
Lecture Notes on Hardy Spaces

MA650 Lecture Notes, Jan-May, 2022

Rajesh Srivastava
Department of Mathematics, IIT Guwahati



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Notation and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Introduction 5
1.1 What is a Hardy space? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Invariant subspaces and inner functions . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Organization of the notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries and notation 7
2.1 The unit circle and normalized Lebesgue measure . . . . . . . . . . . . . . . . . . 7
2.2 Complex Borel measures and total variation . . . . . . . . . . . . . . . . . . . . . 7
2.3 The weak-* topology on M(T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Invariant subspaces of L2(T, µ) 10
3.1 Simply invariant subspaces of L2(µ) . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Uniqueness theorem in H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Invariant subspaces of L2(µ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 First Applications 17
4.1 Some consequences of Helson’s theorem . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Reducing subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 The problem of weighted polynomial approximation . . . . . . . . . . . . . . . . 18
4.4 The inner-outer factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Arithmetic of inner functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6 Characterization of outer functions . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.7 Szegö infimum and Riesz Brother’s theorem . . . . . . . . . . . . . . . . . . . . . 22
4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Canonical factorization in Hp(D) 26
5.0.1 Properties of Hp spaces . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 A Revisit to Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1



MA650: Advanced Hardy Spaces Theory Contents

5.1.1 Approximation identity (or good kernel) . . . . . . . . . . . . . 28
5.1.2 Dirichlet, Fejer and Poisson Kernels . . . . . . . . . . . . . . . . 28

5.2 Identification of Hp(D) with Hp(T) . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Jensen’s formula and Jensen’s inequality . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 The boundary uniqueness theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 Blaschke Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.6 Non-tangential boundary limits and Fatou’s Theorem . . . . . . . . . . . . . . . 38
5.7 The Riesz - Smirnov canonical factorization . . . . . . . . . . . . . . . . . . . . . 42
5.8 Approximation by inner functions and Blaschke products . . . . . . . . . . . . . 47
5.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Szegö infimum and generalized Phragmén–Lindelöf principle 55
6.1 Szegö infimum and weighted polynomial approximation . . . . . . . . . . . . . . 55
6.2 Properties of Outer functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 The Nevanlinna (N) and Smirnov (N+) classes . . . . . . . . . . . . . . . . . . . 60
6.4 A conformally invariant framework . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.5 The generalized Phragmén–Lindelöf principle . . . . . . . . . . . . . . . . . . . . 66
6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Harmonic analysis in L2(T, µ) 68
7.1 Skew projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Bases of exponentials in L2(T, µ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.3 Riesz Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.4 Harmonic conjugates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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Preface

These notes were prepared for the course MA650 (Jan–May 2022) at IIT Guwahati. Their aim
is to introduce Hardy spaces as a meeting point of complex analysis and harmonic analysis, and
to develop, in a self-contained way, the structural results that make the theory so useful.

Prerequisites. A reader should be comfortable with the basics of complex analysis (holomorphic
functions, Cauchy’s integral theorem and formula, power series) and real analysis (Lebesgue
integration on R, Lp spaces, and elementary Hilbert space theory). When we use a more advanced
tool from functional analysis, it is stated explicitly and proved or referenced.

How the notes are organized. After preliminaries, we study shift-invariant subspaces of
L2(T, µ) and the Beurling-type picture that underlies Hardy spaces. We then develop the canonical
(inner–outer) factorization in Hp(D), discuss Szegő-type theorems and the Nevanlinna/Smirnov
classes, and finally transfer the theory to the upper half-plane Hp(C+), where the Fourier
transform and the Cauchy kernel provide a complementary viewpoint.

Notation and conventions

• D denotes the unit disk, T the unit circle, and m the normalized arc-length measure on T.

• For 1 ≤ p ≤ ∞, Lp(T) means Lp(T,m) unless another measure is specified.

• For f ∈ L1(T), the Fourier coefficients are

f̂(n) =
∫
T
z nf(z) dm(z) = 1

2π

∫ 2π

0
f(eit)e−int dt, n ∈ Z.

• We use the standard Hardy space notation Hp(D) (analytic functions on D with Lp boundary
control) and Hp(C+) for the upper half-plane model.
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Chapter 1

Introduction

Hardy spaces form a bridge between complex analysis and harmonic analysis. They encode the
boundary behaviour of holomorphic functions on the unit disk and the upper half-plane, and
they interact in a precise way with Fourier series, singular integrals, and shift operators. These
notes develop the basic structural results (Beurling-type theorems, inner–outer factorization,
and canonical factorization) and then use them to study problems of approximation and
invariant subspaces.

Learning objectives.

• Understand the definition of Hp(D) through boundary values and Poisson extensions.

• See how Fourier analysis and the shift operator lead naturally to invariant subspaces and
inner functions.

• Learn the role of inner–outer and canonical factorization in approximation and extremal
problems.

Hardy introduced these spaces in 1915 in the context of power series and boundary growth.
Over the subsequent decades, the subject was developed by many authors—notably the Riesz
brothers, Szegő, Kolmogorov, Paley–Wiener, and later Beurling, Helson, and others—into a
central toolkit of modern analysis. From the viewpoint of this course, the historical remark is
mainly a guide: Hardy spaces are useful precisely because they package analytic information
(holomorphy) together with quantitative boundary control (an Lp condition).

1.1 What is a Hardy space?

For 0 < p ≤ ∞, the Hardy space Hp(D) consists of holomorphic functions f on D whose boundary
values are controlled in Lp(T). One convenient definition is via radial means:

∥f∥Hp := sup
0<r<1

(∫
T

|f(rζ)|p dm(ζ)
)1/p

, (0 < p < ∞),
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with the usual modification for p = ∞. A key theorem (Fatou) states that such f have non-
tangential boundary limits f∗ ∈ Lp(T) and that f can be recovered from f∗ by the Poisson
integral. Thus Hp(D) may be viewed as a closed subspace of Lp(T) consisting of functions whose
negative Fourier coefficients vanish.

1.2 Invariant subspaces and inner functions

On L2(T), multiplication by z is an isometry (the shift operator). The closed subspaces invariant
under this shift are governed by Beurling’s theorem: every nontrivial closed subspace E ⊂ H2

with zE ⊂ E has the form E = ΘH2, where Θ is an inner function (analytic in D with unimodular
boundary values a.e.). This result is one of the main structural pillars of the subject, and it
explains why Hardy spaces are a natural playground for operator theory and functional analysis.

1.3 Organization of the notes

We begin with measure-theoretic preliminaries and the basic Fourier-analytic model of H2. We
then study shift-invariant subspaces of L2(T, µ) (Wiener, Wold–Kolmogorov, Helson) and derive
first applications such as inner–outer factorization and Szegő-type extremal problems. Next we
develop canonical factorization in Hp(D), including Blaschke products, singular inner factors,
and the Nevanlinna/Smirnov classes. Finally, we transfer the theory to the upper half-plane
Hp(C+), emphasizing the Fourier transform and the Cauchy kernel as complementary tools.
Throughout, exercises and problem sets are included to help consolidate the ideas.
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Chapter 2

Preliminaries and notation

These notes use standard notation from complex analysis, measure theory, and basic functional
analysis. For the reader’s convenience we fix conventions that will be used throughout.

2.1 The unit circle and normalized Lebesgue measure

We write
T := {z ∈ C : |z| = 1}, D := {z ∈ C : |z| < 1}.

The parametrization z = eit, t ∈ [0, 2π) identifies T with the quotient group R/(2πZ) via the
homomorphism t 7→ eit. Accordingly, any function f : T → C may be viewed as a 2π-periodic
function on R by setting f(t) := f(eit).

We denote by m the normalized arc-length measure on T, i.e.∫
T
f dm = 1

2π

∫ 2π

0
f(eit) dt, f ∈ L1(T,m).

With this normalization m(T) = 1 and m is translation invariant:
∫ 2π

0
f(t− t0) dt =

∫ 2π

0
f(t) dt, t0 ∈ [0, 2π).

2.2 Complex Borel measures and total variation

Let B(T) be the Borel σ-algebra of T. A (finite) complex Borel measure on T is a countably
additive map µ : B(T) → C with µ(∅) = 0 and

µ
( ∞⋃

j=1
Bj

)
=

∞∑
j=1

µ(Bj) for every disjoint family {Bj}j≥1 ⊂ B(T),
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where the series is absolutely convergent. The Banach space of all finite complex Borel measures
on T will be denoted by M(T).

The total variation of µ ∈ M(T) is the positive measure |µ| defined by

|µ|(T) = sup
{ ∞∑

j=1
|µ(Bj)| : {Bj}j≥1 disjoint and

⋃
j≥1

Bj = T
}
.

The quantity ∥µ∥ := |µ|(T) is the total variation norm, and (M(T), ∥ · ∥) is a Banach space.

Exercise 2.2.1. Show that the definition of |µ|(T) is unchanged if the supremum is taken only
over finite Borel partitions of T.

Every µ ∈ M(T) defines a bounded linear functional on C(T) by

Tµ(f) :=
∫
T
f dµ, f ∈ C(T),

and ∥Tµ∥ = ∥µ∥. Conversely, every bounded linear functional on C(T) arises this way.

Theorem 2.2.2 (Riesz representation theorem). For every bounded linear functional T on
C(T) there exists a unique µ ∈ M(T) such that T (f) =

∫
T f dµ for all f ∈ C(T). Equivalently,

M(T) ∼= C(T)∗ isometrically.

2.3 The weak-* topology on M(T)

Via Theorem 2.2.2 we identify M(T) with the dual space C(T)∗. The corresponding weak-*
topology on M(T) will be denoted by w∗.

A typical w∗-neighborhood of µ0 ∈ M(T) is of the form

U(µ0; f1, . . . , fN ; ε) :=
{
µ ∈ M(T) :

∣∣⟨µ− µ0, fk⟩
∣∣ < ε, k = 1, . . . , N

}
,

where f1, . . . , fN ∈ C(T), ε > 0, and ⟨µ, f⟩ :=
∫
T f dµ.

We record a basic duality fact that will be used repeatedly.

Proposition 2.3.1. Let E be a Banach space. A linear functional Φ : (E∗, w∗) → C is continuous
if and only if there exists x ∈ E such that Φ(f) = f(x) for all f ∈ E∗. Equivalently,

(E∗, w∗)∗ ∼= E

via the canonical embedding x 7→ (f 7→ f(x)).

Proof. If x ∈ E, then f 7→ f(x) is w∗-continuous by definition of the weak-* topology.
Conversely, suppose Φ is w∗-continuous. Continuity at 0 means that there exist x1, . . . , xN ∈ E

and ε > 0 such that (
|f(x1)| + · · · + |f(xN )| < ε

)
=⇒ |Φ(f)| < 1.
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In particular, Φ(f) = 0 whenever f(xk) = 0 for all k, i.e. ⋂N
k=1 ker(evxk

) ⊆ ker(Φ). Therefore Φ
factors through the finite-dimensional quotient E∗/

⋂N
k=1 ker(evxk

), and hence can be written as
a linear combination of the coordinate functionals f 7→ f(xk). That is,

Φ(f) =
N∑

k=1
ckf(xk) = f

( N∑
k=1

ckxk

)
for some c1, . . . , cN ∈ C.

Setting x := ∑N
k=1 ckxk gives the desired representation Φ(f) = f(x).

Corollary 2.3.2. The dual of (M(T), w∗) is canonically isomorphic to C(T).
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Chapter 3

Invariant subspaces of L2(T, µ)

In this section, consider shift-invariant subspaces of square integrable functions on T. Let

L2(T, µ) = {f : T → C is measurable and∥f∥2
2 =

∫
T

|f |2dµ < ∞},

where µ is a finite positive Borel measure on T.
For f ∈ L1(T,m), we define the Fourier coefficients of f by

f̂(n) =
∫
T
z nf(z) dm(z) = 1

2π

∫ 2π

0
f(eit)e−int dt, n ∈ Z.

where n ∈ Z, and the corresponding Fourier series is f ∼
∞∑

n=−∞
eintf̂(n). Consider an operator S

on L2(T,m) defined by
S(f)(z) = zf(z), (3.0.1)

where z ∈ T. Then (̂Sf)(n) = f̂(n− 1). That is, the Fourier coefficients got a right-shift due to
the action of S. The operator S is known as the shift operator. The following question can be
raised.

Question 3.0.1. What are the shift-invariant subspaces E of L2(T, µ)?

That is, when zE ⊆ E? We shall use the notation closE for the closure of E, and Ē, the
complex conjugate of E. We always consider E to be a closed subspace unless it is specified.

Example 3.0.2. When f ∈ L2(µ), the space Ef = span{znf : n ≥ 0} is shift-invariant.

Further, what are f ∈ L2(µ) such that Ef = L2(µ)? If so, we say f is a cyclic vector. More
generally, we consider identifying f ∈ L2(µ) such that zEf = Ef .

Let E be a closed subspace of L2. Typically, we discuss the characterization of the following
two distinct cases.

We say E is simply invariant (or 1-invariant) if zE ⊂ E and zE ̸= E. On the other hand,
when zE = E, we say E is doubly invariant (or 2-invariant). Note that zE = E if and only

10
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if z̄E = E (since zz̄ = |z|2 = 1). This means zE ⊆ E and z̄E ⊆ E, and hence E is known as
reducing space as well.

