)ldm(& ))

The conclusion is followed by monotone convergence theorem.

Suppose that inf f,,(0) = 0, then
n>1

nh_)rgo/quog | fruldm = nh—>nolo log fr, = —o0

For a point zy € D, we have P(z€) < 1+|Z°| Cop. Hence,

—lzo] —

log | £ (20)] < Co /Tr log | fu|dm.

We conclude that nh_{lgo log | fn(z0)| = —oo and similarly for all z € D and we get f = 0.
If H;fi fn(0) > 0 and |f,| \(h on T, then

/loghdm: lim /log|fn|dm> o0,
T n—0o0 T

and hence log h € L. Now, it is obvious that Jim fn(2) = f(2) with f = [h].

(ii) Without loss of generality, we may assume that f(0) > 0. Set f,, = [|f| + 0n], where §,, > 0
an appropriate sequence with li_)m 0, = 0 and [rlog(|f| + d,)dm < co. Then f,, satisfies
n—oo
the desired properties.
O

6.3 The Nevanlinna (N) and Smirnov (V) classes

We know that Nevanlinna class can be represented as

= {f € Hol(D) : there exist fi, f2 € U HP? such that f = fl/fz}

p>0
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and let

D= {f € Hol(D) : there exist f1, fa € U HP such that f = f1/f2 and fo is outer}
p>0

be the Smirnov class (sometimes denoted by N ).

Lemma 6.3.1. We have
N = {f € Hol(D) : there exist f1, fo € H> such that f = f1/f2} and

D = {f € Hol(D) : there exist fi, fo € H*® such that f = f1/f2 and f2 is outer}.

Proof. Let f € N, f Z0 and f = f—;, where f1, fo € HP’s have canonical factorizations f; =
)\[fl]BlSl and f2 == )\[fQ]SQ Set F1 = )\[min(l, |f\)]BlSl and F2 = [min(|f|_1,1)]5’2. Clearly
Fy, F» € H*® and since | f]. min(|f|~%,1) = min(1, |f]), we also get f = %

[1/1]-[min(| f|71, 1)) = [min(1, | £])]

_ g = i DT
— == G 1)
Now, £ = s = AL/122 = A[f1B1S:.
Hence f = ft = MBIZIS — A1), Sy = A[f]B1Ss = £ O

Definition 6.3.2. (Outer in Nevanlinna class) A function f € N is called outer if there exist

two outer functions fi, fo such that f = %
Properties 6.3.3. (of the class D and Nevanlinna outer functions)
(a) If f is outer, then f € D.
(b) If f1 and fs is outer, then so is fi fo.
(c) If f1fo are outer, and fi, fo € D, then fi, fo are outer.
(d) If f1, fo € D, then f1f2 € D.
(e) If F € Hol(D), G € D and |F| < |G| in D, then F' € D.

To verify (c), just let G = % with G1,Ge € H*®, and G2 outer. By hypothesis |GoF| < |G1| in
D, and hence GoF € H*. We conclude that F' = %f eD

Theorem 6.3.4. (Generalized Mazimum Principle) Let f € D and g be an outer function in N.
If[fI < lgl on T, then [f] < |g| on D.
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Proof. Let f = % and g = Z—; where fs, g1 and go are outer functions in H* and f; € H*°. By

assumption |f1g2| < |f2g1] on T and hence |f1g2| < |[fig2]| < |[f291]| = | f291] in D. O

Remark 6.3.5. This result is not true in general if f € N \ D and/or if g is not outer.

Let us recall that by Fatou’s theorem every f € H* has a non-tangential limit a.e. on T and

the boundary function satisfies:
/log|f]dm > —00,
T

that means the non-tangential limits of f are non-zero a.e. From here we see that:
Proposition 6.3.6. FEvery function in N class has a non-tangential limit a.e. on T.
Proposition 6.3.7. H? C Ny

Proof. Hint: If f € HP\{0} then f = ABS[f] where

A1) = ([ f;f log | (0)|dm(¢) ).

Now log = logt —log™ and consider f1, fo corresponding to functions log™ and log™. O

So we have the relation: HP C Ny C N.

Theorem 6.3.8. (Smirnov Theorem) f € N4 and its boundary limit function belongs to LP then
f€ HP je. NN LP = HP.

Proof. The proof depends on the Arithmetic-Geometric Mean Inequality:

exp ( / log hda) < / hdo,
T T

where h is a non-negative function on T which is integrable.
If f € Nt then f = g1/g2 where g1,g2 € H® and g, is outer. Since the presence of an inner
factor in g will not affect whether or not f € H?, we can also assume that g; is also an outer.

Using the definition of an outer function applied to functions g; and g2 we see that

IL(2) = exp

( C+Zl lg1(C)|
g2

T(C—2 o8 192(€)|

Furthermore, for each r € (0,1) and w € T

2 2
o[ b

am().)

91
—(rw
g2< )

Now apply the Arithmetic-Geometric Mean inequality to the function |g1/g2| and the measure

P,dm: ) )
g1
m(rw)‘ < /T Prwdm(C). (6.3.1)

g1
;(C)
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Integrate both sides:
Jlrrw)Pdm() = [ 2 )P
</ ( / QPm@dm(c)) dm{uw)
= [ (L1 Pratcrm(c) ) dm(w)
= L1 ([ Pt ) dm(c)
_ /T \f[2dm

g1
g;(é‘)

Thus supg.,<1 Jq |f(rw)2dm(w) < [ |f|*dm, which implies f € H?.
To prove the second statement of the theorem, observe that if f € N* and f|r € L> then as

before we can assume f = ¢g1/g2 and g1, g2 are bounded outer functions. By (6.3.1) we see that
91
=—(¢)

2
2wl < |
T | g2

2
9o Pry(¢)dm(C)
= T \f(C)IQPrw(C)dm(C)

|f(rw)]? =

< ISl [ Prudm(zeta)

= |lflrl3
which implies f € H*. O
Remark 6.3.9. Smirnov’s theorem is no longer true for f € N even when f is analytic on D. For

instance the function
1+ 2
f(z) = exp

1—2
which is the reciprocal of the atomic inner function described in Example 5.9.4 belongs to N

class, analytic on I and has boundary values of unit modulus a.e. on T. However it does not
belongs to H? since as in Remark 5.9.5

£ =exp (0 ) r e (0.1)

which does not satisfy the necessary growth condition for an H? function as described in
see[8](p. 59):

_ A
VI

The original definition of the Nevanlinna class is different from definition in 6.3. f € N if and

PGV feHn
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only if

sup /log+ |f(re)|dé < oo.

0<r<1JT

The equivalence of the two definitions is not at all obvious; the proof can be found in Nevanlinna
and Nevanlinna (1922), Privalov (1941), Duren (1970) [12][p.16], and Koosis (1998) [4] . We will

state the theorem as follows:

Theorem 6.3.10. [12][p.16] A function analytic in the unit disk belong to the class N if and

only if it is the quotient of two bounded analytic function.

Proof. (<) Suppose first that f(z) = ¢(z)/1(z) where ¢, are analytic and bounded in D.
There is no loss of generality in assuming |p(2)| <1, | (z)| <1 and 1(0) # 0. Then

2 . 2 .
/ log™ \f(reza)\dﬁ < —/ log lw(rele)]de.
0 0

But by Jensen’s formula (see Ahlforse, p. 206)

27
Py / log |1 (re’ )]dﬁ—log\w )|+ Z log —

lxn|<r ‘ n’

where z, are zeroes of ¢. This shows that [log|¢| increases with r, so f € N.

(=) Let f(z) # 0 be of class N. Let f has a zero of multiplicity m > 0 at the origin, so that
27™f(z) = a#0as z — 0. Let z, be the other zeroes of f, repeated according to multiplicity
and arranged so that 0 < |z1] < |29 <--- < 1. If f(2) # 0 on the circle |z| = p < 1, the function

mn 2 ZnZ
F(z) =log {f(Z);HZnKp (M) }

is analytic in |z| < p, and Re F(z) = log |f(z)| on |z| = p. Hence by analytic completion of the

Poisson formula: 9 it
1 ™ e + z

F(z) = —/ log |f (pe)| 2,

0 pett

dt
o +3C.

This is sometimes called the Poisson-Jensen formula. After exponentiation, it takes of the form

f(2) = vp(2)/1,(2) where

zm

_ p(z — zn) Lo etz
pp(2) = Wﬂzn|<pp2_w-exp{—%/o log™ | flpe)| e dt +1iC

z

1 2
Y(2) =exp{—27r | 1o 11 >|/’j€tfzdt}

Now choose a sequence {p;} increasing to 1 such that f(z) # 0 on the circles |z| = pg. Let
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D1 (2) = vp (123 ); Yi(2) = Yy, (pr2). Then f(prz) = ®r(2)/¥r(2) in D. But the functions are
analytic in the unit disk, and |®x(2)| < 1, |Ux(2z)| < 1. Hence {®;} and {¥}} are normal families,
and there exists a sequence {k;} such that @y (z) — ¢(z) and Uy, (2) — 1 (z) uniformly in
each disk |z| < R < 1. The function ¢, are analytic in unit disk and |p(2)| < 1,]¢(2)] < 1.
According to the definition of v, the fact that [ log™ | f| is bounded gives a uniform estimate
|[Wk(0)] >8> 0,0 9(z) £ 0. Thus f = /1 and the proof is completed. O

The importance of this theorem is that it allows properties of functions in N to be deduced from
the corresponding properties of bounded analytic functions. The boundary behavior, for

example, can now be discussed.

Theorem 6.3.11. For each f € N, the non-tangential limit f(ew) exists almost everywhere and
log | f(€)| is integrable unless f(z) = 0. If f € HP for some p > 0, then f(e¥) € LP.

Proof. Assuming f(z) # 0, represent in the form ¢(z)/1(2), where |p(2)| < 1 and [¢(2)| < 1.
Since ¢ and 1) are bounded analytic functions, they have non-tangential limits () and v(e*)

almost everywhere. Appleaing to Fatou’s Lemma we have

21 . 2w .
/ log | o(¢%)[|d6 < lim inf {—/ log]go(rew)dO}
0 r—1 0

But [logp(re®)dd increases with 7, by Jensen’s theorem. Hence log |¢(e?)| € L' and similarly
for 1. In particular ¥ (e?) cannot vanish on a set of positive measure. The radial limit f(e?)
therefore exists almost everywhere, and log | f(e?)| € L'. Another application of Fatou’s lemma
shows that f(e?) € LP if f € HP. O

The theorem says that if f € N and if f(e?) = 0 on a set of positive measure, then f(z) = 0. In
other words, a function of class N is uniquely determined by its boundary values on any set of
positive measure.