For a measurable set σ ⊂ T, the space Eσ = χσL
2(µ) = {χσf : f ∈ L2(µ)} = {f ∈ L2(µ) :

f = 0 µ-a.e. on T ∖ σ} satisfies zEσ = Eσ.

Question 3.0.3. Does every reducing subspace look like Eσ?

Theorem 3.0.4. (Norbert Wiener) Let E ⊂ L2(T, µ). Then zE = E if and only if there exists a
unique (up to set of measure zero) measurable set σ ⊂ T such that E = χσL

2(µ).

Proof. Suppose zE = E. Let PE be the orthogonal projection of L2(µ) onto E. Set χ = PE1
(the evaluation of PE at the constant function 1). Then χ ∈ E and 1 − χ = (I − PE)1 ∈ E⊥.

But znE ⊆ E, implies znχ ∈ E and hence znχ ⊥ 1 − χ, ∀n ∈ Z. That is,∫
T
znχ(1 − χ̄)dµ = 0, ∀n ∈ Z. (3.0.2)

Let g = χ(1 − χ̄), then dν = gdµ is a finite complex Borel measure because of χ ∈ L1(µ). Thus
by (3.0.2), Tν : L2(µ) → C defined by Tν(f) =

∫
T
fdν satisfies Tν(zn) = 0. Since trigonometric

polynomials are dense in C(T), it follows that Tν(C(T)) = {0}. By Riesz representation theorem,
Tν = 0 and hence ν = 0. (Note that ∥Tν∥ = ∥ν∥). That is, g = χ(1 − χ̄) = 0. This implies that
χ = |χ|2. Thus, χ takes values either 0 or 1. Let σ = {t ∈ T : χ(t) = 1}. Then σ is measurable.
For simplicity, let P denotes the space of all trigonometric polynomials on T. Since χ ∈ E, we get
znχ ∈ E and hence χP ⊂ E. This implies clos(χP) ⊆ E. On the other hand, clos(χP) = χL2(µ),
as we know closP = L2(µ). Thus, χL2(µ) ⊆ E. Therefore, it remains to show that χL2(µ) = E.

For this, let f ∈ E and f ⊥ znχ, ∀n ∈ Z (since clos(χP) = χL2(µ)). Since znf ∈ E and
1 − χ ⊥ znf, ∀n ∈ Z. It follows that∫

T
fχ̄z̄ndµ =

∫
T
znf(1 − χ̄)dµ = 0 (3.0.3)

∀n ∈ Z. Thus, (3.0.3) is satisfied by every polynomial p ∈ P, and hence for every function
g ∈ C(T) in place of p. By Theorem 2.2.2, we get fχ̄ = f(1 − χ̄) = 0 a.e. µ. This implies that
f = 0 a.e. µ. Thus χL2(T) = E.

3.1 Simply invariant subspaces of L2(µ)

Let B = {zn}n∈Z. Notice that the Fourier series of f ∈ L2(T,m) with respect to the orthonormal
basis B is f ∼

∑
f̂(n)zn, where f̂(n) =

∫
T
fz̄ndm. This implies that L2(T,m) can be identified

with l2(Z). Since (̂zkf)(n) = f̂(n − k), multiplication operator f 7→ zf acts as a right-shift
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operator on l2(Z). And hence it is legitimate to consider the space

H2 = span{zn : n ≥ 0} = {f ∈ L2(m) : f̂(n) = 0, n < 0},

known as Hardy space. The space H2 is a simply invariant subspace of L2(m), and plays a
prominent role in complex and harmonic analysis H2.

The following theorem says that all the simply invariant subspaces have a somewhat similar
structure.

Theorem 3.1.1. (A. Beurling, H. Helson) Let E be a closed subspace of L2(T) and zE ⊂
E, zE ̸= E. Then there exists a unique Θ (up to constant of modulus 1) with |Θ| = 1 a.e. m on
T such that E = ΘH2.

Notice that f 7→ Θf is an isometry on L2(m), and hence ΘH2 is closed.

Proof. Since zE ⊊ E (zE ̸= E), we consider the orthogonal complement of zE in E, and denote
it by E ⊖ zE = (zE)⊥. Then E ⊖ zE is non-trivial, and consider Θ ∈ E ⊖ zE with ∥Θ∥2 = 1.
Notice that Θ ∈ E and Θ ⊥ zE. Hence znΘ ∈ zE, ∀n ≥ 1 and Θ ⊥ znΘ, ∀n ≥ 1.∫ 2π

0
Θ̄Θzndm =

∫ 2π

0
|Θ|2zndm = 0, ∀n ≥ 1.

By taking complex conjugate, we have∫ 2π

0
|Θ|2z̄ndm = 0, ∀n ≥ 1.

This implies that (̂|Θ|2)(n) = 0, ∀n ∈ Z ∖ {0}. By the uniqueness of Fourier series, it follows

that |Θ|2 = c (constant) a.e. m, and we get 1 =
2π∫
0

|Θ|2dm = c. Thus, |Θ| = 1 a.e. m. Clearly,
f 7→ Θf is an isometry. Note that Θ ∈ E. Hence znΘ ∈ E, ∀n ≥ 0, implies linear span
of {zn : n ≥ 0} has the same property. Let P+ = span{zn : n ≥ 0}. Then ΘP+ ⊂ E and
clos (ΘP+) = Θ clos(P+) = ΘH2. Thus, ΘH2 ⊆ E. It only remains to show that ΘH2 coincides
with E.

Let f ∈ E and f ⊥ ΘH2. We claim that f = 0. Since f ⊥ ΘH2, we get f ⊥ Θzn, ∀n ≥ 0.
Also, f ∈ E implies znf ∈ zE, ∀n ≥ 1 and hence znf ⊥ Θ, ∀n ≥ 1 since Θ ⊥ zE. Thus,∫

T
fΘ̄z̄ndm = 0, ∀n ≥ 0 and

∫
T
znfΘ̄dm = 0, ∀n ≥ 1.

That is, (̂fΘ̄)(n) = 0, ∀n ∈ Z. This implies fΘ̄ = 0 a.e. m. Since |Θ| = 1 a.e., we get f = 0 a.e.
m.

Uniqueness: Let Θ1H
2 = Θ2H

2 and |Θ1| = |Θ2| = 1 a.e. on T. Then Θ1Θ̄2H
2 = H2 and we

get Θ1Θ̄2 ∈ H2. Also, by symmetry Θ2Θ̄1 ∈ H2, or Θ1Θ̄2 ∈ H̄2. But H2 ∩ H̄2 = constant.
(Hint: If f ∈ H2, then f̂(n) = 0, n < 0 and f̄ ∈ H2, then (̂̄f)(n) = f̂(−n) = 0, n < 0. This
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means f̂(n) = 0, ∀n ∈ Z ∖ {0}.) Hence Θ1Θ̄2 = c. Since |Θ1| ¯|Θ2| = 1, we have Θ1 = c Θ̄2, where
|c| = 1.

Corollary 3.1.2. (Beurling theorem) Let E ̸= {0}, E ⊂ H2 and zE ⊂ E. Then there exists
Θ ∈ H2 with |Θ| = 1 a.e. on T such that E = ΘH2.

Proof. It is impossible that z̄E ⊂ E. On the contrary, suppose this could be the case. Then for
f ∈ E with f ≠ 0, there exists n ∈ N such that f̂(n) ̸= 0. By assumption, zn+1f ∈ E. However,
̂(zn+1f)(−1) = f̂(n) ̸= 0 implies z̄n+1f ̸∈ H2 leads to a contradiction. This means E is simply

invariant, and in view of Theorem 3.1.1 (Beurling-Helson), it follows that E = ΘH2 and Θ ∈ H2

by definition of H2.

Definition 3.1.3. A function Θ ∈ H2, with |Θ| = 1 a.e. is called inner function.

3.2 Uniqueness theorem in H2

Theorem 3.2.1. If f ∈ H2 and f = 0 on a set of positive measure, then f = 0 a.e. on T.

Proof. For f ≠ 0, Ef = span{znf : n ≥ 0} ⊂ H2 and zEf ⊂ Ef = ΘH2, where Θ is an inner
function. Let σ = {z ∈ T : f(z) = 0}, Then m(σ) > 0. Let us verify that g|σ = 0, ∀ g ∈ Ef .

Since g ∈ Ef , there exists sequence pn ∈ P+ (the space of all polynomials) such that pnf → g in
L2(m). Hence

0 ≤
∫

σ
|g|2dm =

∫
σ

|g − pnf |2 ≤ ||g − pnf∥2
2 → 0 as n → ∞.

Implies g|σ = 0 a.e. m. In particular, for g = Θ, Θ|σ = 0, which is a contradiction.

3.3 Invariant subspaces of L2(µ)

(Absolutely continuous and singular subspaces)

Let µ be a finite Borel measure on T, and E ⊂ L2(µ) with zE ⊂ E. We consider invariant
subspaces of L2(µ) which are based on Lebesgue decomposition of µ. A measure ν is called
absolutely continuous with respect to m if m(B) = 0 implies ν(B) = 0, where B ∈ B and we
write ν ≪ m. By Radon-Nikodym theorem, there exists a positive integrable function w such
that dν = wdm. That is, ∫

T
fdν =

∫
T
fwdm

for each Borel measurable function f on T.
A measure ν is called singular with respect to m if it is concentrated on a set C of Lebesgue

measure zero. That is, ν ⊥ m if ν(B) = m(B ∩ C) for every B ∈ B(T). Let µ be a finite and

13
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positive Borel measure on T, then by Lebesgue decomposition,

µ = µa + µs, where µa ≪ m and µs ⊥ m.

So, if f ∈ L2(µ), then ∫
T

|f |2dµ =
∫
T

|f |2dµa +
∫
T

|f |2dµs

By this, we can construct an orthogonal decomposition of f. Let σ be the concentration set for
µs. Then

L2(µs) ⊂ L2(µ) and L2(µa) ⊂ L2(µ) and L2(µs) ⊥ L2(µa). (3.3.1)

Now, f = fχT∖σ + fχσ = fa + fs. This means

L2(µ) = L2(µa) ⊕ L2(µs). (3.3.2)

The subspaces L2(µa) and L2(µs) are invariant subspaces and are known as absolutely continuous
and singular spaces, respectively.

We need the following results in order to prove the main result about invariant subspaces of
L2(µ).

Lemma 3.3.1. Let µ be a finite complex Borel measure on T.

(i) If (̂dµ)(n) =
∫
T
e−intdµ(t) = 0 for all n ∈ Z, then µ = 0.

(ii) If (̂dµ)(n) = 0 for all n ∈ Z ∖ {0}, then dµ = cdm.

Proof. (i) Let f ∈ C2(T), then f is Borel measurable and we have

Tµ(f) =
∫
T
f(t)dµ(t)

=
∫
T

(∑
n∈Z

f̂(n)eint
)
dµ(t)

=
∑
n∈Z

f̂(n)
∫
T
eintdµ(t) (by Fubini’s Theorem)

= 0 (by assumption).

Hence Tµ(f) = 0 for all f ∈ C2(T). Since C2(T) is dense in C(T), by Theorem 2.2.2, we get
µ = 0.
(ii) From the given condition and similar to the proof of case (i), we can write∫

T
f(t)dµ(t) = f̂(0)

∫
T
dµ = µ(T)

∫
T
f(t)dt.

Thus dµ = µ(T)dm, where dm = dt.

14
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Let T : H → H be an isometry (or T ∈ iso(H)) on the Hilbert space H. A subspace D of H
is called wandering if TmD ⊥ TnD for m ̸= n (m,n ≥ 0).

Lemma 3.3.2. (H. Wold, A. Kolmogorov) Suppose T ∈ iso(H) and TE ⊂ E. Let D = E ⊖ TE.

Then D is a wandering subspace of T, and E =
( ∑

n≥0
⊕TnD

)
⊕
( ⋂

n≥0
TnE

)
= E0 ⊕E∞, where

T |E∞ is unitary, and T |E0 is completely non-unitary (i.e. if E′ ⊂ E0 and TE′ ⊂ E′ implies T |E′

is not unitary).

Theorem 3.3.3. (H. Helson 1964) Let dµ = wdm + dµs be the Lebesgue decomposition of a
positive finite Borel measure µ and let E ⊂ L2(µ) be simply invariant. Then there exists σ ⊆ T
with m(σ) = 0 and a measurable function Θ such that

E = E0 ⊕ E∞ = ΘH2 ⊕ χσL
2(µs), where

ΘH2 ⊂ L2(µa), χσL
2(µs) ⊂ L2(µs) and

|Θ|2w ≡ 1. (3.3.3)

Conversely, if σ is measurable and Θ verified (3.3.3), then ΘH2 ⊕ χσL
2(µs) is simply invariant.

Proof. Set D = E ⊖ zE = (zE)⊥ ̸= {0} and let E =
( ∑

n≥0
znD

)
⊕
( ⋂

n≥0
znE

)
= E0 ⊕ E∞ be

the Wold-Kolmogorov decomposition of E. Let Θ ∈ D with ∥Θ∥2 = 1, then Θ ∈ E and Θ ⊥ zE.

This implies znΘ ∈ zE, ∀n ≥ 1, and hence znΘ ⊥ Θ ∀n ≥ 1. That is,∫
T
(znΘ)Θ̄dµ =

∫
T

|Θ|2zndµ = 0, ∀n ≥ 1.

And by conjugation ∫
T

|Θ|2z̄ndµ = 0, ∀n ≥ 1.

Thus ̂(|Θ|2dµ)(n) = 0, ∀n ∈ Z ∖ {0}. By Lemma 3.3.1 (ii), we get |Θ|2dµ = cdm. But, 1 =∫
T

|Θ|2dµ = c
∫
T
dm = c. Thus,

dm = |Θ|2dµ

= |Θ|2dµa + |Θ|2dµs

= |Θ|2wdm+ |Θ|2dµs. (3.3.4)

Implies |Θ|2 = 0 a.e. µs on T (because m has no singular part) and dm = |Θ|2wdm implies
|Θ|2w = 1 a.e. m. By Wold-Kolmogorov Lemma 3.3.2, restriction z|E∞ is unitary, zE∞ ⊆
E = E∞ ⊕ E0, and z|E0 is non-unitary on every section of E0, etc. Thus, we conclude that
zE∞ = E∞. By Wiener theorem, E∞ = χσL

2(µ) for some σ ⊂ T. As Θ ∈ D ⊂ E0 ⊥ E∞, implies
Θ ⊥ χσL

2(µ). In particular, this implies
∫
σ

ΘΘ̄dµ =
∫
σ

|Θ|2dµ = 0. Hence Θ|σ = 0 a.e. µ. But

15
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Θ ̸= 0 a.e. m implies m(σ) = 0 (since dm = |Θ|2dµ). Thus, in view of (3.3.2) we obtain

E∞ = χσL
2(µ) = χσL

2(µs) ⊂ L2(µs).

We have already shown that D ⊂ L2(µa), because D ⊂ E0 ⊥ E∞ = L2(µs) implies D ⊂ L2(µa).
Therefore, E0 = ∑

n≥0
⊕znD ⊂ L2(µa). Also, span{znΘ : n ≥ 0} ⊂ E0, since Θ ∈ E0. We claim

that E0 = span{znΘ : n ≥ 0}.
On the contrary, suppose there exists f ∈ E0 ⊖ span{znΘ : n ≥ 0}. Then f ⊥ znΘ, ∀n ≥ 0.

Recall that Θ ⊥ zE. But f ∈ E, implies znf ∈ E and hence znf ⊥ Θ, ∀n ≥ 1. Thus,∫
fznΘdµ = 0 ∀n ≥ 0 and

∫
znfΘ̄dµ = 0, ∀n ≥ 1.

That is ̂(fΘ̄dµ)(n) = 0 ∀n ∈ Z. By Lemma 3.3.1(i), it implies that fΘ̄dµ = 0. Since Θ̄ ≠ 0 a.e.
m and f ∈ E0 ⊂ L2(µa), it follows that f ≡ 0. Now, by Parseval identity, it is easy to verify that

span{znΘ : n ≥ 0} =
{∑

n≥0
anz

nΘ :
∑
n≥0

|an|2 < ∞
}
.

(Notice that {znΘ}n≥0 is an orthonormal set in L2(µa), since dµa = w dm and |Θ|2w ≡ 1.)
Further, it is easy to see that

E0 = Θ
{∑

n≥0
anz

n :
∑
n≥0

|an|2 < ∞
}

= ΘH2.

Indeed, f 7→ Θf is an isometry from L2(T, dm) onto L2(dµa) = L2(wdm). That is,∫
T

|f |2dm =
∫
T

|Θf |2dµa.

16



Chapter 4

First Applications

We have seen that there is one to one correspondence between simply invariant subspace of L2(µ)
with the set of measurable unimodular functions (inner functions) due to Helson’s theorem. This
congruence opens many possibilities to apply Hilbert space geometry and operator theory to
L2(µ) and vice-versa. Here we discuss inner-outer decomposition of the Hardy class functions,
Szegö infimum, and Riesz brother’s theorem for “analytic measure". That is, for which positive
measure µ on T, the “analytic half" P+ = span{zn : n ≥ 0} is dense in L2(T, µ).

4.1 Some consequences of Helson’s theorem

Let µ be a positive Borel measure on T with dµ = wdm+dµs. Notice that if zE ⊂ E ⊂ L2(µ), then
E = Ea ⊕ Es, where zEa ⊂ Ea ⊂ L2(µa), because E = ΘH2 ⊕ χσL

2(µs), where ΘH2 ⊂ L2(µa)
and χσL

2(µs) ⊂ L2(µs).
(a) If µ = µs, then zE ⊂ E ⊂ L2(µs), implies zE = E, because, by Helson’s theorem 3.3.3, we
already have E = χσL

2(µs), which is 2-invariant.
(b) Show that for dµ = dµa = w dm, the followings are equivalent:

(i) There exists E such that zE ⊊ E ⊂ L2(µa).

(ii) There exists Θ such that |Θ|2w = 1 a.e. m.

(iii) w > 0 almost everywhere m.

(iv) m is absolutely continuous with respect to µa.

(c) If dµ = dµa = w dm and zE ⊊ E ⊂ L2(µa), then E = ΘH2 with |Θ|2w ≡ 1 a.e. m.

4.2 Reducing subspaces

Let f ∈ L2(µ) and dµ = wdm + dµs. We look for sufficient conditions that ensure that Ef

is reducing. If there exists measurable set e ⊂ T such that m(e) > 0 and f |e = 0. Then

17
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Ef is a reducing subspace, and there exists σ ⊂ T ∖ e such that Ef = χσL
2(µ). In fact,

σ = {z ∈ T : f(z) ̸= 0}. On the contrary, suppose zEf ⊊ Ef . Then by Theorem 3.3.3 we get
Ef = ΘH2 ⊕ χL2(µs), and hence f ∈ Ef implies f = fa + fs, where fa = Θh, h ̸= 0 a.e. m (by
Theorem 3.2.1, since h ∈ H2). This implies fa ̸= 0 a.e. m, which is impossible because f |e = 0
and m(e) > 0 implies fa|e = 0 with m(e) > 0. Thus, Ef = zEf = χσL

2(µ) for σ ⊂ T (by Wiener
theorem). Notice that Ef = span{znχT∖ef : n ≥ 0} = χT∖eEf = χσL

2(µ) and 1 ∈ L2(µ),
implies σ ⊂ T \ e. Indeed σ = {z ∈ T : f(z) ̸= 0}, which is defined up to a set of µ measure zero.

4.3 The problem of weighted polynomial approximation

We know that the space of trigonometric polynomials P = span{zn : n ∈ Z} is dense in Lp(µ)
for every positive and finite measure µ and 1 ≤ p < ∞. Let P+ = span{zn : n ≥ 0}. One of the
main problems is describing the closure of P+ in L2(µ). Denote H2(µ) = clos P+|L2(µ). The most
important part of this problem is to distinguish between the completeness case H2(µ) = L2(µ),
from the incompleteness case H2(µ) ⊊ L2(µ).

Corollary 4.3.1. H2(µ) = H2(µa) ⊕ L2(µs).

Proof. H2(µ) = span{zn : n ≥ 0}. By Helson decomposition H2(µ) = Ea ⊕Es with Ea ⊂ L2(µa)
and Es ⊂ L2(µs). Since we know that zEs = Es, by Wiener theorem, Es = χσL

2(µs) with
m(σ) = 0. Since 1 ∈ H2(µ), we have 1 = 1a + 1s with 1s ̸= 0 a.e. µs. But 1s ∈ Es = χσL

2(µs)
implies χσL

2(µs) = L2(µs), i.e., Es = L2(µs).
Further, (P+)a ⊂ Ea implies clos (P+)a = H2(µa) ⊆ Ea. But, for f ∈ Ea ⊂ H2(µ) implies

there exists pn ∈ P+ such that ∥f − pn∥L2(µ) → 0. Since ∥f − pn∥2
L2(µ) = ∥f − pn∥2

L2(µa) +
∥f − pn∥2

L2(µs) = ∥f − pn∥2
L2(µa) + ∥pn∥2

L2(µs) (since f = 0 µs-a.e.) and ∥f − pn∥2
L2(µa) ≤

∥f − pn∥2
L2(µa) + ∥pn∥2

L2(µs) = ∥f − pn∥2
L2(µ) → 0 we get f ∈ H2(µa).

Remark 4.3.2. Note that for H2(µa), the closure of P+ in L2(µa) has two possibilities:

(i) zH2(µa) = H2(µa) and hence by Wiener theorem H2(µa) = χσL
2(µa) = L2(µa), because

1a ∈ H2(µa) implies that there does not exist σ ⊂ T such that m(T ∖ σ) > 0.

(ii) zH2(µa) ⊊ H2(µa)(⊂ L2(µa)), and hence H2(µa) = ΘH2 with |Θ|2w ≡ 1.

The following results help to distinguish the above two cases.

Lemma 4.3.3. H2(µ) is reducing (and hence H2(µ) = L2(µ)) if and only if z̄ ∈ H2(µ).

Proof. If H2(µ) is reducing, then z̄ ∈ H2(µ) is trivial. Suppose z̄ ∈ H2(µ), then exists pn ∈ P+

such that ∥z̄ − pn∥L2(µ) → 0. Let q ∈ P+. Then
∫
T

|z̄q − qpn|2dµ ≤ ∥q∥2
∞

∫
T

|z̄ − pn|2 → 0 as n → ∞.

18
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This implies z̄ P+ ⊂ H2(µ), or P+ ⊂ zH2(µ) (closed). Hence H2(µ) ⊆ zH2(µ), i.e. z̄H2(µ) ⊆
H2(µ). But zH2(µ) ⊂ H2(µ) implies zH2(µ) = H2(µ). Now, it is clear from Wiener theorem
and theorem 3.2.1 that H2(µ) = χσL

2(µ) = L2(µ).

Corollary 4.3.4. H2(µ) = L2(µ) if and only if dist(1, H2
0 (µ)) = 0, where H2

0 (µ) is the closure
of span{zn : n ≥ 1} in L2(µ).

Proof. Let H2(µ) = L2(µ), then z̄ ∈ H2(µ), implies dist (1, H2
0 (µ)) = dist (z̄, H2(µ)) = 0. On the

other hand, if dist (1, H2
0 (µ)) = 0, then z̄ ∈ H2(µ), and hence H2(µ) = L2(µ).

Note that the quantity

dist2 (1, H2
0 (µ)) = inf

p∈P0
+

∫
T

|1 − p|2dµ

is known Szegö infimum, where P0
+ = span{zn : n ≥ 1}.

It can be seen that dist(1, H2
0 (µ)) depends only on the absolute part of the measure µ. Let

dµ = wdm + dµs be the lebesgue decomposition of µ. As similar to Corollary 4.3.1, it can be
seen that H2

0 (µ) = H2
0 (µa) ⊕ L2(µs). We also use the fact that if M1 and M2 are subspaces of a

Hilbert space H such that M1 ⊥ M2, then PM1⊕M2 = PM1 + PM2 for M1 ⊥ M2. Thus, we can
write

dist2(1, H2
0 (µ)) = ∥PH2

0 (µ) ⊥ 1∥2
L2(µ)

= ∥(PH2
0 (µa) ⊕ PL2(µs)) ⊥ (1a + 1s)∥L2(µ)

= ∥PH2
0 (µa) ⊥ 1a∥2

L2(µa) ( since 1s ∈ L2(µs))

= inf
p∈P0

+

∫
T

|1 − p|2wdm.

The evaluation of Szegö infimum is intimately related to the multiplicative structure of H2.

4.4 The inner-outer factorization

Recall that a function f ∈ H2 is called inner if |f | = 1 a.e. on T. On the other hand, f ∈ H2 is
called outer if Ef = H2.

Theorem 4.4.1. (V. Smirnov, 1928) Let f ∈ H2 and f ̸≡ 0, then there exists an inner function
finn ∈ H2 and an outer function fout ∈ H2 such that f = finnfout. Moreover, this factorization
is unique and Ef = finnH

2.

Proof. Note that Ef ⊂ H2, Ef ̸= {0}, and Ef is not reducing, else z̄ ∈ H2. Here, Ef =
span{znf : n ≥ 0} ⊂ H2. By Theorem 3.1.1, we have Ef = ΘH2, where |Θ| = 1 a.e. m. Let
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finn = Θ, then f = Θg, where g ∈ H2. We claim Eg = H2. Let h ∈ H2. Since Ef = ΘH2 and
Θh ∈ ΘH2, there exists pn ∈ P+ such that pnΘg = pnf → Θh in L2. But, multiplication by an
inner function is an isometry, we get

∥png − h∥2 = ∥Θ(png − h)∥2 → 0.

Hence, Eg = H2. Here g = fout is desired outer function.

Uniqueness: Take f = f1f2, where f1 is inner and f2 is outer. As f1 is inner, h 7→ f1h is an
isometry, and hence as Ef2 = H2, we get

finnH
2 = Ef = span{znf1f2 : n ≥ 0} = f1span{znf2 : n ≥ 0} = f1H

2.