It is evident from the representation f = /v that [log™ |f(re?)|df is bounded if f € N. Hence
f € N if and only if [ ‘log |f(rei9)\’ df is bounded.

6.4 A conformally invariant framework

Here we consider the classes Nev(§2) and D(12), where (2 is a simply connected domain (# C),

that is, domains that are conformally equivalent to the open unit D.

Definition 6.4.1. Define
H(2) = {f € Hol() : /]~ = sup (2)] < o}
ze

and
N(Q) = {f € Hol(?) : there exist f1, fo € H>(Q2) such that f = f1/fa}.
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For w : D — Q be an onto conformal map. A function f € Nev() is called outer if f ow is an
outer in Nev(ID). With this definition, we get

D(Q) = {f € Hol(Q) : there exist f1, fo € H*(Q) such that f = fi/f2 and f5 is outer}.

The following two results are simple factorization to €2 of the corresponding well known facts in
D. Note if w : @ — D extends to a homeomorphism of clos (2) onto clos (D), then we say 2 is

Jordan domain.

Lemma 6.4.2. (Generalized Maximum Principle) Let Q@ be a Jordan domain. Let A € 0L, f €
D(Q) N C(clos() \ {A}) and let g be an outer function such that g € C(clos(Q2) \ {\}) and
171 < lg] on 99\ {A}. Then || < Jg| on .

Lemma 6.4.3. Let f € H*®(Q). Then f is outer if and only if there exists a sequence of outer
functions (fn)n>1 € H>®(Q) such that

inf [fa(2)] > 0,021, Jim fa(2) = £2), [fal2) N IF(2)],2 € 0.

Corollary 6.4.4. Let Q1 C Qo be two simply connected domains and f € N ().
(i) If f is outer on Qa, then flq, is outer on ;.

(ii) If f € D(Qy), then flo, € D().

6.5 The generalized Phragmén—Lindel6f principle

The result of Theorem 6.3.4 and Lemma 6.4.2 are, in fact, the versions of the Phragmén—Lindelof
principle. The difference is that, in general, the mejorants are not given by analytic functions.
Let Q2 be a Jardon Domain, let M and M, be two non-negative functions on €2, and let

w € C(OQ N {A}), where X € dw, @ > 0. Then M, is called Phragmén—Lindel6f majorant for M
and w if for every f € Hol(Q2) U C(clos(2) \ {A}) with |f] < M on 99 ~ {\} we have |f| < M,.

Theorem 6.5.1. (Generalized Phragmén—Lindeldf principle) Let f € D(2) and G € N(2) N
C(clos(Q) ~ {A}) be such that M < |F| on Q, w < |G| on 02\ {\}. Then either there exists an
outer function [wow] (and then M, = |[w ow] o w™!| is a Phragmén-Lindelf majorant for M
andw) or f =0 for all f € Hol(Q2) U C(clos(Q) ~ {A}) such that |f| < M on Q and |f] <w on
O} (and then M, =0).

Proof. In view of (e) of Properties 6.3.3, the inequalities |F'| < M < |F| show that f € (). If
there exists f # 0, f € N(Q2) such that

|fow| <wow < |Gowl
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on T~ w™t({\}), then we can define the outer function [w o w]. Applying Lemma 6.4.2 we get
|fow| <|wow]| on T~ w1 ({\}) and hence the desired result. O

6.6 Exercises

Exercise 6.6.1. Let b be a non-constant function in the closed unit ball of H°°. Put

Then f is an outer in HP, for 0 < p < 1.

Proof. Since b € {||f|loc < 1: f € H*} by the maximal principle, |b(2)| < ||bl|cc < 1 for each

z € D. Hence f is analytic on D. Moreover we have

1 1 —Reb(z) _ 1—|b(2)?
R = > Ouad D).
“Tbm @R S L-bp )
Hence by Smirnov Theorem 6.2.3, f is an outer in HP. O

Exercise 6.6.2. If a polynomial p has no zero in the open disc D, then p is outer.

Proof. Consider p(z) = const [ | (1—?), &l = 1. As |2] < Land [§| > 1, we have Re (1—Z) > 0.
i=1 g '

By applying Theorem 6.2.3 and the Property ( (a).) O
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Chapter 7
Harmonic analysis in L%(T, p)

The main result of this section is the Helson- Szegd theorem characterizing those L%(T, ) in
which the Fourier series of every function f € L?(T, 1) converges in the norm topology. This is
one of the main results of harmonic analysis on the circle group T. It is closely related to
generalized Fourier series with respect to a minimal sequence; harmonic conjugates, the Riesz

projections, and weighted estimates for Hilbert singular integrals.

Definition 7.0.1. A sequence (xy),>1 in Banach Space X is called minimal if z, ¢ M, =
> 0.
[ )

To proceed we need a corollary of the Hahn Banach Theorem.

span{xy : k # n}, and is called uniformly minimal if 1nf dlst (

Proposition 7.0.2. Let M be a linear subspace of a normed linear space X, and let xo € X.
Then xo € M if and only if there does not exists a bounded linear functional f on X such that
fx) =0V e M but f(xo) #0 (in fact it is 1).

Proof. (<) If xy € M, f is a bounded linear functional on X and f(z) = 0 Vo € M. The
continuity of f shows that f(zg) = 0 (since zgp € M). So there does not exists a bounded linear
functional f on X such that f(x) =0 Vx € M.

(=) 29 ¢ M. Then 3 a § > 0 such that ||z —z¢| > 6,Vz € M. Let M’ be the subspace generated
by M and zy and define f : M’ — C by f(z + Axg) = A if z € M and X is a scaler. Since
SIA < IAMllwo + Axl| = || Azo + z|| = |f(z + dwo)| = [N < %HAZL‘O + z||. Also f(z) =0on M
and f(zg) = 1. By the Hahn Banach Theorem there exists unique f which extends f from M’ to
X. O

Lemma 7.0.3. (i) A sequence (x,)n>1 C X is minimal if and only if there exists f, € X*
such that (xg, frn) = Ogn. Such a pair ((xn)n>1, (fi)k>1) will be called biorthonormal and

fn, n > 1 coordinate functionals.

(7i) (xn)n>1 C X is uniformly minimal if and only if there exists a sequence (fp)n>1 of

coordinate functionals such that sup ||zy|| || fn]| < oo.
n>1
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Proof. (i) By Hahn-Banach theorem, if z,, & M, then there exists a sequence f, € X* with
1all = 1, faan) = leall, Falen) =1, fo = gl

(ii) Moreover for any subspace F C X,

dist(z, E) = sup{|f(z)| : f € X", fle =0, [[f] <1}.

For this, if x € E then both sides are equal. So firstly we will show "<". When = ¢ F,
by Hahn- Banach theorem there exists f € X* such that f(z) = dist(x, E), and f(E) =
with || f|| < 1. Implies

dist(z, E) = |f(2)| < sup{|f(2)| = fe X" fle=0,[f] <1}.

For the other inequality, let y € E, then we have

[f @) = [f(@ =)l < [Iflllz —yll < llz =yl

and hence |f(z)| < ing |z — y|| = dist(x, E). This implies
ye

sup{[f(z)[ : f € X", fle =0, [[f] <1} < dist(z, E).

Thus,
sup{[f(z)[: f € X", fle =0, || f]| <1} = dist(x, E).

Now, replacing f by f/f(x), it follows that

1

int {1711 f € X7, fle =0, (@) =1} = i

(If ¢ # S C (0,00) then (S) inf% = infyeg 1)
Main Proof: Apply this to x = x,, E = M,, and let f, € X* be the corresponding

coordinate functionals with minimal norm. Then,

11
lzall 1fnll

dist ( , M, ) dist(zy, M) =

[

[lzall

Thus,

mf dist ( Mn) > 0 if and only ifsup ||, || || fnll < 0.
n>1

e

69



MAG650: Advanced Hardy Spaces Theory Harmonic analysis in L?(T, u)

Definition 7.0.4. To a minimal sequence (x,) we associate the (formal) Fourier series

x ~ Z(m,fn)xn, xz e X.

n>1

The operator z — P,x = (z, f,)zy is called the projection on the nt" Fourier component (or

the co-ordinate projection with respect to the biorthogonal pair ((zn)n>1, (f&)rk>1)-
Remark 7.0.5. We have || P,|| = || fnl|||zn|| (because fn(x,) =1).

Proof. ||Pp(xn)|l = [fa(zn)ll|zall = Lllzall = [[falllznll (since fn(zn) = 1,and 1 = [[f,])). Also,
since P,x = (z, f,)z, we have

[P ()
sup —— " < [ fallllza|
= [|Pall = [ fullllznll,
because at the point x,, the function value attends its maximum. ]

Definition 7.0.6. A sequence (x,,) in Banach space X is called a basis of X if for all z € X there

exists a unique sequence (a,) C C such that x = Z arxy. Note that a, = a,(x) A sequence z,
k>1

is called a basis sequence if it is basis in Spany{z, : n > 1}.

Theorem 7.0.7. (S. Banach, 1932) Let (xy) be a basis of the Banach space X. Then (z) is

uniformly minimal and fi(z) = ag(z), © € X are the coordinate functionals.

Definition 7.0.8. Let X be a Banach space and let (z,)nez be a family in X. Then it is

called symmetric basis if for all z € X, there exists a unique (ax(x))rez C C such that
n n

z = lim kz ar(x)zk. It is called non-symmetric if x = nrlrlzrgookz ar(x)zy.
=—n =—m

Lemma 7.0.9. Let x = (z)kez and (fx)kez be a biorthogonal pair in a Banach space X. Set
n

Pon = Z (., fx)xk, m,n € Z. Then

k=—m
(1) x is a symmetric (respectively non-symmetric) basis if and only if sup ||P—p | < o0
n>1

(respectively sup || P, n|| < 00) and x is complete.
m,n

(ii) If x is a (at least symmetric) basis, then (fi)kez is total, i.e. fr(x) =0 for all k € Z

implies x = 0.