By the uniqueness of the representing inner function of the simply invariant space Ef (cf.
Theorem 3.1.1 and Corollary 3.1.2), we get finn = λf1 with |λ| = 1, and λf1fout = f1f2 implies
fout = λ̄f2.

4.5 Arithmetic of inner functions

Definition 4.5.1. Let Θ1,Θ2 be two inner functions in H2. We say Θ1 divides Θ2 if Θ2
Θ1

∈ H2.

Equivalently, Θ1 divides Θ2 if and only if Θ1H
2 ⊃ Θ2H

2. For this, if Θ2 = ΘΘ1, then Θ
is necessarily inner, and Θ2H

2 = Θ1ΘH2 ⊂ Θ1H
2, since ΘH2 ⊂ H2. On the other hand, if

Θ1H
2 ⊃ Θ2H

2, then we get Θ2 ∈ Θ1H
2 implies Θ = Θ2

Θ1
∈ H2.

We deduce the following two elementary properties:

Theorem 4.5.2. Let Θ = gcd{Θ1,Θ2}, the greatest common divisor of Θ1 and Θ2. Then

(i) span {Θ1H
2,Θ2H

2} = ΘH2

(ii) Θ1H
2 ∩ Θ2H

2 = Θ̃H2, where Θ̃ = lcm{Θ1,Θ2}.

Proof. (i) ΘkH
2 ⊂ span{Θ1H

2,Θ2H
2} = ΘH2 ; k = 1, 2 for some inner function Θ (by Beurling’s

theorem) implies Θ divides Θk ; k = 1, 2. Let Θ′ be another divisor of Θk : k = 1, 2. Then
Θ′H2 ⊃ ΘkH

2, and hence Θ′H2 ⊃ span{ΘkH
2; k = 1, 2} = ΘH2. This implies Θ′ divides Θ and

thus Θ = gcd{Θk; k = 1, 2}. The proof of (ii) is similar to (i).

Definition 4.5.3. Let {Θi : i ∈ I} be a family of inner functions.

(i) Θ = gcd{Θi : i ∈ I} if Θ divides each Θi, and Θ is divisible by every other inner function
that divides each Θi.

(ii) Θ = lcm{Θi : i ∈ I} if each Θi divides Θ and Θ divides every other inner function that is
divisible by each Θi
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Convention: In case the gcd or the lcm does not exist, we write gcd{Θi : i ∈ I} = 1 and
lcm{Θi : i ∈ I} = 0.

Corollary 4.5.4. span {Θi ∈ H2 : i ∈ I} = ΘH2, where Θ = gcd {Θi : i ∈ I} and ∩ ΘiH
2 =

Θ̃H2, where Θ̃ = lcm {Θi : i ∈ I}.

Corollary 4.5.5. Let F be a proper subset of H2. Then span{znF : n ≥ 0} = ΘH2, where
Θ = gcd{finn : f ∈ F \ {0}}, and finn stands for inner factor of f.

Proof. We have span{znF : n ≥ 0} = span{finnH
2 : f ∈ F \ {0}}. (By Smirnov’s theorem). By

applying Corollary 4.5.4 we get the required.

4.6 Characterization of outer functions

Theorem 4.6.1. (Integral Maximum Principle) Let f ∈ H2. Then the followings are equivalent:

(i) f is outer

(ii) f is a divisor of the space H2, i.e. if g ∈ H2 and g
f ∈ L2, then g

f ∈ H2.

Proof. (ii) =⇒ (i): Let f = finnfout be an inner-outer factorization of f. Then f̄inn = 1
finn

=
fout

f ∈ L2 because of finn ∈ H2 ⊂ L2. By (ii), we get f̄inn ∈ H2. But finn ∈ H2 implies
f̄inn = λ (constant) with |λ| = 1. Hence f = λ̄fout.

(i) =⇒ (ii): Given f is outer, we have Ef = H2. Since 1 ∈ H2, there exists pn ∈ P+ such that
pnf → 1 in L2. Let g ∈ H2 and h = g

f ∈ L2. Then

∫
T

|png − h| =
∫
T

|pnf − 1||h| ≤ ∥pnf − 1∥2∥h∥2 → 0 as n → ∞. (4.6.1)

But png ∈ H2, implies (̂png)(k) = 0 if k < 0. Since φ 7→ φ̂(k) is continuous linear functional on
L1(T) for each k, by (4.6.1) we get ˆ(h)(k) = 0, ∀ k < 0. Thus h ∈ H2.

Corollary 4.6.2. If two outer functions f1 and f2 verify |f1| = |f2| a.e. on T, then f1 = λf2

where |λ| = 1.

Proof. Since f2 is outer, f1 ∈ H2, and |f1
f2

| = 1 ∈ L2, by Theorem 4.6.1, we get f1
f2

∈ H2. In the
similar way f1

f2
= f2

f1
∈ H2 implies f1

f2
= λ (constant) and hence f1 = λf2 with |λ| = 1. Thus, an

outer function is completely defined by its modulus.

Corollary 4.6.3. Let w ≥ 0, w ∈ L1(T). If there exists f ∈ H2 such that |f |2 = w a.e. T, then
there exists a unique outer function f0 ∈ H2 such that |f0|2 = w a.e. T.

(Hint: By Smirnov theorem, f = finnfout etc.)

Corollary 4.6.4. If f ∈ H2(T) is simultaneously inner and outer then f is constant.
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Proof. Since f ∈ H2(T) is inner |f | = 1 and hence 1/f = f ∈ H2(T) by the Theorem 4.6.1.
Since f, f ∈ H2(T) hence f is constant.

4.7 Szegö infimum and Riesz Brother’s theorem

Here we consider two theorems in two different settings by using the fact that in an orthogonal
complement of the analytic polynomials P+ the absolute component of a measure is only
important.

Theorem 4.7.1. (Szegö and Kolmogorov) Let µ be a finite Borel measure on T with Lebesgue
decomposition dµ = wdm+ dµs, where w ∈ L1

+(T). Then

(i) either there does not exist any f ∈ H2 such that |f |2 = w a.e. m, then

inf
p∈P0

+

∫
T

|1 − p|2dµ = 0.

(ii) or there exists (unique) f ∈ H2 such that |f |2 = w a.e. m, and f is outer, then

inf
p∈P0

+

∫
T

|1 − p|2dµ = |f̂(0)|2.

Proof. (ii)We know that the Szegö infimum I will satisfy

I2 = dist2(1, H2
0 (µ)) = dist2(1, H2

0 (µa))

= inf
p∈P0

+

∫
T

|1 − p|2wdm.

Given that |f |2 = w a.e. m, and f is outer. Hence

I2 = inf
p∈P0

+

∫
T

|f − pf |2dm.

As f is an outer function, we can verify that span{znf : n ≥ 1} = zH2. Hence I = distH2(f, zH2).
Note that f = ∑

n≥0
f̂(n)zn = f̂(0) + g, where g ∈ zH2. Since f̂(0) ⊥ zH2, it follows that

I = distH2(f̂(0), zH2) = |f̂(0)|.
(i). Now, we consider the invariant space Ea = H2

0 (µa). If zEa ̸= Ea, then there exists Θ such
that Ea = ΘH2 with |Θ|2w ≡ 1. But z ∈ Ea and hence z = Θf for some f ∈ H2. This implies
that |f |2 = 1

|Θ|2 = w (since |z| = 1), and this leads to case (ii). Hence, case (i) is possible
only if zEa = Ea. But, then Ea = L2(µa) by Remark 4.3.2(i). Hence dist(1, H2

0 (µ)) = 0, since
1 ∈ L2(µa) = H2

0 (µa).
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The above Theorem (Szegö and Kolmogorov) leads to the problem of computing |f̂(0)|2 in
terms of w. In order to do this, we have to consider H2 as a space of analytic functions on the
unit disc, which we do later.

Riesz Brother’s result is an important consequence of Helson’s theorem. For that, we need to
recall an important result related to the Radon-Nikodym derivative.

Let |µ| be the total variation measure of a complex-valued Borel measure µ on T, i.e.

|µ|(σ) = sup
{∑

i∈I

|µ(σi)| : {σi}i∈I is a partition ofσ in B(T)
}
.

Suppose µ is absolutely continuous with respect to a positive measure λ on B(T). Then there
exists φ ∈ L1(λ) (the Radon-Nikodym derivative of µ with respect to λ) such that

|µ|(σ) =
∫

σ
|φ|dλ.

Theorem 4.7.2. (Riesz Brother’s, 1916) Let µ be a complex-valued Borel measure on T such
that ∫

T
zndµ = 0, ∀n ≥ 1.

Then µ ≪ m and dµ = h dm, where h ∈ H1 = {f ∈ L1(T) : f̂(k) = 0, k < 0}.

Note that, a measure µ that satisfies
∫
T
z̄ndµ = 0 for n < 0 will be called analytic measure.

Proof. It is clear that µ ≪ |µ|. Let g ∈ L1(|µ|) be the corresponding Radon-Nikodym derivative
of µ with respect to |µ|. We claim that |g| = 1 a.e. µ. For δ > 0, set σ = {t : |g(t)| < 1 − δ}. Then
|µ|(σ) =

∫
σ

|g|d|µ| ≤ (1 − δ)|µ|(σ). Implies |µ|(σ) = 0. Similarly, the case σ′ = {t : |g(t)| > 1 − δ}.
This proves the claim. As a consequence of the Corollary 4.3.1, we get

H2
0 (|µ|) = H2(|µ|a) ⊕ L2(|µ|s). (4.7.1)

But |g| = 1 a.e. |µ| implies ḡ ∈ L2(|µ|), and

⟨zn, ḡ⟩L2(|µ|) =
∫
T
zngd|µ| =

∫
T
zndµ = 0, n ≥ 1.

In other words, ḡ ⊥ zn, n ≥ 1 in the Hilbert space L2(|µ|), and hence ḡ ⊥ H2
0 (|µ|). In view of

(4.7.1), we obtain ḡ ⊥ H2
0 (|µ|s). Now, by construction, |g| = 1 a.e. |µ|, which implies |g| = 1 a.e.

|µ|s. This is impossible ( since ḡ ⊥ H2
0 (|µ|s) ), unless |µ|s = 0. Finally, µ ≪ |µ| implies

µ(σ) =
∫

σ
gd|µ| =

∫
σ
gd|µ|a =

∫
σ
gwdm
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for each σ ∈ B(T). That is µ ≪ m with Radon-Nikodym derivative h = gw ∈ L1(T), and

ĥ(k) =
∫
T
z̄khdm =

∫
T
z̄kgwdm =

∫
T
z̄kdµ = 0 if k ≤ −1.

Hence h ∈ H1.

Question 4.7.3. *

For g ∈ L1(T), define gf = span{zng : n ≥ 0}|L1(T). Characterize all possible g ∈ L1(T) such
that inf

p∈P 0
+

∥1 − p g∥1 = 0.

4.8 Exercises

Example 4.8.1. bλ = λ−z
1−λz

where λ ∈ D is an inner.

Proof. bλ = λ− z
∑

n≥0 λ
n
zn(|z| = 1) and clearly b̂λ(k) = 0 for k < 0, and ∑k≥0 |b̂λ(k)|2 < ∞;

hence bλ ∈ H2(T). Moreover, for |z| = 1 we have |λ− z| = |λ− z| = |1 −λz|, thus |bλ(z)| = 1.

Example 4.8.2. f = ΠN
k=1bλk

is an inner.

Proof. For f, g ∈ H∞ we have ∥fg∥∞ ≤ ∥f∥∞∥g∥∞ hence H∞.H∞ ⊂ H∞, a product of inner
function is inner.

Example 4.8.3. Sζ,α = exp(−a(ζ+z)
ζ−z ) where a > 0, ζ ∈ T.

Proof. As Re
(

ζ+z
ζ−z

)
= 1−|z|2

|ζ−z|2 ≥ 0 for any ζ ∈ T, |z| ≤ 1, z ̸= T, we obtain that |Sζ,a| = 1 on T.
Moreover for every n > 0 we have Ŝζ,a(−n) =

∫
T z

nSζ,a(z)dm = limr→1
∫
T fr(z)dm = 0 where

f(z) = znSζ,a(z) and fr(z) = f(rz), 0 ≤ r < 1 (f̂r(0) = 0 since fr is analytic in |z| < 1/r and
fr(0) = 0.)

Example 4.8.4. f = ∏N
k=1 Sζk,ak

where ak > 0 ζk ∈ T.

Proof. See the proof of (ii).

Examples related to the outer functions you will get in Chapter 6, Subsection 6.2.

Exercise 4.8.5. For every f ∈ L2 prove that f ·H∞(T) ⊂ Ef = span{f, zf, z2f, . . . }.

Proof. Clearly fPa ⊂ Ef , where Pa is the space of analytic polynomials. It only remains to show
(fPa)⊥ ⊂ (fH∞)⊥ (orthogonal complement in L2). Let g ∈ (fPa)⊥, i.e.

∫
T gfpdm = 0 for any

polynomial p ∈ Pa. Thus for any h ∈ H∞,
∫

T gfhdm = 0 because gf ∈ L1 and h is a weak limit
σ(L∞, L1) of its Fejer’s polynomials. ()

Example 4.8.6. If f ∈ H2(T) such that 1/f ∈ H∞(T), then f is an outer.
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Proof. By the exercise 4.8.5, 1 = f · 1/f ∈ Ef hence Ef = H2(T).

Exercise 4.8.7. Let f, g ∈ L2(T) (thus fg ∈ L1(T)). Show that for every n ∈ Z, fg(n) =∑
k∈Z g(k)f(n− k); the series converges absolutely.

Proof. By Cauchy Schwarz’s inequality ∥f(g−g′)∥ ≤ ∥f∥2∥g−g′∥2, the multiplication Mgf = fg

is continuous L2(T) → L1(T). Moreover the Fourier series g = ∑
k∈Z ĝ(k)zk converges for the norm

of L2(T). Hence fg = ∑
k∈Z ĝ(k)zkf converges in L1(T), wich implies f̂g(n) = ∑

k∈Z ĝ(k)(̂zkf)(n).
The calculation follows from (̂zkf)(n) = f̂(n− k).

Exercise 4.8.8. Let f = finfout ∈ H2(T). Show that sup{|ĝ(0)| : g ∈ H2(T), |g| ≤ |f | a.e. on T} =
|f̂out(0)|

Proof. From the previous exercise φ̂ψ(0) = φ̂(0)ψ̂(0) for all φ,ψ ∈ H2(T). Moreover for every
inner function h, we have |ĥ(0)| ≤ ∥h∥1 = 1. Given g ∈ H2(T, )|g| ≤ |f |, which implies
|ĝ(0) = |ĝin(0)ĝout(0)| ≤ |ĝout(0)|. Then by Theorem 4.7.1

|ĝ(0)|2 ≤ |ĝout(0)|2 = inf
p∈Pa

∫
T

|1 − p|2|g|2dm ≤ inf
p∈Pa

∫
T

|1 − p|2|f |2dm = |f̂out(0)|2
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Chapter 5

Canonical factorization in Hp(D)

In this section, we discuss the canonical factorization of functions in Hp- spaces on the open unit
disc as a product of three factors, namely a Blaschke product, a singular inner function, and an
outer function in its Schwarz-Herglotz representation. This will help us analyze the questions
raised earlier. In particular, Szegö infimum etc.

Definition 5.0.1. Let D = {z ∈ C : |z| < 1} and Hol(D) denotes the space of analytic functions
on D. For p > 0, set

Hp(D) =
{
f ∈ Hol(D) : ∥f∥p

Hp = sup
0≤r<1

∫ 2π

0
|f(reit)|pdt < ∞

}
,

and H∞(D) = {f ∈ Hol(D) : ∥f∥H∞ = sup
z∈D

|f(z)| < ∞}. Here dt is the normalized measure on T.

For p ≥ 1, set Lp = Lp[0, 2π] = (Lp[0, 2π], dt) and Hp = {f ∈ Lp : f̂(k) = 0, k < 0}.
The spaceHp(D) andHp are called Hardy spaces of the disc and Hardy space respectively.

Later on we canonically identify these two spaces as same.

5.0.1 Properties of Hp spaces

(i) Hp(D) is a linear space.

(ii) f 7−→ ∥f∥Hp is a norm if p ≥ 1.

(iii) Hp(D) ⊂ Hq(D) if p > q.

(iv) For p = 2, let f ∈ Hol(D), and

f(z) =
∑
n≥0

f̂(n)zn, f̂(n) ∈ C.
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By Parseval’s identity ∫ 2π

0
|f(reit)|2dt =

∑
n≥0

|f̂(n)|2r2n, 0 ≤ r < 1

and we have
sup

0≤r<1

∫ 2π

0
|f(reit)|2dt =

∑
n≥0

|f̂(n)|2.

Thus for f ∈ Hol(D), we have f ∈ H2(D) if and only if
∑
n≥0

|f̂(n)|2 < ∞.

(v) If 1 ≤ p ≤ ∞, Hp is a Banach space, and 0 < p < 1, Hp is a complete metric space [12](p.
37). If p < 1, then ∥.∥p is not a true norm, in fact Hp is not normable. However the
expression d(f, g) = ∥f − g∥p

p defines a metric on Hp if p < 1.

Example 5.0.2. The function f(z)= 1
1−z is analytic on D but is not in H2(D).

Proof. Since 1
1−z = ∑∞

n=0 z
n, the coefficients of f are not square-summable.

For f ∈ H∞, ∥f∥2 = sup0<r<1
∫
T |f(rζ)|2dm(ζ) ≤ ∥f∥2

∞ < ∞ =⇒ f ∈ H2, hence H∞ ⊂ H2.

Example 5.0.3. The inclusion H∞(D) ⊂ H2(D) is strict since the function f(z)=log 1
1−z is an

unbounded analytic function on D but it is member of H2(D), because it has a Taylor series:

log 1
1 − z

=
∑
n≥1

zn

n

has square summable coefficients.

5.1 A Revisit to Fourier Series

The functions in Lp[0, 2π] can be thought of as functions on (0, 2π), which can be extended
periodically to real line R.

Lemma 5.1.1. Let f ∈ L1[0, 2π], g ∈ Lp[0, 2π], 1 ≤ p ≤ ∞. Then

(i) for almost every x ∈ (0, 2π), y 7−→ f(x− y)g(y) is integrable on (0, 2π).

(ii) f ∗ g(x) =
∫ 2π

0 f(x− y)g(y)dy is well defined and belongs to Lp[0, 2π].

(iii) ∥f ∗ g∥p ≤ ∥f∥1∥g∥p.

Proof. Note that (x, y) 7−→ f(x − y)g(y) is measurable, and by Fubini’s theorem |f ∗ g(x)| ≤∫
|f(x− y)||g(y)|dy < ∞ a.e. x. By Minkowski integral inequality,

∣∣∣∣∣∣ ∫ f(x− y)g(y)dy
∣∣∣∣∣∣

p
≤
∫

∥f(x− y)g(y)∥pdy = ∥g∥p∥f1∥.

27



MA650: Advanced Hardy Spaces Theory Canonical factorization in Hp(D)

Further, if f ∈ L1(0, 2π) and f̂(n) =
∫ 2π

0 f(t)e−intdt, then (̂f ∗ g)(n) = f̂(n)ĝ(n), whenever
g ∈ Lp and 1 ≤ p ≤ ∞ (using Fubini’s theorem).

5.1.1 Approximation identity (or good kernel)

(i) If a family (Eα) ⊂ L1 satisfies

(a) sup
α

∥Eα∥1 < ∞

(b) lim
α
Êα(n) = 1,

then lim
α

∥f − f ∗Eα∥p = 0 for f ∈ Lp(1 ≤ p < ∞). This is still true for p = ∞, if f ∈ C(T)
(called approximate identity of Lp.)

(ii) If (Eα) ⊂ L1 satisfies

(a) sup
α

∥Eα∥1 < ∞

(b) lim
α

∫ 2π

0
Eαdx = 1

(c) lim
α

sup
δ<|x|<π

|Eα(x)| = 0, ∀ δ > 0.

then conditions of (a) and (b) of (i) is satisfied and we get lim
α

∥f − f ∗ Eα∥p = 0.

5.1.2 Dirichlet, Fejer and Poisson Kernels

(i) Dirichlet kernel

Dm =
m∑

k=−m

eikt =
sin(m+ 1

2)t
sin(t/2) .

(ii) Fejer kernel

Φn(t) = 1
n+ 1

n∑
m=0

Dm =
n∑

k=−n

(
1 − |k|

n+ 1
)
eikt = 1

n+ 1
(sin n+1

2 t

sin(t/2)
)2
.

(iii) Poisson kernel

Pr(t) = P (reit) = 1 − r2

|1 − reit|2
=
∑
k∈Z

r|k|eikt, 0 ≤ r < 1.

Result: If f ∈ L1, then

1. f ∗Dm(t) =
m∑

k=−m

f̂(k)eikt = Sm(f ; t) (Partial Fourier series sums of f)

2. f ∗ Φn(t) =
∑

f̂(j)
(
1 − |j|

n+ 1
)
eijt = 1

n+ 1

n∑
m=0

Sm(f ; t) (Arithmetic mean of partial sum

of Fourier series of f)
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3. f ∗ Pr(t) =
∑
k∈Z

f̂(k)r|k|eikt, 0 ≤ r < 1.

4. (Φn)n≥1 and (Pr)0≤r<1 are good kernels, and ∥Pr∥1 = ∥Φn∥1 = 1.

5. Pr ∗ Pr′ = Prr′ for 0 ≤ r, r′ < 1 (semi group property).

Corollary 5.1.2. If f ∈ Lp, 1 ≤ p < ∞, then lim
n→∞

∥f − f ∗ Φn∥p = 0. Hence trigonometric
polynomials are dense in Lp. (Hint: This follows from the property of the good kernel.)

The same is true for p = ∞, if f ∈ C(T).

Corollary 5.1.3. If f ∈ L1, f̂(n) = 0, ∀n ∈ Z, then f = 0.

Notations: For f ∈ L1, set fr = f ∗ Pr, 0 ≤ r < 1.
For f ∈ Hol(D), we set f(r)(z) = f(rz), if |z| < 1

r , 0 ≤ r < 1. Clearly f(r) is analytic in bigger
domain: |z| < 1

r < 1 + ϵ.

Corollary 5.1.4. If 0 ≤ r < ρ < 1 and f ∈ Lp, 1 ≤ p < ∞, then lim
r→1

∥fr − f∥p = 0. Moreover,
∥fr∥p ≤ ∥fρ∥p ≤ ∥f∥p(using maximum modulus principle).

If f ∈ Hol(D), then ∥f(r)∥p ≤ ∥f(ρ)∥p and the limit (possible infinite) lim
r→1

∥f(r)∥p ≤ ∞, exists.
In fact, lim

r→1
∥f(r)∥p = ∥f∥Hp(D) if f ∈ Hp(D). (It follows due to Pr is a good kernel.)

5.2 Identification of Hp(D) with Hp(T)

Theorem 5.2.1. Let 1 ≤ p ≤ ∞.

(i) If f ∈ Hp(D), then lim
r→1

f(r) = f̃ exists in Lp(T) and f̃ ∈ Hp(T). (For p = ∞, the limit
holds in the weak* topology of L∞(T) i.e. in σ(L∞, L1).)

(ii) f 7−→ f̃ is an isometry.

(iii) f and f̃ are related by f(r) = (f̃)r = f̃ ∗ Pr.

The function f̃ is called the boundary limit of function f.

Proof. Let f =
∞∑

n=0
anz

n ∈ Hp(D), then

M = sup
0≤r<1

∥f(r)∥p < ∞. (5.2.1)

(i) For 1 < p < ∞, by Banach Alaoglu theorem (5.2.1) implies that (f(r))0≤r<1 is weakly rela-
tively compact in Lp(T). Since Lp = (Lp′)∗, 1

p + 1
p′ = 1 and f(r) ∈ Lp; M = sup

0≤r<1
∥Λf(r)∥ <

∞, where Λf(r) ∈ (Lp′)∗. This gives a limit point f̃ ∈ Lp(T) of (f(rk))rk→1 in the weak topol-
ogy of Lp. We claim that the convergence takes place in Lp. As the functional ϕ 7−→ ϕ̂(n)
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is continuous on Lp ( since |φ̂(n)| ≤ ∥φ∥Lp ) for ϵ > 0, 0 < r < 1, ∃ rk with r < rk < 1
such that |f̂(r)(n) − ˆ̃f(n)| < ϵ. Note that

∥f(r) − f̃∥p ≤ ∥f(r) − f(rk)∥p + ∥f(rk) − f̃∥p → 0 as r → 1,

if we suppose f(rk) → f̃ in Lp. But then as r → 1, f̂(r)(n) = anr
n → an, n ∈ Z with an = 0

if n < 0. Hence an = (̂f̃)(n), which implies f̃ ∈ Hp(T).

We deduce that f̃ does not depends on (rk)k≥1 and for ξ ∈ T,

(f̃ ∗ Pr)(ξ) =
∑

anr
kξn =

∑
(̂f̃)(n)r|n|ξn = f(r)(ξ). (5.2.2)

Now, by property of good kernel Pr we get

∥f(r) − f̃∥p = ∥(f̃)r − f̃∥p → 0 as r → 1.

That is f(r) → f̃ in Lp.

For p = ∞, the similar reasoning gives the convergence f(r) = (f̃)r → f̃ in weak* topology
of L∞.

Case p = 1 : The space L1(T) can be regarded as a subspace of M(T), the space of all
complex measures on T. As M(T) = C(T)∗, by Banach Alaoglu theorem, the balls of M(T)
are weak∗ relatively compact.

We again get the existence of limit f̃ ∈ M(T) as lim
r→1

f(r) = f̃ , but this is weak* limit

in M(T). That is,
∫
f(r)g →

∫
f̃g, g ∈ C(T). As before take g(t) = e−int, then (̂f̃)(n) =

µ̂(n) = lim
r→1

f̂(r)(n), n ∈ Z, and hence µ̂(n) = 0 if n < 0. By Riesz Brother’s theorem we
get µ << m, and the corresponding Radon Nikodym derivative of µ with respect to m
is equal to f̃ ∈ H1. Using the same argument as in the beginning of the proof, we get
(̂f̃)(n) = an, n ≥ 0, fr = (f̃)r. Hence

lim
r→1

∥f̃ − f(r)∥1 = ∥f̃ − (f̃)r∥1 → 0

because fr → f in Lp for 1 ≤ p < ∞ by Corollary 5.1.4.