(iii) Foro C Z, define xo = Span{zy : k € o} and x? =span{z € X : fi(x) =0 for all k ¢ o}.
If x is a basis, then for all o C Z, we have xo = X°.
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Proof. (i) Since x is a basis, gnr} Ppnx = x for all z € Lin{zy, : k € Z}. By the UBP (uniform

bounded principle: pt-wise bounded implies uniform bounded) sup,,, ,, || Pl < oo
(ii) If fx(z) =0 for all k € Z, then P_,, ,z = 0 for all n > 1. Hence z = 0.

(iii) The inclusion x, C x7 is clear (even for minimal families). On the other hand, if x € X7,
then x = nh_)rgo P_, px with P_,, ,o € X,. Hence v € X,.
U

7.1 Skew projections

Let L, M be two subspaces of a vector space X such that L " M = {0}. Define P: L+ M — X
by P(x +y) = z, then P? = P, P|;, = id and P|y; = 0. Then P is called skew projection onto
L parallel to M and denoted as P := Pr ;.

Lemma 7.1.1. Let L, M be two subspaces of a Banach space X verifying L N M = {0}. Then
(i) Prya is continuous if and only if Ppap is well defined and continuous (here L = clos L

and M = clos M ).

Proof. Let v +y € L+ M,z € L,y € M. Then Pp 5 is continuous <= || Prja(z + y)|| =
|z|| < c||z+yl| for every z € Ly € M <= ||z|| < C||[z+7||,T € Lyand § € M <~ Pr 7
is continuous. O

(i) If L, M are closed, then Py is continuous if and only if L + M = clos (L + M).
Proof. Apply closed graph theorem for the operator T' = Prjp;. O
Definition 7.1.2. Let L, M be two subspaces of a Hilbert space H. Define angle o € [0, 5] (or

minimal angle) between L and M by

cos(L, M) =cosa = sup [, )| .
veL,yeM ||1z][ ||yl

NOTATION: We write a = (L, M).
Remark 7.1.3. L 1. M if and only if a = 7.

Lemma 7.1.4. With the above notations we have
cos(L, M) = cos(L, M) = || Py P |

and
SiIl<L7M> = Sin<E7M> = HPLHMH_I’

where the symbols have obvious meaning.
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P,
Proof. Clearly, sup [Pz, y)l = || Py;x||. Moreover, (z,y) = (Py;x,y) for y € M and hence
yem\{oy Yl
Pz,
cos(L, M) = sup [z )] = su 7“ w77 )|
ozzer, 0£yeM | ZIIYll opwer, 02yem  [lzllyll
1 Pz,
— sup — sup ’< Wil y>‘
0#z€L [Eal 0£yeEM lyll
[Py
0#£z€L [|z]]
But
[Pyl [Py Pl [Py Prell PP
= = = I3 LTl
o#eer |17 0#zcL [Edl 0#zeH B4l
Hence cos(L, M) = | Py Pzl
Now,
| PLyj (z + )12
|Parl> = sup (P
0#£z€L, 0£ye M |z + yll
]

= sup —_—
0£zeL, 0yeM |2+ y|?

= o ol
otzer Iforyens ||z + y||?

— sup [EdR .
ozzer ||(1 — Pyp)x||?

This now gives

Pp|? 1 — Py)z|? 1
sin?(L, M) =1 — cos*(L, M) =1 — sup 7” sz” = i I€ I‘g)x” = >
ozl | ozel ||z 1 Prjaz 12

. 1
So sin(L, M) = TPrarll D

Corollary 7.1.5. The projection Pz is continuous if and only if || Pp Py|| <1 (and hence if
and only if (L, M) > 0). Moreover, || Prjall = | Pz l-

Proof. Prjas is continuous < || Ppp|| exists and > 0 < PLT\]W exists and > 0 < sin(L, M) >

0 < (L, M) > 0. Since sin(L, M) > 0 < cos(L, M) < 1 < ||Py;Pr| <1 by Lemma 7.1.4

O

7.2 Bases of exponentials in L*(T, u)

Now, let X = L?(T, 1), where p is a finite Borel measure, and zj, = e’**, k € Z (or,
T =25 k€ 7).
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Lemma 7.2.1. If (e*)cz is a basis of L?(u) then pus = 0.
Proof. Let o, = {k : k > n}, let L2 = WL2(M){Zk : k > n}, and let fr be coordinate

functionals associated to (e**!)gcz, then

() L2, ={z € L*(n) : fu(x) =0 for allk € Z} = {0}

n>1

(rxeLl(n) = == kenlz, fu)2* = S pez fr(z)2* and fi(x) = 0 since fy L L?(oy) for all k >
1( by Proposition 7.0.2 ) = z = 0 (by Banach theorem 7.0.7). Clearly, L2 is an invariant
subspace, and 2" € L?,n and z" # 0 on T. So it can be deduced (as in Corollary 4.3.1) that

L2 = L2 (ua)+ L*(ps) for all n € Z. But then also ﬂ Lgn > L?(ps), implies L?(pug) = 0. O
n>1

Remark 7.2.2. For studying exponential basis in L?(T, ;1) one can restrict to measure which is

absolutely continuous with respect to the Lebesgue measure m, duy = wdm, w € L}F (T, m).

Lemma 7.2.3. (Kolmogorov, 1941) Let w > 0, w € L. Then (2™)nez is a minimal sequence in
L2(wdm) if and only if L € LY(T).

Proof. Due to biorthogonality, we have
Ok = (2", fi) L2 (wdm) = /Tz”fkwdm, n,k € Z.

So we deduce that fyw = z¥, k € Z, that is f = i, k € Z. Hence

w

1
fr € L*(wdm) if and only if/ —wdm < oo.
T W

7.3 Riesz Projection

Let P, P, be as earlier and P_ = span{e’** : k < 0}. Define the Riesz projection P, by

Pif =23 fk)e™, feP.

k>0
Then
Py =Pp jp_.
Let also

n
Ponf = Z f(k:)eikt, feP, mneZ m<n.
k=m
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The following result gives the principle link between the problem of bases and the norm

estimation of the Riesz projection.
Lemma 7.3.1. Let w € Li_. Then the followings are equivalent.
(i) (z")rez is a nonsymmetric basis of L?(wdm).

(7t) sup ||Pmnll < oo.

n,me

(iii) (2¥)rez is a symmetric basis of L*(wdm).

(tv) sup || P—pn|| < oo.

nez
(v) The Riesz projection Py is continuous on L*(wdm).
(vi) (Py,P_) >0 (or (H%,H?) > 0, where H3 = clos 2 (ydm) P+-

Proof. In view of Lemma 7.0.9 we get (i) < (ii) and (iii) < (iv). It is also clear that (ii)
implies (iv). Using Lemma 7.1.4 and Corollary 7.1.5 we obtain (v) < (vi). Next, we verify that
(iv) implies (v). Pick f € P, then for n = n(f) sufficiently large, we get (using the relation:
SF(E) = Fn+ 1), Pof = 2Ponzf, 50 |Pafll = 1Pz Il < | PoallI ] ixnplies
|1Py]| < ilirl) | P—pnn|l. It remains to show that (v) implies (ii). Note that

Ponf =2"T1(1 = Pz~ (tmtDp ms e P,
But then
[P fll = (1 = Py)e D pam f| < [P Pr2™f1] < PP

for all f € P, since |1 — Py|| = || P4||, (by Corollary 7.1.5). Hence the result follows. O

7.4 Harmonic conjugates

In order to get the desired characterization of exponential type bases in L?(y), we need a result

of analytic type, namely, the so-called harmonic conjugation on T (or D).

Theorem 7.4.1. Let u € L*(T) be a real valued function. Then there exist a unique real valued
function v € L*(T) such that 9(0) = 0 and u + iv € H?. The mapping u ~ v is linear and
continuous with ||v]| < ||lu].

Proof. Let u = Z a(n)e™ e L2 Then @ = Z a(n)e” ™. Since u is real valued, 4 = u <

ne”Z neZ
(n) = a(—n), n € Z. Define

>

f=1a(0)+2 Z a(n)2".

n>1
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Then f € H? and

Mfz%g+ﬂ=a@+§:mmww+2ﬁmmmﬂzw

n>1 n>1

This means that v = Im f will satisfy the conclusion of the theorem. Next, we show that v
is unique. If u + iv = u + vy € H?, then v —v; € H?. As v — v is real valued v —v; € H2.
But this is possible only if v — v; = ¢. Also ¢ = v(0) — v1(0) = 9(0) — 91(0) = O[since for
v,v1 € H? = v(0) = 5(0),v1(0) = 91(0); and ©(0) = 51(0) = 0 from assumption.] Finally, we

have

—f 1 . _ ) 1 . )
v=Imf= / 5 / = ;( ;a(n)emt - Z ﬁ(n)e_mt> = ;( Z a(n)e™ — Z ﬁ(n)emt>.
n> n>1 n>0 n<0
The process u — v is linear and
lvll* = [ak)[* < [|ull?,
k40
and if @(0) = 0, then [ju|| = ||v|. O

Definition 7.4.2. The function v is called Harmonic conjugate of u. Let v = 4. The mapping
H : L*(T) — L?*(T), u — @ is called the Hilbert transform.

7.5 Different formula for «

(a) We can translate the above formula for @ in terms of Riesz projections

L Pou—Pou) - La0).

{L:f
(3 (3

In particular, if 4(0) = 0, then @ = 1 (Pyu— P_u). Also, we have f = u+ii = 2Py u—u(0).

7

(b) If u verify the conditions of the theorem, then f = u+iv € H? and u = Re f. As f extends
to D so Re f does as well. For z € D, u(z) = Ref * P, = ux P,. Since the Poisson kernel

verify P,(¢) = Re (gtj), we get u(z) = Refi(z), where
fi2) = [ ZuQdm(c).

Note that f; € Hol(D)*! and Re f; = u, f1(0) = [udm € R. By uniqueness, we have
T
[ =/f1and

(+2 o i dt
£ )uQdm(O) = [ Qulr = tu(e") 3
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where z = re’ and

C—l—z)_ 2rsint
C—z/ 1—2rcost+r?

*1[

Qr(t) = Im (

el +z N —int I N
uade“ —z 1+2n2:1,z”e v 27 /,W(eit — z>f(el )dt
1 T 2 T 0
it n_—int it
= dt + — E dt
27r/_ﬂf(e ) +27r/_7rn:12 e e

= f(0)+2 i Fln)zm.
n=1

Since it has a power series it is analytic. (See [9] p.12 )]

int
Remark 7.5.1. For r — 1, Q, ~ ant = cot(t/2). In fact, one can show that
— cos

i(r) = (ux cot(./2))(7) = /0% u(r — 1) cot (t/2)j—;

in the sense of Cauchy principle valued integral.