(ii) Let us first consider the case p < ∞. Since f̃ = lim
r→1

f(r), we get using Corollary 5.1.4,

∥f̃∥p = lim
r→1

∥f(r)∥p = ∥f∥Hp(D).

For p = ∞, observe that as f̃ is weak* limit of f(r), we get

∥f̃∥∞ ≤ lim inf
r→1

∥f(r)∥∞ = ∥f∥H∞(D).
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On the other hand f(r) = f̃ ∗ Pr, we get

lim sup
r→1

∥f(r)∥∞ ≤ ∥f̃∥∞.

Hence, we conclude that ∥f∥H∞(D) = ∥f̃∥H∞(T) = ∥f̃∥∞.

(iii) has been given in (5.2.2).

Convention: Thus in view of Theorem 5.2.1, for p ≥ 1 we can identify f ∈ Hp(D) and its
boundary limit f̃ by

f(r) = fr = f ∗ Pr and f =
∑
n≥0

f̂(n)zn.

Now f̂(n) represents Fourier coefficient of f̃ at n and Taylor’s coefficient as well. Note that if
f ∈ Hp(D) then f(0) = f̂(0) always.

Corollary 5.2.2. For every ξ ∈ D, the point wise evaluation map φξ : H1(D) → C, defined by
φξ(f) = f(ξ), f ∈ H1(D), is a continuous linear functional on H1 (and hence on Hp, 1 ≤ p < ∞).

Proof. Let f̃ be the boundary limit of f ∈ H1(D). Write ξ = reit, 0 ≤ r < 1. Then

f̃ ∗ Pr(eit) =
∑ ˆ̃f(n)eintr|n| =

∑
ane

intrn = f(r)(eint) = f(reint) = f(ξ).

Thus |f(ξ)| ≤ ∥f̃∥1∥Pr∥∞ ≤ ∥f̃∥1
1 + |ξ|
1 − |ξ|

.

Remark 5.2.3. If f̃n → f̃ in Hp, 1 ≤ p < ∞, then fn → f uniformity on compact sets in D.

Proof. For |Λ| ≤ r < 1, |fn(λ) − f(λ)| ≤ ∥f̃n − f̃∥1+|λ|
1−|λ| = ∥f̃n − f̃∥1+|r|

1−|r| → 0 as n → ∞, since
∥f̃n − f̃∥ → 0. Any arbitrary compact set K ⊆ {|λ| ≤ r}, hence fn → f uniformly on K.

5.3 Jensen’s formula and Jensen’s inequality

Lemma 5.3.1. Let f ∈ H1 with f̂(0) ̸= 0 (because f(0) = f̂(0)) and let λn be the sequence of
zeroes of f in D counted with multiplicity. Then

log |f(0)| +
∑
n≥1

log 1
|λn|

≤
∫
T

log |f(t)|dm(t).

In particular
log |f(0)| ≤

∫
T

log |f(t)|dm(t).
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If f ∈ Hol(D1+ϵ), then

log |f(0)| +
∑
n≥1

log 1
|λn|

=
∫
T

log |f(t)|dm(t).

Proof. First we consider f ∈ Hol(D1+ϵ). Let us assume that Z(f) ∩ T = ∅, i.e.
f has no zeroes on T. Then Z(f) ∩ D=finite={λ1, λ2, . . . , λn}. Set B(z) =

n∏
j=1

|λj |
λj

(λj−z)
(1−λ̄jz) . For

Bλ(z) = |λ|
λ

(λ−z)
(1−λ̄z) , it is easy to see that

|Bλ(z)|2 = 1 − (1 − |λ|2)(1 − |z|2)
|1 − λ̄z|2

.

Thus we set |B| = 1 on T, and f/B is a zero free holomorphic function on D1+δ for some
δ > 0. Hence, log |f/B| is a harmonic function on D1+δ and allow to apply MVT (because
log g(z) = log |g(z)| + i arg(g(z)), if g(z) ̸= 0) and we get

log |(f/B)(0)| =
∫
T

log |f/B|dm =
∫
T

log |f |dm.

As log |(f/B)(0)| = log |(f)(0)| +
∞∑

j=1
log |λj |−1, we get the desired formula.

For f having zero on T, we consider fr, 0 ≤ r < 1, where fr(z) = f(rz). Note that fr is
analytic in |z| < 1/r < 1 + ϵ. Choose r such that fr has no zero on T. If for all r fr has zeros
on T, then f has uncountably many zeroes on T hence zero set has a limit point in T and f is
identically zero. (Note that if λ is a zero of f if and only if λ/r is a zero of fr.) For such an r,

apply the previous case:

log |f(0)| +
∑

|λn|≤r

log r

|λn|
=
∫
T

log |fr|dm(t) (5.3.1)

Now f is analytic in D1+ϵ, so f has finite number of zeros on T. Let Z(f)∩T = {ξi : i = 1, 2, . . . , k}.
Hence f = pg with p = Πk

i=1(z − ξi) and g is a holomorfic functions such that g and 1
g are

bounded on T. However for every r, 0 < r < 1 and z ∈ D

|ξi − z| ≤ |ξi − rz| + |z(1 − r)| ≤ |ξi − rz| + |1 − r| ≤ 2|ξi − rz| ≤ 2

=⇒ 1
2 |ξi − z| ≤ |ξi − rz| ≤ 2 (5.3.2)

We will calculate for one zero ξi ∈ T. fr(ξ) := f(rξ) = |rξ − ξj |ng(rξ) =⇒ log |f(rξ)| =
n log |rξ − ξj | + log |g(rξ)|
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Now from (5.3.2)

1
2 |ξj − ξ| ≤ |rξ − ξj |

=⇒ 1
|rξ − ξj |

≤ 2
|ξj − ξ|

log |f(rξ)| = −
(
n log 1

|rξ − ξj |
+ log |g(rξ)|

)

≤ −2n
log |ξj − ξ|

+ log |g(rξ)|

= 2n log |ξ − ξj | + log |g(rξ)| := h(ξ) say

To apply DCT and take lim
r→1

inside the integration in (5.3.1), we need to show:
∫
T |h(ξ)|dξ < ∞.

This holds since
∫
T log |ξ − ξj |dξ is integrable (in fact it is zero, See [7] P. 307, Lemma 15.17).

The general case: Let f ∈ H1 and f(0) ̸= 0. In order to pass limit in (5.3.1), note that
| log x− log y| ≤ Cϵ|x− y|, if x, y > ϵ. Hence

| log(|fr| + ϵ) − log(|f | + ϵ)| ≤ Cϵ||fr| − |f || on T and

log(|fr| + ϵ) → log(|f | + ϵ) in L1(T) as r → 1.

But from (5.3.1)

log |f(0)| +
∑

|λn|≤r

log r

|λn|
=
∫
T

log |fr|dm ≤
∫
T

log(|fr| + ϵ)dm(t). (5.3.3)

As LHS in (5.3.3) is increasing in r and RHS is convergent, we obtain

log |f(0)| +
∑
n≥1

log 1
|λn|

≤
∫
T

log(|f | + ϵ)dm

for each ϵ > 0. This completes the proof.
Since |λn| < 1 for all n ∈ N hence the “in particular" case follows.

Corollary 5.3.2. (Generalized Jensen’s inequality)
Let g ∈ H1, g ̸≡ 0, and |ξ| < 1. Then

log |g(ξ)| ≤
∫ 1 − |ξ|2

|ξ − t|2
log |g(t)|dm(t). (5.3.4)

Indeed, to begin with, we may assume that g ∈ Hol(D1+ϵ). Apply the previous result to the
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function
f(z) = g

( ξ − z

1 − ξ̄z

)
,

and remark that Jacobian of this change of variable is 1−|ξ|2
|ξ−z| . (Hint: Put s = ξ−t

1−ξ̄t
etc.)

Remark 5.3.3. (Confrontation of two Jensen inequalities) Curiously, Jensen’s inequality of
Lemma 5.3.1 and Corollary 5.3.2 for the holomorphic functions is, in a way, the opposite of the
fundamental inequality of convexity in real analysis, which also bears the name of Johan Jensen.
In fact, the Jensen convexity inequality states that:

φ

∫
T
gdm ≤

∫
T
φgdm

for any real integrable function g and any convex function φ(φ′′ > 0). Setting g = log |f | and
φ(x) = ex we obtain the following:∫

T
log |f |dm ≤ log

∫
T

|f |dm = log |̂f |(0)

5.4 The boundary uniqueness theorem

Corollary 5.4.1. If g ∈ H1, g ̸≡ 0, then log |g| ∈ L1(T). In particular, if g ∈ H1 and m{t ∈ T :
g(t) = 0} > 0, then g ≡ 0.

Proof. Indeed, g ∈ H1 may be expanded in its Taylor’s series (when realized on disc D) as
g = ∑

k≥n ĝ(k)zk, where ĝ(n) ̸= 0, and n ≥ 0 is the multiplicity of the zero at z = 0. By applying
Jensen’s inequality to function f = g/zn, we get∫

T
log |g|dm =

∫
T

log |f |dm > −∞.

Since, log x < x if x > 0, we also have∫
T

log |g|dm ≤
∫
T

|g|dm < ∞.

Hence log |g| ∈ L1(T). It is clear that if m{t ∈ T : g(t) = 0} > 0, then
∫
T log |g|dm = −∞, which

is possible only if g ≡ 0.

Remark 5.4.2. The corollary is true for all p > 0. Proof for this using the MVT for harmonic
function is done in the proof of Theorem 5.7.6.

Remark 5.4.3. Recall that we have seen the second statement of the above corollary for f ∈ H2

using a completely different approach.
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5.5 Blaschke Product

Lemma 5.5.1. (Blaschke condition, interior uniqueness theorem) Suppose f ∈ Hol(D), f ̸≡ 0,
and let (λn)n≥1 be the zero sequence of f in D, where each zero is repeated according to its
multiplicity. Suppose that

lim inf
r→1

∫
T

log |fr|dm < ∞,

then
∑

n≥1(1 − |λn|) < ∞. In particular, this holds whenever f ∈ Hp(D), p > 0.

Remark 5.5.2. The condition
∑
n≥1

(1 − |λn|) < ∞ is called Blaschke condition.

Proof. Without loss of generality, we can assume that f(0) ̸= 0. But then Jensen’s formula gives

∑
n≥1

log 1
|λn|

= lim inf
r→1

∑
|λn|≤r

log r

|λn|
< ∞

As |λn| → 1, we have log
(

1
|λn|

)
∼ (1 − |λn|), and hence the desired conclusion followed. The

Hp(D) case is a consequence of the obvious estimate log x < Cpx
p for x > 0, p > 0, because

lim inf
r→1

∫
T

log |fr| ≤ lim inf
r→1

∫
T
Cp|fr|p < ∞.

For λ ∈ D, we define Blaschke factor by

bλ(z) = |λ|
λ

(λ− z)
(1 − λ̄z)

.

(i) If we assume the normalization bλ

(
− λ

|λ|
)

= 1, then for λ = 0, we can define b0(z) = z.

(ii) Zero set Z(bλ) = {λ}, bλ ∈ Hol(C \ { 1
λ̄

}), |bλ| ≤ 1 on D and |bλ| = 1 on T.

Lemma 5.5.3. (Blaschke, 1915) If (λn)n≥1 ∈ D satisfies the Blaschke condition
∑
n≥1

(1 − |λn|) <

∞, then the infinite product
B =

∏
n≥1

bλn = lim
r→1

∏
|λn|<r

bλn

converges uniformly on compact subsets of D and even on compact subsets of C \ clos{ 1
λ̄n

}n≥1.

Moreover, |B| ≤ 1 in D, |B| = 1 a.e. on T, and Z(B) = (λn)n≥1 (counting multiplicity).
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Proof. Set Br =
∏

|λn|<r

bλn . Then for 0 ≤ r < R < 1, we have

∥BR −Br∥2
2 = 2 − 2 Re(BR, Br)

= 2 − 2 Re
∫
BRB̄rdm

= 2 − 2 Re
∫
BR

Br
dm (because |Br| = 1 on T).

So by MVT for holomorphic function BR

Br we get

∥BR −Br∥2
2 = 2 − 2 Re

(BR

Br

)
(0) = 2 − 2

∏
r≤|λn|<R

|λn|.

By Blaschke condition
∑
n≥1

log |λn|−1 < ∞, the product

∏
n≥1

|λn|

converges, which implies lim
r→1

∏
r≤|λn|<R

|λn| = 1. This shows that (Br) is a Cauchy sequence in

H2 ⊂ L2 for every r = rk → 1. So we deduce the existence of B = lim
r→1

Br. Moreover, |B| = 1 a.e.
on T because |Br| = 1 on T, and B ∈ H2. As the point evaluation is continuous linear functional
on H2, the limit limr→1B

r(λ) = B(λ) exists uniformly on compact subsets of D, and hence
|B(λ)| ≤ 1, λ ∈ D. Using B

Br → 1 in H2 (easy to see), we get B
Br → 1 uniformly on compact

subsets of D as r → 1 and
lim
r→1

( B
Br

)
(λ) = 1. (5.5.1)

This shows that B(λ) = 0, |λ| < 1 if and only if λ = λn for some n ≥ 1 (counting multiplicity).
If λ ̸= λn and B(λ) = 0, then (5.5.1) will fail.