7.6 The Helson-Szego6 theorem

Theorem 7.6.1. Let p be a finite Borel measure on T. Then the followings are equivalent.
(i) The family (2™)nez is a (symmetric or nonsymmetric) basis of L*(p).
(i) The Riesz projection Py is bounded on L*(p).

(iii) The angle satisfies sin(Py, P_) > 0.

h
(iv) dp = |h|*dm, where h € H? is an outer function such that dist <E’ H°O> <1

(v) du = wdm, where w = €“T% and u,v are real valued bounded functions and ||v||e < 5
(condition (HS)).

The proof of the theorem will be given in several steps based on the following lemmas.

Lemma 7.6.2. The mapping j : H?> x H?> — H", (¢,%) — ¢t is continuous and symmetric.
Moreover, j(B? x B%) = B!, where BP is the unit ball in HP.

Proof. The continuity follows from the Cauchy Schwarz inequality [[¢9]1 < ||¢]2]|¢||2. For
surjectively, let f € H', then f = ABS[f]. Write ¢ = /\BS[f]% and ¢ = [f]% then ¢¢p € H?. [
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Lemma 7.6.3. Let E be a subspace of the Banach space X, and ® € X*. Then
|P|gl| = inf{||V||x+: U =@ on E} = inf{||® + a||x: « € X* and a|g = 0}
Proof. The inequality "<" is clear. For ">" apply Hahn-Banach theorem. Let W' = ®|g. Then
1|+ = sup [¥(z)| > V'] x- = sup [¥'(z)| = ||®|z].
zeX zeX

By Hahn-Banach theorem, there exists ¥’ € X* such that ||®|g| = || V'] x+, and hence the result
follows. O

Lemma 7.6.4. Let f € H' and suppose that f(T) C A C C. Then f(D) C conv A) (the closed
convex hull of A).

Proof. Observe that for z = rw € D, |lw| = 1 we have f(z) =P, x f= [ ?ﬁ'jjf(()d( € conv(A).
T

However, conv(A) = NH where the intersection is taken over all the half-planes: H = {z €
C : Re(az + b) > 0} containing A, a,b € C. Since P, > 0 and [; P.dm(§) = 1, we see that the
condition Re(af((+b) > 0) fora.e. (€ Tas f(() € AC H = Re(af(z)+b) >0 = f(2) €
conv(A) O

Lemma 7.6.5. (V. Smirnov, A. Kolmogorov) Let v € L*°(T) be a real valued function then
M e LY(T) if Mjv||oo < 3.

Proof. Tt is sufficient to show that |[ul|e < T implies e® € L1. Set f = e~ "+ which is well

_ 1—
defined in D, since u + i € H?. Clearly |f| = % and |arg f| = |u| < % for some € > 0
(on T and hence on D in view of Lemma 7.6.4). The same reasoning as in (Theorem 6.2.3) now

gives f € H' and hence |f| = e% € LY(T). O

Proof. Implication (i) < (ii) < (iii) & (iv) of Helson-Szego theorem.

Recall that we may restrict to du = wdm, w € L}F(']T). By Lemma 7.3.1 we get the equivalence
of (i),(ii) and (iii).

Next we show (i) and (ii) are equivalent to (iv) (see Figure 7.1): Note that if the sequence
(2™)nez is a basis, then we can see from Banach’s (Theorem 7.0.7) and Kolmogorov’s (Lemma
7.2.3) that i € L' and hence logw € L' (this can be justified without using Banach theorem as
z ¢ H?(u) we get logw € L'). In view of the later observation, we suppose that there exists an
outer function h € H? such that |h|?> = w. Thus,

Bh h h
= q = ah— = g — = F _—
(£ Diz = [ Sqwdm = [ hghizam = [ (sn)(gh)dm = [ PG dm
for all f € P, and g € P_ and therefore,
17132 = [ 10 dm = |FIZacrys 9l = 1G13ar
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Figure 7.1: Geometry used in the proof of the Helson-Szegé theorem (schematic).

Clearly F = fh € H?, since § € ]P’EL, we get G € H2. By definition of outer function, it follows
that span{F = fh: f € P.} = H? and also A := {F = fh: f € Py ||F| < 1} is dense in the
unit ball B? of H2. For the same reason, we see that B := {G = gh: g € P_,||G|| < 1} is dense
in B2N HZ. We deduce that

cos(Py,P_) 12,y = sup{|(f.9)| : f € Pr,g € P_|[fIZ(n) < 1, llgllZ(n) <1}

—sup{‘/TFGde‘ : FEA,GEB}.

Set ®(k) = [ k(2)dm, k € L'(T). As h/h € L®(T), we get ® € (L(T))*. By (Lemma 7.6.2),
T

we see that the angle (P, ,P_) = H<I>]Hé ||, and by means of (Lemma 7.6.3), we can express it in

terms of h:

(G () = st (5. ).

cos(Py, P2y = 12l ll = dis st

t
(T)
The last equality is the consequence of the relation

(HO) = {ge L™ /Tgfdm:Ofor all f € HY) = H>.
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Figure 7.2: Fig2

Now, we conclude that cos(P,,P_) < 1 if and only if logw € L', w = |h|? for an outer function
h € H? satisfying diStLoo(T)(%,Hoo) < 1, that is (i) and (ii) are equivalent to (iv).

Proof of implication (iv) = (v):(See Fig 2) Suppose diStLoo(T)(%, H®>) <1, where h is a
outer and |h|? = w. Then there exists g € H> such that ||% —g|loo < 1. That is for € > 0, we have
% — gl <1—e€ae. onT,and hence ||h]? — gh?| < (1 — €)|h|? a.e. on T. Setting a = |h(£)|? > 0
for £ € T, we see that |a — gh?| < (1 — €)a.

s
’2
then we get gh?(T) C A (cf. Figure 1).
From (Lemma 7.6.4) we get gh?(D) C A, so log gh? is analytic in D. We set v = — Im log gh? =

Geometrically, it means that if a € (0, %) is such that siha=1—¢€, and A = {z: |argz| < a},

—arg gh? and get |5| = Re log gh? + ¢ = log|gh|?> + ¢, where ¢ has to be chosen such that
9(0) = 0. We obtain loggh? = © — iv — ¢ and gh? = €"~®=¢ on T, we have \% —gl <1—k¢,

v—C

which implies that |1 — |g|| < 1 — ¢, hence € < |g| < 2 — . Finally, |h|? = © __ e“ T, where

g

u=—log|g| —c € L>®(T) and ||v[[c < 5.
Proof of implication (v) implies (iv):
Let wdm = e“*?dm, where u,v € L*(T) are real valued and ||v||oc < 5. Clearly logw = u+0 € L!
and by (Lemma 7.6.5) we have w € L'(T). Hence there exists an outer function h € H? such that
|h|? = w. Thus log |h|*> = u+ @ and logh? = u+ ¥ +i(u+ )~ = u+ 0+ i(d — v + ¢) for some
(utit)—i

u

constant ¢ € R. Setting g = e~ ¢ we obtain, in view of |g| = e~ ", a bounded holomorphic

79



MAG650: Advanced Hardy Spaces Theory Harmonic analysis in L?(T, u)

function g € H*. Moreover,

h h?
79= Wg =exp(i(t —v+c) —u—1it—ic) = exp(—u — iv),

where |[v]|cc < 5. This gives the following estimates on T.

(-9
2

et < |2g] < ettt [arg(Lyg| = ol < v

(cf. Figure 2). The value of (%)g thus belongs to

1—
D= {zeC:elle <o) <, Jargz| < w19
For A sufficiently big and some § > 0 we have B(\, (1 — §)A) D clos D or A™'B(\, (1 — §)A) =
B(1,1-8) D A~ ! clos D. Then )\*l%g € B(1,1—46) a.e. on T. In other words, ]Afl(%)g—l\ <1-4
a.e. on T, and [A\"tg — (%) < 1—J ae. T. As g € H*, this gives diStLoo(T)(%,Hoo) <1 O

7.7 An example

Let w(e®) = [t|%, t € (—m,7), o € R. Then for a > 1 we have 1/w ¢ L*(T) and (e),,c7 cannot
be uniformly minimal in view of Lemma 7.2.3. For a < —1, w & L'. Thus, the only interesting
case is |a| < 1.

First note that if the quotient w; /wo and ws/w; are bounded, then the sequence (¢™),cz is a
basis of L?(wy) if and only if it is one of L?(ws). [ lin| < K and | 72| < Kj. By the Lemma 7.2.3,

e, <7 is a basis of L?(w;) & = € L'. Now
( ne w1

1 K 1 1
/y—\§/|—]:K/—<oo:>—eL1<:>
wo wy |wi| wo

(€™),cz is a basis of L?(ws) by Lemma 7.2.3. Similarly the other case follows.]
The identity map f — f is an isomorphism from L?(w;) to L?(ws).

Next, let w; = w and wo = (1 — )%, Then

logws = log |1 — €| = a Rearg(l — ") := u.

Necessarily, we get

80



MAG650: Advanced Hardy Spaces Theory Harmonic analysis in L?(T, u)

a(t) = aarg(l —e®) = aarg(e/?(e7? — ¢/?)
= aarg(e?(—2isint/2).

{a(t/2—7r/2) if t >0
a(m/2—1t/2) ift<DO.

We deduce that ||i]|o = |05 < T if |a| < 1. Hence (e™),cz is a basis in L?(|t|*dt) < |af < 1.
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Chapter 8

Transfer to the upper half-plane

In this section, we give an outline of the Hardy-space theory in the half-plane and on the line.
We restrict ourselves to the key results only: an isometric correspondence between Hardy-space
in the disc and in the half-plane, the canonical factorization, the Fourier transform

representation (Paley-Wiener theorem), and invariant subspaces.

8.1 A unitary mapping from L*(T) to L*(R)

Let w: D — C, w(z) = HZ , be the usual conformal mapping of the disc D to the upper
half—plane Ci={£e€C:Im¢ >0}

The restriction to the boundary w|t is a one to one correspondence between T \ {1} and R. The

— 2
inverse w1, wl(x) = % has Jacobian |J(z)| = T3 2207 € R. Hence the mapping

U=U,: L’(T) - L’(R)

1/p
Upf(z) = (77(:01—1—2)2) f(wfl(x)), T €R,

is an isomorphic isomorphism (unitary for p = 2) of the space LP(T) onto LP(R).
First, we give three descriptions of the image under U of the Hardy-space H?(T) C L?(T), then
pass to arbitrary p, 1 < p < oco. Clearly, U,H?(T) is a closed subspace of L”(R).

8.2 Cauchy kernel and Fourier transform
The first description of Uy H?(T) is straightforward.
Lemma 8.2.1.

1
2 — AT .
U H*(T) = spaan(R){gc — Im p > O}.

To prove this we first need the following proposition:
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Proposition 8.2.2. H?(D) = span{cy = : A e D}

Proof. From Corollary 5.2.2 for f € H 2, and for each A € D the evaluation map ) is bounded
and by Riesz-representation theorem it takes of the form' ox(f) = f(\) = (f,c\) where c) € H?
is un1que We now calculate ¢y and see that it is Xf ,z € D. For each A € D, the function

A — = € H?, since
A—z

— = Z X'2" and (A") € £2(Ny)
n>0

and so

1
‘ﬂ S| = Nt on 2__ 1
Il = <Zx\ Zx\z> —71_H)\H2<oo.

n>0 n>0 n>0

Furthure, if f =37, 5qan2" € H? then

< 1—)\z> Zan)\”—

n>0

By the umqueness of the Riesz-representation theory: c) = X— Moreover, |[cy|? = (cx, cr) =
cn(A) = = |/\‘2 cy is called the Cauchy Kernal or Szego Kernal. The space H? is called the
Reproducing Kernal Hilbert space.

It is easy to check that the set D = {c) : A € D} is linearly independent. Also if f € H? is
orthogonal to cy,VA € D then f =0 ( since f(A) = (f,cy)). Hence D is dense in H?. (A set D
in X is dense if and only if D+ = {0}.)

O
Proof of Lemma 8.2.1. Since H?(T) = spaan(T){ A < 1}, and Uj is an isometry, we
have
H*(T) = spWLQ(T){UQ(l —Az) 7= ~ 9 e D} = span{ L. Im p > 0}.
z=w(}) z2—T
Clearly, 1 = w(\) runs over the entire upper half-plane C, . O

Now, we recall that Fourier transform F and its inverse F 1,

FNE) = 2= [ S
FNE) = = [ f@ye=do

are unitary mapping of L?(R) onto itself.

Lemma 8.2.3. UyH? = F'L?(R,), where L*>(R,) = {f € L?>(R) : f =0 on (—00,0)}.
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Proof. Compute the inverse Fourier transform of the function yg, e ¢ L2(Ry), where Im A > 0 :

) 1 o 1 1 1 1
—1 AT\ _ IAT izz — ; oo _
P, e) = oz [ am et = S liale N = iy

where —\ = p runs, again, over the entire half-plane C. Since F~! is an isometry, Lemma 8.2.3

reduces to the proof of the following identity:
L*(Ry) = span{xg, € Im A > 0}.

The equality follows from the injectivity (classical Fourier uniqueness theorem) of the Fourier
transform F. Let f € L?(R,) and suppose that fLlxr, e for all X with Im A > 0.

/ f(x)xr, e Mdz =0
R
= [ @) ez = 0 (putting A=y + 1)
R

= F(fxr,e ")(y) =0 (Vy €R)
e fX]R+e_z:0 a.e. onR[sincef:O = f=0]

= f=0

8.3 The Hardy space H) = H?(C+)

Here we see from real line R to the half-plane C. We identify the subspace U,HP C L?(R) with
the space of boundary values of a certain holomorphic space in the half-plane C, . Note that
z—1

wl(z) = 254 is a conformal mapping from C4 to D.

Hence the same formula as above, U, : H?(Ct) — HP(D)

1 Ve
016 = () ST @) Im = >0
defines a holomorphic function in C, for all f € HP(C,).

Moreover, w™! is still conformal at the boundary points r € R and transfers a Stolz angle in C_,
{z +iy: |x —r| < cy}, into a Stolz angle in D. Now, Fatou’s theorem implies that the functions
Upf, f € HP(D), have non-tangential boundary limits (Uy,(f))r a.e. on R, U,(fr) = (Upf)r.
Hence in order to get another characterization of U,HP(T), it remains to describe U,H?(D) in
intrinsic terms as a subset of Hol(C. ). This is done in the next theorem. But, first we define

Hardy classes on C..
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Definition 8.3.1. Hardy space HY = HP(C,), 0 < p < 0o, is the class of functions g € Hol(C,)
such that

1

Il =sup ([ lgto+ ig)pdz)” < o,
y>0 R

with the usual modification for p = co. In order to compare HP(C,) with U,H?(D), we need the

following simple result.

Lemma 8.3.2. (i) Let y be an arbitrary circle in D. Then

[iseria <2 [ i

for all f € HP(D), 1 < p < oo, here |dz| stands for the arc length measure.

(ii) Let g € HP(C4), 1 <p < oo and z € Cy, then

1
)7 gl
JF

9(2)] < (

mlm z

Proof. (i) First let p = 1. For u € L*(u), denote by u. be the harmonic extension of u in the

unit disc,
1— |z

e (2) = /Tu(g) o opdm(Q). 2 €D.

We show that u — u,|, is a bounded operator from L'(r) to L'(v) of norm at most 47. Indeed,

Kl

[ < [ Ol =" gamc)]

1—|z[?
= [0l [ = el

1— 2
= 2 /T \u<<>|4_’§:2dm<c>,

where v = v(c,r). In the last inequality, we have used the MVT for harmonic functions applied to

. _ z2+CY q; _ _ 1—|c]®  1+4]c]
z - —C)° - ) —= _ = 1= =
the Poisson kernel P;(¢) = Re (£%¢). Since 2mdm(z) = [dz| on T, r < 1—|c| and ez S g <

we get the desired inequality. For an arbitrary p, 1 < p < oo, we have |u. [P < (Jul?), from

2
1—|c|?
Holder’s inequality, and the result follows.

(ii) Using the MVT in the disc, D = {x + iy : |A — (x +iy)| < Im A}, Holder’s inequality, and

85



MAG650: Advanced Hardy Spaces Theory Transfer to the upper half-plane

what is sometimes called the “rolling a disk" trick:
|<A>|—%/1 dody
g = (T N2 garay
/ lg|Pdxdy) % / ldxdy) %
< (zorya) (], lordedy) ? (r(Tm A2
— \n( Im)\

(7r Im/\ ) 1q)(\/ozlm/\dy/R|g($+iy)’pdy);

< (i ﬂm y ) lglar.

< —_—
- Im)\

IN

The following theorem is one of the main result of this section.
Theorem 8.3.3. Let 1 < p < oo. Then U,HP(D) = HP(C,).

Proof. If g € Hol(C4.), y > 0, and Uf = g, then

/\g x +iy ]pdx—2 / )?|dz],

where Cy is the circle in D having the interval [£= ﬁ, 1] as diameter and being tangent to the

unit circle T at the point 1. A line on the upper half plane at a distance y parallel to x-axis

maps to the circle Cy := {2z : |z — y+1} i.e., to check! for a point (x + iyp) in the line

y+1’ =
parallel to z-axis in the upper half plane maps to Cy, under w1, i.e., w™l(z +iyo) = ij:gg +;

satisfies |z — There are two points to be noted from the above discussions (Fig 3):

Z/0+1 ’ y0+1
(i) Infinite straight-line parallel to z-axis on the upper-half plane wraps around the circle C,
(ii) The region Im z > y > 0 maps into the inside of the circle Cy, easily check that (0,2y) maps

to center of the circle (-%+,0). Now

S
fotste wiwpar = [ |15 e
Rgx o) = oo | T(x+iyo + 1) w T v
+oo 1 as—l—iyo—z')‘p

_ d
/m m(22 + (yo + 1)?) ‘f <:c+iyo+z' v

_ pldzl
= [ irers

Yo

So it remains to verify that

sup [ F(re)Plde] < o0 Sup/ fIP|dz| < o0,V f € Hol (D).
0<r<1JT y>0JCy
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(=) Using Lemma 8.3.2 (i) = : for any closed curve v € D,

/ |f(2)[Pdz <2 / |f(2)[Pdz

Y T

— sup A F@Pdz < 2sup [ 17
u 2)|Pdz < oo

— sup / F()Pdz <

= sup/ |f(2)|Pdz < oo [for v = Cy]
y>0JCy

( <= )To prove the converse, let g € HY. By Lemma 8.3.2 (ii), g is bounded on every half-plane
Im z > y > 0. Hence gow is bounded on the disc int(Cy). Since the function (1—z) is outer on the
1

int(Cy) (no-zero inside the interior) and f = 71((12_1'2)2)5(9010) € LP(Cy),*! we get f € HP(Cy)

by the integral maximum principle 5.7.7 (iv). (We use the previous theory for the following

classes HP(D) over disc D = int (C)), instead of the unit disc D; the corresponding modifications,
including the very definition of H?(ID), do not cause any difficulties and can be obtained by a
linear change of variable). Now, applying Lemma 8.3.2(i) to the circle y(r) ={z € C: |z| =r} C
int(Cy), we get

[ 1s@pde < 2sup [ 5GPl
y(r)

y>0JCYy
In fact, the Poisson representation (Corollary 8.4.1) implies that for g € H _I:_, the norms
1

([ lota+inprds)”

are monotonically increasing in y > 0 and tend to ||g|r||z» as y — 0 (to see this, use approximate

identity properties of the Poisson kernel). This shows that ||g|r||z» = ||g]] HY - O

- Ucy (m(725)")lgowl"(2)dz = f{line passing through y} lgow[Pdw = [p |g(w)[Pdw < oo since
g€ HM(C,) =

1
sup(/ |g(a:+iy)|pdx)p <oo = Vy> O,/ lg(x + iy)|Pdx < oo
y>0 “JR R

]

Theorem 8.3.4. (R. Paley and N. Wiener, 1934)
HP(Cy) = F LA (Ry)

Proof. This is immediate from Lemma 8.2.3 and Theorem 8.3.3. O
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Transfer to the upper half-plane

Bplanatims o

y a 'M*Uo‘.\ QQJ'
Pﬂo 5 ‘ Z/( ’k(\\ijn‘() @/<\\' P(‘bejo)

A 1op
/_4_1_/—
P |
= P (o) \

._\ _
N ("M— - -
X pW N
& %B we- maps to +Lnun&ﬁtmm (Jo ’ .]/J:Gé
ds =L Jieo o st (Bt
te 69 UH:) 'ﬁL_,—— e 7
Cw B A s e . ?.
-0 | [ o ti(de-) — } w/mw o~ LA I
jcﬂ\ o () (yd” fu +|O’oﬂ)) 701‘\)
/’ .
¢ Lo~ (Yot

= J—"”—
{%,,ﬂ'(}'m))(é‘ﬁ”) 7°;1—

Figure 8.1: Fig3

8.4 Canonical factorization and other properties

The following properties are straightforward consequences of the change of variables from

Section 8.1, Theorem 8.3.3, and the corresponding facts from H? theory in the disc D.