In order to prove convergence on compact subsets of C∖clos{ 1
λ̄n

}n≥1, the following observation
is enough.

|bλn − 1| = (|1 − |λn|)(λn + |λn|z)
λ(1 − λ̄z)

≤ (1 − |λn|)(1 + |z|)
|λn|

∣∣z − 1
λ̄n

∣∣ ≤ c
1 − |λ|

dist(z,N) ,

where N = clos{ 1
λ̄n

: n ≥ 1}.

Corollary 5.5.4. (Frigyes Riesz, 1923) Let f ∈ Hp(D), p > 0 with corresponding zero sequence
(λn)n≥1. Then there exists g ∈ Hp(D) with g(ξ) ̸= 0, ∀ ξ ∈ D such that f = Bg and ∥f∥p = ∥g∥p

on Lp(T).

This may be thought as the Blaschke filtering of the holomorphic functions.
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Proof. Take Br =
∏

|λn|<r

bλn , 0 < r < 1. Clearly, f
Br ∈ Hol(D) and for ρ → 1, we get |Br(ρξ)| → 1

uniformly on T. Hence,

∣∣∣∣∣∣ f
Br

∣∣∣∣∣∣p
p

= lim
ρ→1

∫
T

∣∣∣ f
Br

(ρξ)
∣∣∣pdm(ξ) = ∥f∥p

p (5.5.2)

And thus by definition of Hp(D),

( ∫
T

∣∣∣ f
Br

(ρξ)
∣∣∣pdm(ξ)

) 1
p ≤ ∥f∥p for every 0 ≤ ρ < 1.

Fix ρ, set g = f
B , and letting r → 1, we obtain

( ∫
T

∣∣∣g(ρξ)
∣∣∣pdm(ξ)

) 1
p ≤ ∥f∥p,

and hence ∥g∥p ≤ ∥f∥p. The other inequality follows from g = f
B .

Note: In the proof of equation (5.5.2) we use the fact if fρ → f in Hp-norm and gρ → 1
uniformly as ρ → 1 then fρgρ → f in Hp-norm. To prove this use: |fρgρ −f | = |fρgρ −fρ +fρ −f |
and to apply the DCT use Minkowski’s inequalities and gρ is uniformly bounded by M.

Question 5.5.5. * Is it possible to replace log | · | in Jensen’s inequality with some suitable
increasing function?

Remark 5.5.6. It is useful to introduce the notion of the zero divisor (or multiplicity function) of
a holomorphic function. For f ∈ Hol(Ω), Ω ⊂ C, f ̸≡ 0, λ ∈ Ω, set

df (λ) =

0 if f(λ) ̸= 0

m if f(λ) = · · · = f (m−1)(λ) = 0 and fm(λ) ̸= 0.
The value of df (λ) is called zero multiplicity of λ. We can redefine the Blaschke condition. The
zero divisor of f ∈ Hol(D) verifies the Blaschke condition if and only if

∑
λ∈D

df (λ)(1 − |λ|) < ∞.

The corresponding Blaschke product is given by

∏
λ∈D

b
df (λ)
λ =

∏
n≥1

b
df (λn)
λn

.

Corollary 5.5.7. Let f ∈ Hp, p > 0 then there exists fk ∈ Hp ; k = 1, 2 such that f =
f1 + f2, ∥fk∥p ≤ ∥f∥p, and fk(z) ̸= 0 for z ∈ D

Proof. If f(z) ̸= 0, we may take f1 = f2 = 1
2f. If f has zeros, we have f = Bg, with g ∈ Hp has

no zeros. Thus f(z) = [B(z) − 1]g(z) + g(z).
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Figure 5.1: A Stolz angle at ζ ∈ T.

5.6 Non-tangential boundary limits and Fatou’s Theorem

Recall that we have identified boundary limit f̃ of f ∈ Hp(D) via

lim
r→1

∥fr − f̃∥p = 0, f̃ ∈ Hp, 1 ≤ p < ∞.

We shall see another convergence of f(z) to its boundary values, namely the so-called non-
tangential convergence a.e. on T for f ∈ Hp(D) with 0 < p ≤ ∞.

Let µ be a complex valued Borel measure on T and µ ∈ M(T). Let dµ = hdm + dµs,

h ∈ L1(m) be Lebesgue decomposition of µ with respect to m. Then the derivative of µ with
respect to m exists at almost every point ξ ∈ T, in the following sense.

lim
∆→ξ, ξ∈∆

µ(∆)
m(∆) = dµ(ξ)

dm
(= h(ξ)),

where ∆ is an arc on T tending to ξ. Such a point will be called Lebesgue point of µ.

Definition 5.6.1. A Stolz angle at the point ζ ∈ T is the set

Sζ = conv{ζ, sin(θ)D : 0 < θ < π/2}

where “conv" represents convex hull of sets.
A limit along a Stolz angle, lim

z∈Sζ ,z→ζ
f(z) is called a non-tangential limit at a point ζ.
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Since the Poisson kernel satisfies P (reiθ) = 1 − r2

|1 − reiθ|2
, for f ∈ Lp(T) (1 ≤ p < ∞), we have

Pr ∗ f(eiθ) =
∫
T

1 − r2

|1 − rei(θ−s)|2
f(eis)dm(eis)

=
∫
T

1 − |z|2

|ζ − z|2
f(ζ)dm(ζ), put (z = reiθ, ζ = eis)

= f ∗ P (z)( write ).

That is Pr ∗ f(eiθ) = f ∗ P (z), where z = reiθ ∈ D. Sometimes it is called the Poisson integral
of f.

Now we see one of the most important result about non-tangential limit of the Poisson
integral.

Theorem 5.6.2. (P. Fatou’s, 1996) Let µ ∈ M(T) and ζ ∈ T be a Lebesgue point of µ, then the
Poisson integral of µ

P(z) = P ∗ µ(z) =
∫ 1 − |z|2

|ζ − z|2
dµ(ζ), z ∈ D

has a non-tangential limit at the point ζ, which is equal to dµ
dm(ζ) i.e.,

lim
z→ζ,z∈Sζ

P(z) = du

dm
(ζ) a.e. on T.

In particular
lim
r→1

P(rζ) = dµ

dm
(ζ) m-a.e. on T.

Proof. Since P ∗m(z) = 1 for every z (see Rudin, Real and Complex analysis, 11.5, p. 233) the
result is correct for µ = m. With a replacement of µ if necessary by µ − cm(c ∈ C) and with
the use of a rotation, it suffices to examine the case µ(T) = µ̂(0) = 0 and ζ = 1. Let F be a
premitive of µ, i.e. a function on [−π, π], left continuous and with a bounded variation, such
that µ[eiα, eiβ) = F (β) − F (α), F (−π) = F (π). As F is defined upto a constant, we can assume
F (0) = 0. Integration by parts in the integral

P ∗ µ(z) =
∫ π

−π
P (ze−is)dF (s), z ∈ D.

gives

P ∗ µ(z) = −
∫ π

−π

dP (z−is)
ds

F (s)ds =
∫ π

−π
Ez(s)F (s)

s
ds,
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where Ez(s) = −sdP (ze−is)
ds . We denote z = reiθ where |θ| ≤ π, 0 ≤ r < 1, and calculate Ez :

Ez(s) = −s d
ds

1 − r2

|1 − rei(θ−s)|2
= −s d

ds

1 − r2

1 + r2 − 2r cos(θ − s) = −(1 − r2)s sin(θ − s)
|1 − rei(θ−s)|4

= − s sin(θ − s)
(1 − r2) + 4r sin2(θ − s)/2P (ze−is).

Let us show that the family {Ez : z ∈ S1 stolz angle} satisfies the conditions (i)-(iii) for an
approximate identity, given in 5.1.1 (ii).

(i) For every z ∈ S1,

∥Ez∥1 =
∫ π

−π

∣∣∣∣∣sdP (ze−is)
ds

∣∣∣∣∣ ds2π ≤ A

∫ π

−π
P (z−is) ds2π = A,

where, A = sup
{

|s sin(θ−s)|
(1−r2)+4 sin2(θ−s)/2 : s ∈ [−π, π], z ∈ S1

}
. It remains to show that A < ∞.

Let C > 0 be such that |θ| ≤ C(1 − r) for any z = reiθ ∈ S1 (the existence of such a C can
be verified as an exercise).

(a) If |s| ≤ 2C(1 − r), then |s sin(θ−s)|
(1−r)2+r sin2(θ−s)/2 ≤ 4C(1−r)| sin(θ−s)/2|

(1−r2)+4 sin2(θ−s)/2 ≤ C.

(b) If |s| > 2C(1 − r) then |s| > 2|θ|, and we have

|s sin(θ − s)|
(1 − r2) + 4 sin2(θ − s)/2 ≤ |s|.(|s| + |θ|)

4 sin2(θ − s)/2 ≤ |s|(|s| + |θ|)
4(|θ − s|/π)2

≤ |s|(|s| + |s/2|)
4(|s| − |θ|/π)2

≤ |s|2.(3/2)
4(|s| − |θ|/π)2 = (3/2)π2.

Therefore A ≤ max(C, 3π2

2 ).

(ii) Integration by parts gives:

lim
z→1,z∈S1

∫ π

−π
Ez(s) ds2π = lim

z→1,z∈S1
(1 − P (−z)) = 1.

(
Since P is the real part of an analytic function it is harmonic hence continuous ,then take

the limit inside and P (−1) = 0
)

(iii) Let δ ≤ |s| ≤ π. Then for z ∈ S1 sufficiently close to 1 we have: |θ| < C(1 − r) < δ/2 and
hence

|Ez(s)| = |(1 − r2)s sin(θ − s)
|1 − rei(θ−s)|4

| ≤ (1 − r2)π
|1 − reiδ/2|4

,

which tends to 0 as z → 1, z ∈ S1
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These properties of Ez and the evident relation:

lim
s→0

F (s)
s

= 1
2π

dµ

dm
(1),

(
dµ(1)
dm = 1

2π lims→0
µ(ei0,eis)

s = 1
2π lims→0

F (s)−F (0)
s = 1

2π lims→0
F (s)

s

)
as well as (ii) above, imply, when z → 1, z ∈ S1

P ∗ µ(z) − dµ

dm
(1) =

∫ π

−π
Ez(s)

(
F (s)
s

− 1
2π

dµ

dm
(1)
)
ds+ o(1)

=
∫ δ

−δ
+
∫

δ≤|s|≤π
+o(1),

which tends to 0. Indeed by (i), for any ϵ > 0 there exists δ > 0 such that∣∣∣∣∣
∫ δ

−δ

∣∣∣∣∣ ≤ max
|s|≤δ

∣∣∣∣F (s)
s

− 1
2π

dµ

dm
(1)
∣∣∣∣ ∫ π

−π
|Ez(s)|ds < ϵ2πA,

and thus, given (iii) and above,

limz→1,z∈S1

∣∣∣∣P ∗ µ(z) − dµ

dm
(1)
∣∣∣∣ ≤ ϵ2πA

and the results follows.

Corollary 5.6.3. If f ∈ Hp(D), 0 < p ≤ ∞, then the non-tangential boundary limits of f exist
a.e. on T. That is,

lim
z→ξ,z∈Sξ

f(z) = f̃(ξ) for a.e. ξ ∈ T.

The boundary function ξ 7→ f̃(ξ) is in Lp(T), and for p ≥ 1, f(ξ) = f̃(ξ) a.e. on T (f̃ is defined
in Theorem 5.2.1).

Proof. For p ≥ 1, the claim follows from Fatou’s Theorem (5.6.2) and the Identification Theorem
5.2.1 (because radial limit exists).

Note that for f ∈ Lp(T) (1 ≤ p < ∞) and dµ = fdm, we have

P ∗ µ(z) =
∫
T

1 − |z|2

|ζ − z|2
f(ζ)dm(ζ)

= Pr ∗ f(ξ)( let z = rξ)

= fr(ξ) = f(r)(ξ) = f(rξ) → dµ

dm
(ξ) = f(ξ) as r → 1(Fatou’s Theorem.)

Now by identification Theorem 5.2.1 (i) fr → f̃ in Lp, as r → 1. Since convergence in Lp, there
exists a subsequence (rk) such that P ∗ µ(ξ) → f̃(ξ) as rk → 1 for a.e. ξ ∈ T ( since convergence
in Lp implies there exists a subsequence which is pt-wise a.e. convergence).
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Hence f(ξ) = f̃(ξ) for a.e. ξ ∈ T.
■ For general case p > 0, we know that f = Bg = B(g1/p)p, where g ∈ Hp(D). This implies

g1/p ∈ H1(D). The result follows from the previous reasoning.

Notation: From now onward, we identify the functions f ∈ Hp(D) with their boundary values
on T, and write Hp(D) = Hp(T), 0 < p ≤ ∞, where Hp(T) is the collection of boundary functions
of Hp(D).