Corollary 8.4.1. (Poisson formula) If f € HP(C4), 1 < p < oo, then

fla +iy) = i/ﬂg(gg—ﬂy?w?f(t)dt’ y > 0.

Proof. f € HP(C,) = there exists g € H”( ) such that U,g(z) =

(TF(Z+Z)

can be re written as

z+z

1 1—w

1/p
f(z) = (( 5 )2> g(w) for z € C4 and w € D.

™

= h(w) € H?(D) [smce <1 (1 —

T N

88

)l/pg(erz) z € C4. Now put w = 22 € D for z € C4; then (—)2 = (

f(2),2eCy = f(2) =
154)2 hence f(2)

Z+1

1/p
) ) is bounded on D and g € HP(D)
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Now using Poisson formula for h on D :

f(z) = f( y) = h(w) L /%B(f)l |w|2|d§|
z) = f(z+iy) = w) =5 ; €= w2
1 - t—i 1— 22 —1 —1
———/h(t IL) Z—H‘ dt2 [since&—t Z,, _— Z]
2w Jr t+1 ’TH_T ZPl—l—t t+1 zZ+1

1 ~ 2y
S dt
27r/]Rf( |t — 2|2
1 Y ~
=— | ———— f(t)dt 0
R (UL
O

Corollary 8.4.2. (Boundary uniqueness theorem) If f € HP(C4), 1 <p < oo and f # 0, then

R 1+ 22

Proof. Let f € HP(Cy) = f(z) = h(w) for z € C4,w € D and h € HP(D) By the boundary

uniqueness theorem for the disk:
1 2
— log |h d
5 [ 1oglh(©)lllde] < o0

1 = 2dt
_ 1 /
— o= [ los 70| 55 < o<

[l
R 1+ 2

O

Corollary 8.4.3. (Blaschke condition and Blaschke product) If f € HP(Cy), 1 <p < oo, and

f#0, then
Im M\,

— " < oo,
2 1+ A2
where Ny, are the zero of f in Cy (counting multiplicities). The corresponding Blaschke product

(having similar properties as in D) is

= Hﬁnzi\—n, S C+,

- \n

where €, = /\2 ﬁ‘ (by definition, €, =1 for A, =1).

Proof. Let f € HY(C4),1 <p < oo and f # 0. Then there exists g € HP(D) such that U,g = f.
1/p i
Now, f(An) = 0 = Upg(h) =0 = (slmp)  9(350) =0 = g(7a) = 0 where
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Vn = ﬁ:;; € . So X\, s are roots of f if and only if 7/,s are roots of g.
] = A — il il = o = A =i Ant+i AP Ai—id+1 1+ A — 2y,
Tl T e i a =i PP —Aei+ide+ 1 LF Pal? + 24,
where y, = Im(\,).
Calculate 1 — |y,|? = 1+|yi\72n+2yn
We have g € HP(D). So |y,| = 1 when n — oo as >,51(1 — |y]) < oo since Yoa, <

I=[al? _
-] —

limy, o0 (14 [An]) = 2(£ 0). So S2(1 — |ya]) < 00 & (1 — |ym|?) < oo (Limit comparison Test of

the series). Now consider the series: ) 1+?+|2
n

o0 = lima, = 0. So lim,, 0 (|An] — 1) = 0 = limy, 00 |An| = 1) since lim,

dyn
L=l _ T 40+
e e LAl 20

(If I\ = 1inCp = |\ 2 zaxis = ImA\, =y, = 0)
Hence by Comparison Test (1 — |y,[?) < 00 & 32 1+3|/7;‘2 < o0o. Hence the desired Blaschke

condition is: . 1+|/\)‘”|)2 < 00.
B The Blaschke factor for g € H?(D) is IIb,, %= for w € D and g(v,) = 0. Here b,, = |7—:| =
35| Qutdln—il _ 24U+ |Ai+1|(xn+z><xn+z> _ a1t
et G )Ratd T Qe =)RatiP T (241) A n i) AZ+IARHL
Now
An—1 z—1 . ~ .
D v A= A 2i(Ap — 2)(An — 7) _ (z =) (A +1
L—w - Q=) 2i(N, —2)(A\y +1i) (2= X))+
(An—i)(z+1)
2

B(z) = II,b,, 1= 1_7 o = Hnen == i: where €, = |:\\gi}|
Now A\, =i = 7, =0 = w is a factor of B(w),w € D — ;—jr; is a factor of B(z) and
obviously €, = 1. O

Theorem 8.4.4. Each function f € HP(C4); 1 < p < 00, has a unique factorization of the form
f = ABV|f], where A € T, B is the Blaschke product constructed from the zeroes of f, V is a
singular inner function (an H* function having no zeroes in Cy and with unimodular boundary
values on R) of the form

, : 1
V(z) = €"*Vy(2) = €' exp (z/ t+ tzdv(t)) ,
R

—Z

where a > 0, and v is a finite positive singular measure on R, [f] is the Schwarz-Herglotz outer
factor of the form

[f](z):exp(l./]Rl+tZ o8 /(1) tt),ze(C+

™
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Proof. Let f € HP(C). Then there exists g € HP(D) such that f(z) = g(w) for z € C4 and

w € D. Now
2m
o)) = exp [ [ 4 ogla(e)llae

Putting £ = th and w = ; we have:

t—iiz—i_ {tz+1+it—iz} £ {tz+1—i(t—2)}

t+i  z+1 (t+1i)(z+1)

E+w 1+tz

E—w i(t—2)

Hence [£](2) = [g](55) = exp (& fin ¥ log | f(1)] 125 ), 2 € Cy
B As g € HP(D), g can be written as g = ABS[g|. Here S(w) = exp [ Jr £+wdu( )} for w e D
and ¢ € Tand g L m. . S(Z=%) = exp { fR 1+tz (t;")}

241 z t+1

S(w) = exp [—}fzu(m) [ <s>]

. {1} §—w .
— 5 (j;j) — exp {m({u)z - /]R i;*_t;du (ilm P Z(lljww — ]
" V(2) = ' exp /Rizt—i__tj)du(t)]

when o = p{1},dv(t) = du <t+z> = H_%d,u(t). O

Remark 8.4.5. It is clear from the previous computations that other facts of the Hardy Nevanlinna
theory of Sections 3 and 4 in the disc can be transferred to the half-plane. In particular, the
properties of the inner outer factorization from subsections 6.2-6.3 still hold with corresponding
modifications caused by the change of variables. For instance, a function f € HP(C,) having
an analytic continuation across a point z € R has singular representing measure zero in a
neighborhood of this point. To find the point mass of the singular measure, the logarithmic
residues of Section 4 (to be added) can be redefined and computed and so on and so on. In

particular, the point mass at oo is a = — lim — log|f(iy)]|.
Yy—00 Yy

8.5 Invariant subspaces

Here we consider translation invariant subspaces of L?(R) and their Fourier dual objects -

character invariant subspaces.
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8.6 Duality between translation and multiplication by

characters

Define the translation operator 75 by
(1sf)(x) = f(x — ), z € R, for s € R.

This is a group of unitary operators on L*(R). A subspace E C L*(R) (closed, as always) is said
to be (translation) 2-invariant and if 7, C E for all s € R, and (translation) l-invariant if
TsE C E for all s > 0 but not for (all) s < 0. The Fourier image of the translation operator 7, is

the multiplication operator by the corresponding character e*** of the group R:
7s(Ff) = F(e*f), for all f € L*(R).

Without any risk of confusion, we write e*** both for the function z — €** and for the

multiplication operator by this function, f — €% f. Hence, we have
s = FeS T F L,

that is, the groups (7s)ser and (e*%),cr are unitarily equivalent (conjugate) via the Fourier
transform.
We use the same terminology as above for e**% -invariant subspaces. A subspace £ C L%(R) is
(character) 2-invariant if ¢**E C E for all s € R, and (character) 1-invariant if e***E C E for
s > 0 but for (all) s < 0. Hence, E is an 1- or 2- character invariant if and only if its Fourier
image FFE is a 1- or 2- translation invariant subspace.
Clearly, the Hardy space H2(C.) is a character 1-invariant subspace, and FH?(C,) = L?(R,)
is translation 1-invariant.

Below, we will derive analogue of the Wiener theorem 3.0.4 and Beurling Helson theorem 3.1.1
for character invariant subspaces. First, we prepare the transfer of these results to L?(R) by

means of the operator Us.

Lemma 8.6.1. Let u, = exp (sZ1}) s € R, and let E be a (closed) subspace of L*(R). The E is
a 2-invariant subspace (with respect to the shift operator f+—— zf) if and only if usE C E, for
all s € R, and E is 1-invariant subspace if and only if usE C E, for all s > 0, but not for (all)

s < 0.

Proof. If b€ H*®, and E is a z-invariant subspace of L?(T), then bE C E. Indeed, by DCT, we

have
lin% |bf —brfll2=0, forall feE,
r—

where b,(2) = b(rz).
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On the other hand, 2" f € E, for n > 0 and therefore, b,.f € E, since Taylor series of b, is
absolutely convergent on T. Hence bf € E. The same holds true for b € H> and Z—invariant
subspace E. These prove the “only if" part of the lemma.

By analogous reasoning, to prove the converse, it suffices to show that the function z is the

s 1-—
M as s = 04. We have Re(1 — us(¢)) > 0,

and hence |¢s(¢)| < 1, for ¢ € T. On the other hand, using the standard formula
e =14 sw+ o(s) as s = 04, we easily get 1i_r)r(1)d>s(C) =(for (e T\ {1}. O

bounded pointwise limit of functions ¢, =

Theorem 8.6.2. (P. Lax, 1959) Let E be a subspace of L*(R).

(i) E is a (character) 2-invariant subspace if and only if E = xs L*(R) for a measurable subset
Y CR.

(i) E is a (character) I-invariant subspace if and only if E = F,H*(CL) for a measurable
function g on R with |q| =1 a.e.

Proof. Lemma 8.6.1 shows that E is 2 or 1-invariant if and only if its preimage Uy 'E c LX(T)
has the same property with respect to the shift operator on L?(R). The results thus follow by
applying theorems 3.0.4, 3.1.1 and Theorem 8.3.3. ]

Corollary 8.6.3. Let E be a subspace of L*(R).
1. E is translation 2-invariant if and only if E = FxxL?(R) for a measurable subset ¥ C R.

2. F is translation 1-invariant if and only if E = FqH?*(C,) for a measurable function q on
R with |q| =1 a.e.

Indeed, it suffices to use Theorem 8.6.2 and duality of Subsection 8.6.

Corollary 8.6.4. (i) If F C H*(C,), then spWHi{e"”F 15 >0} = ©H*(C,), where © is
the g.c.d of the inner factors of f € F.

(i) If F C L*(Ry), then span 2, ) {7sF 15 > 0} = F(OH?*(C,)), where © is the g.c.d of the
inner factors of F~1f, f € F.

(iii) If f € L*(R), then WLQ(R){Cisxf :s € R} = L3(R) if and only if f # 0 a.e. on R.

(iv) If f € L*(R), then SpﬁLz(R){ei“f 15 >0} = L3(R) if and only if f # 0 a.e. and
/(1 + 2% log | f|dz = —o0
R

(v) If f € L*(R), then spanpap){7sf 8> 0} = L*(R) if and only if Ff #0 a.e. on R
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(vi) If f € L*(R), then spanpap){7sf 18> 0} = L%(R) if and only if Ff #0 a.e. and

/ (1+ 2?)log|Ff|dx = —oo.
R

Indeed, it suffices to use Theorem 8.6.2 and Corollary 8.6.3 and the corresponding properties of

z-invariant subspaces of L?(R).
Theorem 8.6.5. (Cauchy Representation) Assume that 1 < p < oo.

(i) Let F(z) belongs to HP(C4) and let F(x) be its boundary function. Then F(x) €
LP(—o0,0). F(z) =

1 [ F(t)

— 6.1

27r/_oot_zdt,y>0and (8.6.1)
1 [ F(t)

= — —,y < 0. 8.6.2
21 J oo t — 2 4 ( )

(7i) Let F(x) be any function in LP(—o0,00) satisfying (6.2). Then (6.1) and the Poisson
representation (Corollary 8.4.1 ) define one and the same function F(z) on Ci. F(z)
belongs to HP(C4) and the non-tangential boundary function is equal to F(x) a.e.

Proof. (i) By Fatou’s lemma and the definition of HP(C,.), we have:

/ |F(x)|Pdx < lirr(l)inf/ |F'(z +iy)[Pde < co = F € LP(—o00,00).
y— —o0

oo

Let G(2) = o= [*° F() dt,y # 0 Then G(z) is homomorphic separately for y > 0 and y < 0. For

— 2 J—o0 t—2

y>0
G(2) - G(Z) = % _°:O LEZ - tiz] Ft)dt
A F(t)
N ;/_oo (t—$)2+y2dt
= F(z2).

Since F(z) and G(z) are homomorphic on C so is G(z),z € C4. But

G(z):—l/TF(t)dt,zeQ

211 t—z

is also homomorphic. Since G(z) and G(%) are both holomorphic, hence G(%) is constant on C.
Since G(—iy) — 0 as y — 00, G(Z # 0) on C4. Thus (8.6.1) and (6.2) holds.
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(ii) Assuming

1 [ F(t 1 [ F(t
0:7,/ ()dtVy<0:>0——/ ()dtVy>0:>0—G(2),Vy>0
21t J oo t — 21t J oo t —
In (i) we have proved: G(z) — G(Z) = F(z) fory > 0 = G(z) = F(z). Applying Holders
inequality:

[k iran = 7|7 @

—o0 —00 + y2

)
N R e

P
dzx

<[ o) ([ ) o
<[ (] ayﬂz” ) ([ =)o
LU e
<[ [ Z S|P dadt
< /_ \F(t)Pdt

This shows that F' € HP(C,) O

8.7 Cauchy kernels and L”- decomposition

1
Theorem 8.7.1. (i) Show that HP(Cy) = WB(R){E cImop > 0} for1 <p<oo.
(Hint: Use HP(C4) = UpHP and solve U, f = ﬁ)

(7i) Let 1 < p < oo. Show that LP(R) = HP(Cy) @ HP(C_), where @ stands for the orthogonal
sum for p =2 and direct sum for p # 2.

(iii) Let

_ f(t)
Cf(e) =5 | s—>dt, z€C\R

be the Cauchy integral of f € LP(R), 1 < p < oo, then the followings are equivalent.

(a) f € HY(C,).
(b) Cf = f., where f, stands for the Poisson integral extension.
(¢) Cf(z) =0 for Im z < 0.

Proof. Previously solved. O
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Theorem 8.7.2. (The Paley Wiener theorem) An entire function E is called of exponential type
if
log | E(z)|

< 00,
2|

hm|z|—>oo

the limit itself is the type of E. Let £, = set of all entire functions of exponential type < a. For

a > 0, show that the followings are equivalent.
(i) E € & and E|g € L*(R).
(ii) There exists f € L?(R) such that Ff = E and supp f € [—a,al.

Hint: For (ii) = (i), estimate the exponential type of E applying the Cauchy inequality to the

Fourier transform of f :

2a[Imz| _ q

BE) =] [ e f@)da] < I fla(

1
2 1 a|Imz|
[T ) < (2a)ze .

Moreover, ||E|l2 = || f|l2 by Plancherel’s theorem:
(i) = (ii): First suppose that E|g € L?(R) N L>°(R). Then by Phragmén-Lindelsf theorem
|E(2)| < || E||lsce® ™2, for z € C, implies
i

_ aiz 2
[Bx(2)] = 3 e" B (z) € HA(C4). A> 0.

The Paley Wiener theorem 8.3.4 entails that F(E)) = 0 a.e. on (—o0,0) and hence
F(e¥* E) =0 on (—00,a) (because Alingo |Ex — e“iZEHLz(R) = 0). Therefore,

F(E) =1,F(e"**E) =0 a.e on (—00, —a). Similarly F(E) =0 a.e. on (a,0c0.) and we get (ii).
In general case, replace E by E(z) = [p E(z — t)$c(t)dt, where ¢c(t) = e '¢(L), ¢ > 0 is
compactly supported in R. It is easy to see that E€ € £, and supp (E€) C [—a — €,a + €], and
we have ll_% |E = Ell2®) = 0.

Question 8.7.3. (a) Show that f € H?(C,) if and only if f € L?(R) and F(f) = 0 a.e. on R.

(b) Find f € L'(R) N L*(R) such that L*(R) = spanzg)(7sf : s € R) and L'(R) #
span i gy {7sf : s € R} (Hint: Consider f = x(q,)-)

(c) Riesz Brother’s theorem for R: Let y be a complex Borel measure on R such that
Jg €®tdu(t) = 0 for all s > 0. Show that u << m.

8.8 Exercises

Exercise 8.8.1. H'(C,) = H?(C,)H?*(Cy)
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Proof. We know that w : D — C, is a conformal map.

FeHY(C,) = F-uw' € HY(D)
— F- w = G1 . G2 where Gl,GQ € H2(]D))
— F=[G1- (w) ?][Ga- (w) 7]

Now define two functions gi, g2 by the following forms:

grew = Gy (w')_1/2
go e w = Go (w')_1/2
= (g1ow)

= g1,92 € H*(C3)

and

F=(g10w)(g2ew)
_— F.wilzgl.g2

= f=0g1"92
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Chapter 9

Problem Sets

9.1 Problem Set I

1. Determine the validity (TRUE/FALSE) of each of the following statements, providing

rigorous justification in every case.

(a)

Every subspace of L?(T,m) of dimension greater than one is simply invariant.
Let H? =span{z" : n > 0}. Is it true that H? | zH??

If 0 # f € H?, then Ef = span{z"f : n > 0} is a reducing subspace of H?.

Let i be a finite measure on T. Is Ey necessarily a reducing subspace of L2 (p)?

If © € H? is an inner function, does it follow that

span{z"0 :n >0} = OH??

Is H?(T,m) N L°(T,m) dense in L?(T,m)?

Let i be a finite Borel measure on T. If 22 € H?(u), does it follow that H?(u) =
22 H?(p)?

Let f = X[0,%]- Does it follow that
span{z"f:n >0}

is a non-reducing subspace of H?(T,m)?
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(i) Suppose 0 < pu < m. Can it happen that H?(u) is a proper reducing subspace of
L?(p)?

2. Let p be a finite Borel measure on T. Prove or disprove that

L*(u) = L?(n) - L*(n).

3. Let p be a finite Borel measure on C. Prove or disprove that for every f € L?(C, u) there
exist g, h € L?(C, ) such that f = gh.

4. Let w € LL(T,m) = {g € L'(T,m) : g > 0}. Suppose there exists f € H? such that

|f|*> = w a.e. on T. Show that there exists a unique outer function f, satisfying |f,|? = w

a.e. on T.
5. Let u be a finite Borel measure on T. Define H3 () = 2H?(p). Show that

H§ (k) = H{ (1a) ® L (us),

where u = g + s is the Lebesgue decomposition of u.
6. Let p be a finite Borel measure on T. Prove that the following are equivalent:

(i) There exists a non-reducing subspace £ C L?(p) with 2zE C E.

(ii) There exists a nonzero complex measure v absolutely continuous with respect to u
and orthogonal to P4, i.e.
/z"dV:0 Vn>1.
T

7. Let p be a finite measure on T. Show that
:ECECL*(y) = z2E=F

if and only if m is not absolutely continuous with respect to p.

8. Let u be a compactly supported finite measure on C. Show that every reducing subspace
E of L?(u) is of the form
E = xoL?(p),

for some Borel set o C C.
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9.

10.

11.

12.

13.

14.

15.

Let L*°(T, m) denote the space of essentially bounded measurable functions on T. Prove

the following:

(i) If f € H> N L*>®, then fH? C H>.
(ii) If f € H> N L™ with || f|l« < 1, then 1+ f is an outer function.

(iii) If f € H?> N L>, then e/ € H? is an outer function.

Show that z — A is an outer function if and only if [A\| > 1. Hence, deduce that a polynomial

p is outer if and only if p has no zero in the open unit disc D = {z € C: |z| < 1}.

Let p be a finite measure on T. If H?(u) is a proper subspace of L?(u), show that

dist(1, HZ (1)) > 0.

If f € H? is an outer function, prove that

span{z"f :n > 1} = zH>.

Let p be a finite Borel measure on T and define
H§ () = span{z" : n > 1} C L*(n).
For f € L?(u), compute dist(f, H3(p)).
Let f € H(T,m) N L>(T,m). Show that there exist f; € L?(T,m) (j = 1,2) such that
Ep: = f1Ey,,
where E, := span{z"g : n > 0}.

Let f(z) = e* and suppose g € H?(T,m) satisfies f * g = 1. Show that g must be constant.
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9.2 Problem Set II

1. Determine whether each of the following statements is TRUE or FALSE, providing

rigorous justification in each case.

(a)
(b)

An infinite Blaschke product has only finitely many repeated factors.

For functions in H?(D) with 0 < p < 1, non-tangential limits coincide with radial
limits.

Can a non-zero function f € HP(T), 0 < p < 1, vanish on a set of positive measure?

If f € H'(D) is outer, then necessarily log|f| € L(T).

If f € L>(T), then there exist inner functions 61,602 and a sequence of polynomials
P, such that P,(6162) — f uniformly.

For p > 0, let f € HP(D) with f # 0. Does this imply that log|f| € L*(T)?

Let f € Hol(D). Does the existence of non-tangential limits of f at a.e. £ € T imply

the existence of radial limits at a.e. £ € T?

If © is an inner function in H?(T,m) such that © H2(m) = H?(m), does it follow that

© is constant a.e. with respect to m?

Suppose f,g € H?(T,m) are two non-zero functions with §(0) = 0. Does it follow

—

that (fg)(0) =07
Let f € H*(T) satisfy % € H>°(T). Does it follow that % € Ey?
For f € H*(D), define

fin(z) = f(rz), |2 < 1, 0<r<1.

Does it follow that

1 [y lloe = [/l (o)

2. Let Sy ={2€D: [z —1] <c(l - |2])}. For z=re", |7] <7, 0 <r < 1, show that % is

uniformly bounded on S7.

3. Prove that P is dense in HP for 1 < p < oo, and also dense in H>* N C(D).

4. Prove that H* is not separable.

5. Show that HP \ HY # {0} whenever ¢ < p.

6. For £ € D and 1 < p < o0, define

e HP = C,  oe(f) = f(§).
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Show that
e /HP|| = (1 — &)%) ~P.

7. The Nevanlinna class is defined as
N(D) = {f € Hol(D) : sup /10g+ |fr] dm < oo},
0<r<1JT

where log™ t = max(0,logt) for t > 0 and f,(z) = f(rz).

(i) Let f € N(D) with f # 0. Set h,(§) = max(1,|f-(§)|) for £ € T, 0 < r < 1, and define
®, = [h,]. Show that

max(L, |, (2)]) < |®,(z)] (z €D), ,(0) < ¢,

where ¢ = supg., 1 Jp log™ | fr| dm.

(ii) Deduce that f, = /¢y, where ¢, = 1/®, € H* with |[¢,| <1, |l¢r]| < 1in D, and
lor(0)] > e=¢ for all 0 < r < 1. Applying Montel’s theorem, conclude that there exist
v, € H® with f =1/¢.
(iii) Show that
ND)={v/p: ¢, € H} N Hol(D).

Hence, for every f € N(D), the non-tangential limits exist a.e., log|f| € L', and

f=ABV,[hl, (R =1[f]),

where V),(2) = exp(fT gfz d,u(C)) for |z] < 1 and p is a singular measure on T.

(iv) Conversely, ABV,[h] € N(D) for every A, B,V,, and every h > 0 with logh € L.
Moreover, HP € LP N N (D) for every p > 0, and HP = LP N N, where

Ny = {ABV,[h] € N(D) : p > 0}.
(v) Let fr € L*(T) (1 < k < n) and define
E =span{z"fr: m>0,1<k <n}.

Show that E' is simply invariant (i.e., zF C E) if and only if
(a) Jplog|fx| dm > —oo for all k, and
(b) 9% € N(D) for all j, k, where 6 is an inner function.

8. Let f € N(D) with f(0) # 0, and let (A\,)n>1 = Z(f) be its zero sequence. Suppose p
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satisfies

(i) Show that
1
log £(0)] + 3 log [+ 4(T) = /Tlog || dm.

n>1

(ii) Let f € H*> with [f(z)] <1in D and f(0) > 0. Show that f is a Blaschke product if
and only if

lim/log]fr\dm:O.
r—1JT

(iii) Let f € Hol(D) with f(0) > 0. Show that f is a Blaschke product if and only if
hm/log]ﬂ\dm = 0.
r—=1JT

(iv) Let f € Hol(Dg), R > 0, with zero set (A,)n>1 (counted with multiplicities). Define

n(s) = card{ A : |A\x| < s}, s>0.
(a) Assuming f(0) # 0, prove
" n(s)
log [ £(0)|+ [ “ 2 ds = [ log|fr)|dm(©). < R

(b) Suppose f(0) # 0. For 0 < a < R, show that

/ nis) ds < / log |f(r&)|dm(§) +C, a<r <R,
a T
where C'= C(f,a) depends only on f and a.

9. Let p be a finite Borel measure on T singular with respect to m. Define

§+z
TE— 2

1) = exp( - au(e)), zeD.

Show that |f| =1 a.e. on T.

10. Let f be holomorphic on D with f(0) > 0. If

lim/|log\ferm:0,
r—1JT

prove that f is a Blaschke product.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

1.

Let f € Hol(D). Show that there exists g € L°(T) such that

<t e

Let f € H*. Show that there exists g € N(D) such that
Z(fiNnD={zeD: g(z) =1}.
Let {©; € H?: i € I} be a family of inner functions. Show that
span {Q;H%: i € I} = OH?,
where © = gcd{©; : i € I'}.

Show that a polynomial p(z) is outer in H%(T) if and only if Z(p) C {z € C: |2| > 1}.

For w € LY(T), define
E, =span{z"w: n > O}|L1(T).

Does there exist w € L'(T) such that z € E,? Determine all such w.
Let M(T) denote the space of all complex Borel measures on T, and define
W ={ue M(T): i(k) =0 for k < 0}.
Suppose p, € W converges to p € M(T) in the weak* topology of M (T). Show that there
exists h € H'(T) such that fi(k) = h(k) for all k € Z.

Let f,g € H?(T,m). Show that fg € H'(T,m). Does the same conclusion hold if
f € L3(T,m)?

Using the identification of H'(D) with H!(T), show that convergence in H(T) implies

uniform convergence on every disc in D.

Let f € H*(D). Show that f,) converges to f in the weak* topology of L*°(T).

9.3 Problem Set II1

(a) Let p > 0 and suppose f € HP(D) with f # 0. Does it follow that log |f| € L(T)?
(b) Let f € Hol(D). Does the existence of non-tangential limits of f at almost every £ € T

imply the existence of radial limits of f at almost every & € T?
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2. Let u be a finite Borel measure on T, singular with respect to m. Define

E+ 2z
TE—2

£(:) = exp (- awE)),  zeD.

Show that |f| = 1 almost everywhere on T.

3. Let f be holomorphic on the open unit disc D with f(0) > 0. If

lim/ |log | fr|| dm = 0,
r—1JT
then show that f is a Blaschke product.
4. Let f € Hol(D). Show that there exists a function g € L*°(T) such that

‘[g}]’ <1 ae. onT.

5. Let f € H*®. Show that there exists a function g € Nev(D) such that

Z(fiNnD={ze€D:g(z) =1}

Additional Exercises. The following exercises are from N. Nikolskii, Operators, Functions,

and Systems: An Easy Reading, Vol. 1.

Chapter 4, Exercises: 4.8.1-4.8.3

9.4 Problem Set IV

1. Determine whether the following statements are true or false, providing rigorous justification

in each case:

(a) Can a Blaschke product be an outer function?
(b) Does the generalized Jensen inequality hold for H? when 0 < p < 17

(c) Can an inner function arise as the uniform limit of Blaschke products with distinct

zeros?
_ . . 1
(d) If f € Nev(DD) is outer on D, does it follow that f is outer on ;D7
(e) If w e L*°(T) is real-valued, does this imply that its Hilbert transform u also belongs
to L>°(T)?
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10.

. Show that the function 3 1

. Let f € Hol(D). Suppose there exists a non-negative harmonic function g on D such that

|f(2)| < g(2) for all z € D. Show that f € H'(T).

. Prove that

{geLoo(']I‘):/gfdm:Ofor aufeHg}:HOO.
T

is outer in D whenever |A\| > 1.
-z

. Let p,q,7 > 1 and let f € HP(D). Suppose that for any g € HY, the condition g/f € L"(T)

implies g/f € H". Prove that f must be outer.

. Let ¢ C T have positive Lebesgue measure. Define

1
fn=nXxo + gXT\m n > 2.

Show that L < [f,(2)| < n for all z € D and that | f,|(T) C {1, n}.

Let
E =span{z"fy: fr € L*(T), m >0,1<k <n}.

Show that if zF # F, then for some inner function # we have 6 % € Nev(D) for all 7, k.

. If f € HY(C,) and f # 0, show that

dr < 00.

/ | log | f ()|
R 1422

. Let f € Hol(D), f # 0, and suppose f = f1/f> with f, fo € H'. Show that there exist

91,92 € H*® such that f = g1/go.

Prove that

1
HQ(T) :mLQ(T) {1—}2 : ‘)\‘ < 1} .

Additional Exercises. The following problems are taken from N. Nikolskii, Operators,

Functions, and Systems: An Easy Reading, Vol. I:

e Chapter 5, Exercises 5.7.1-5.7.2

e Chapter 6, Exercises 6.6.1-6.6.3
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