5.7 The Riesz - Smirnov canonical factorization

Here we see the main result of the Hardy space theory - a parametric representation of f ∈ Hp

as a product of Blaschke product, a singular inner function, an outer (maximal) function. The
last two functions are exponential of integral depending on the holomorphic Schwarz - Herglotz
kernel z → ζ+z

ζ−z , whose real part is the Poisson kernel.

Theorem 5.7.1. Let f ∈ Lp, 0 < p ≤ ∞ be such that log |f | ∈ L1, and define

[f ](z) = exp
(∫

T

ζ + z

ζ − z
log |f(ζ)|dm(ζ)

)
, |z| < 1.

Then

(i) [f ] ∈ Hp(D) and |[f ]| = |f | a.e. on T.

(ii) If 0 ̸≡ g ∈ Hq(D), q ≥ 1, and |g| ≤ |f | a.e. on T, then |g| ≤ |[f ]| on D (and hence
g ∈ Hp(D)).

(iii)
[f

g

]
= [f ]

[g] and [[f ]] = [f ].

(iv) [f ](z) ̸= 0 in D and for any α > 0, [|f |α] = [f ]α.

Proof. (i) For fixed z, | ζ+z
ζ−z | < ∞∗1 and log |f | ∈ L1 hence [f ](z) is well defined. Clearly, [f ] is

a holomorphic function on D. Recall that for a finite Borel measure µ and a convex function
ψ, we have the Jensen-Young geometric mean inequality∫

ψ ◦ F dµ∫
dµ

≥ ψ
(∫ Fdµ∫

dµ

)
. (5.7.1)

[ Proof Let F : (Ω, µ) → I ⊂ R (I is finite or infinite interval), set ν = µ∫
dµ
. Let

A = {h : h(x) = ax + b; h ≤ ψ on I}. Then h
( ∫

Fdν
)

=
∫
h ◦ Fdν ≤

∫
ψ ◦ Fdν. We get

the inequality since ψ(x) = sup{h(x) : h ∈ A}. ] By apply inequality (5.7.1) to the Borel
measure dµ = 1−|z|2

|ζ−z|2 dm(ζ), we get

|[f ]|p = exp
( ∫

T

1 − |z|2

|ζ − z|2
log |f(ζ)|pdm(ζ)

)
≤
∫
T

|f(ζ)|p 1 − |z|2

|ζ − z|2
dm(ζ).
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Set z = reit. By Fubini’s theorem, we get
∫ 2π

0

∣∣∣[f ](reit)
∣∣∣p dt2π ≤

∫
T

|f(ζ)|p
( ∫ 2π

0

1 − |z|2

|ζ − z|2
dt

2π
)
dm(ζ) = ||f ||pp.

Now, by Fatou’s theorem and its corollary there, we have

log |[f ](ξ)| = lim
r→1

log |[f ](rξ)| = log |f(ξ)| a.e. ξ on T.

The modifications in the case p = ∞ are obvious.

(ii) Given that 0 ̸≡ g ∈ Hq(D), q ≥ 1, and |g| ≤ |f | a.e. on T. This implies log |g| ∈ L1, and
hence by generalized Jenson’s inequality (5.3.4), we get

log |g(z)| ≤
∫
T

1 − |z|2

|ζ − z|2
log |g(ζ)|dm(ζ)

≤
∫
T

1 − |z|2

|ζ − z|2
log |f(ζ)|dm(ζ)

= log |[f ](z)|.

(iii) is a direct consequence of the definition.

(iv) It is a direct consequence of the definition. But here we only consider the fact log |f |α ∈ L1,

whereas fα ∈ Lp is not considered.

Note: ∗1
[

ξ + z

ξ − z
= 1 + 2

∞∑
n=1

zn

ξn
since |z

ξ
| < 1.

Since z ∈ D, z = rξ, ξ ∈ T

∣∣∣∣ξ + z

ξ − z

∣∣∣∣ ≤ 1 + 2
∞∑

n=1
rn = 1 + 2( 1

1 − r
− 1) = 1 + r

1 − r
< ∞

Since r fixed for fixed z.
]

Note that from Theorem 5.7.1 to define [f ] the condition log |f | ∈ L1 is sufficient, but the
extra condition f ∈ Lp ensures that [f ] ∈ Hp(D).

The following result ensures the existence of enough harmonic functions as Poisson integrals
of finite Borel measures.

Theorem 5.7.2. (G. Herglotz, 1911 ) Let u be a non-negative harmonic function on D. Then
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there exists a unique finite Borel measure µ ≥ 0 such that u = P ∗ µ, that is

u(z) =
∫
T

1 − |z|2

|ζ − z|2
dµ(ζ).

Proof. By MVT we have for all z in D

ur(z) =
∫
T

1 − |z|2

|ζ − z|2
ur(ζ)dm(ζ) =

∫
T

1 − |z|2

|ζ − z|2
dµr(ζ),

where we have set ur(z) = u(rz), 0 ≤ r < 1, and dµr = urdm. Then µr is a positive measure
and Var(µr) = µr(T) = ur(0) = u(0) < ∞. Thus the family (ur)0≤r<1 is uniformly bounded
in M(T), and has week∗ convergent subsequence µrn that converges to µ ∈ M(T). Recall that
M(T) is dual of C(T)∗ with the duality < f, µ >=

∫
T
fdµ. Thus, if f ∈ C(T), f ≥ 0, then

∫
T
fdµ = lim

n→∞

∫
T
furndm ≥ 0 =⇒ µ ≥ 0.

■Moreover, since u is continuous on D, for z ∈ D, we have

u(z) = lim
n→∞

u(rnz) = lim
n→∞

∫ 1 − |z|2

|ζ − z|2
dµrn(ζ) =

∫
T

1 − |z|2

|ζ − z|2
dµ(ζ).

■Uniqueness of µ: Note that P ∗ µ(reit) =
∑
n∈Z

r|n|µ̂(n)eint. For any ν such that P ∗ µ = P ∗ ν

implies µ̂(n) = ν̂(n). Hence µ = ν.

Theorem 5.7.3. (Singular inner function): Let S ∈ Hol(D), then the following are equivalent:

(i) |S(z)| ≤ 1 and S(z) ̸= 0 on D, S(0) > 0 and |S(ξ)| = 1 a.e. on T.

(ii) there exists a unique finite Borel measure µ ≥ 0 on T with µ ⊥ m such that

S(z) = exp
(

−
∫
T

ζ + z

ζ − z
dµ(ζ)

)
, z ∈ D.

Proof. (⇐=) (ii) implies (i) is a corollary of Fatou’s theorem (because of S ∈ H∞(D) by (ii)).
|S(z)| = exp

(
−
∫

T
1−|z|2
|ζ−z|2dµ(ζ)

)
, z ∈ D and µ ⊥ m. By Fatou’s theorem on − log |S(z)| = f(z),

lim
r→1

f(rξ) = du
dm(ξ) = 0 since µ ⊥ m. lim

r→1
log |S(rξ)| = 0 =⇒ S̃(ξ) = 1 a.e. on T. Also

|S(z)| = |S(reiθ)| ≤ |S̃(ξ)| = 1.
(=⇒)For (i) implies (ii), let u = log |S|−1, then by Herglotz theorem, there exists µ such that

log |S(z)|−1 =
∫
T

1 − |z|2

|ζ − z|2
dµ(ζ).
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Once again by Fatou’s theorem (and |S(ξ)| = 1 a.e. on T), we get

dµ

dm
(ξ) = lim

r→1
u(rξ) = 0 a.e. on T.

Hence µ ⊥ m.

■|S(z)| = |Sµ(z)| in D. S(z) = λ(z)Sµ(z) with |λ(z)| = 1 for all z ∈ D, but S(0) > 0 and
Sµ(0) > 0 which implies that λ = 1 and which further implies that S = Sµ.

Definition 5.7.4. A nonconstant inner function that has no zero in D is called a singular
inner function. A function S verifying (i) or (ii) of the preceding theorem is called a singular
inner function.f The word “singular” is used because of the representation of such functions by
singular measures.

Notation 5.7.5. log+ x =

log x, x ≥ 1

0, 0 < x < 1
and log− x =

− log x, 0 < x ≤ 1

0, x > 1
Then log = log+ − log−; | log | = log+ + log− and log+ x ≤ x when x > 0. Also | log+ x −

log+ y| ≤ |x− y| for x, y > 0.

Theorem 5.7.6. (Smirnov, 1928: Canonical Factorization Theorem) Let f ∈ Hp(D), p > 0.
Then there exists a unique factorization f = λBS[f ], where λ ∈ C, |λ| = 1, B, S and [f ] are
defined earlier.

Proof. First set
g = f

B .

We will show that any zero free function g satisfies
∫
T log |g|dm > −∞. We may assume g(0) = 1.

Since g has no zeroes in D, log |g(z)| is harmonic in D. The MVT for the harmonic function says
that any for any r ∈ (0, 1)

0 = log |g(0)| =
∫
T

log |g(rξ)|dm(ξ)

=
∫
T

log+ |g(rξ)|dm(ξ) −
∫
T

log− |g(rξ)|dm(ξ)

Thus
∫
T log+ |g(rξ)|dm(ξ) =

∫
T log− |g(rξ)|dm(ξ) ≤

∫
T |g(rξ)|dm(ξ)dm(ξ) ≤ ∥g∥ (Cauchy Schwartz).

Since g ∈ Hp(D), g along with the functions log+ |g| and log− |g| have radial limits a.e. on T. By
Fatou’s lemma ∫

T
log− |g|dm ≤ lim

r→1

∫
T

log− |g(rξ)|dm(ξ) ≤ ∥g∥

which implies that log−1 |g| is integrable on T. Simillary log+ |g| and log g is integrable.
Then |f | = |g| a.e. on T, and hence [g] = [f ]. Set λ = g(0)

[g](0) and S = g
λ[g] . Then f = Bg =

BλS[g] = λBS[f ]. As B and [f ] are uniquely defined for f, the uniqueness of factorization
follows.
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Next, we consider the structure of the outer functions in Hp.

Theorem 5.7.7. (Structure of outer function) Let p, q, r ≥ 1 and f ∈ Hp. Then the following
are equivalent.

(i) There exists λ ∈ C, |λ| = 1 such that f = λ[f ].

(ii) for all z ∈ D, the generalized Jensen inequality is equality:

log |f(z)| =
∫
T
P (zξ̄) log |f(ξ)|dm(ξ). (5.7.2)

(iii) Identity (5.7.2) holds for at least one z ∈ D.

(iv) If g ∈ Hq and g
f ∈ Lr, then g

f ∈ Hr (Integral Maximal principle).

If p = 2, then (i)-(iv) are equivalent to

(v) the function f is outer in H2(In the earlier sense i.e., Ef = H2).

Proof. (i) implies (ii) is followed from the definition of [f ]. The implication (iii) goes to (ii) is
trivial. For (iii) implies (i), suppose (5.7.2) holds for some zo ∈ D. By Riesz-Smirnov factorization
theorem, we have f = λBS[f ], and by (5.7.2), we get

|f(zo)| = |λB(zo)S(zo)[f ](zo)| =⇒ |B(zo)S(zo)| = 1 =⇒ |B(zo)| = |S(zo)| = 1.

By maximum principle, B = S =constant= 1 in D, implies f = λ[f ].
(i) implies (iv): If g ∈ Hq, then g = λ1BS[g] and we get g

f = λ1BS[g]
(λ[f ]) =

(
λ1
λ

)
BS

[ g
f

]
∈ Hr in view

of Riesz-Smirnov theorem and by the hypothesis that g/f ∈ Lr.

(iv) =⇒ (i): Let f = λBS[f ] and set g = min(|f |, 1). Then [g] ∈ H∞ and
∣∣ [g]

f

∣∣ ≤ 1 a.e. on T.
By (iv) we get [g]

f ∈ Hr (r arbitrary). Again, we have [g]
f = λ1B1S1

[ g
f

]
= λ1B1S1

[g]
[f ] (because

[[g]] = [g] and
[ g

f

]
= [g]

[f ]), we get 1 ≡ λλ1BB1SS1 = λ2B2S2 with |λ2| = 1, where B2 is a Blaschke
product and S2 is a singular inner function. As |B2(z)| ≤ 1 and |S2(z)| ≤ 1 for all z ∈ D, we get
|B2| = |S2| ≡ 1 and hence B2 ≡ S2 ≡ 1. Thus, we conclude that B = S = 1, implies f = λ[f ].

It remains to show that (iv) and (v) are equivalent if p = 2. As (i)-(iii) are independent of
choice of q and r, we get equivalence between (iv) as well with p = 2, and arbitrary q, r and with
p = q = r = 2, (iv) is just earlier characterization of the outer function on H2.

Remark 5.7.8. In the family of Hardy spaces, dividing by an analytic function, even if it does not
have any zero, is a delicate process and the result could be a function that does not belong to
any Hardy space. For example, if S is a singular inner function, then 1/S does not belong to any
Hardy space (easily check!). However, at the same time, its boundary values are unimodular and
one is (wrongly) tempted to say that 1/S is an inner function. The above result (Theorem 5.7.7
(iv), IMP) says that dividing by an outer function is legitimate as long as the boundary values
remain in a Lebesgue space.
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Definition 5.7.9. (Outer in Hp) Let f ∈ Hp, p > 0 and f = λBS[f ]. The function [f ] is called
the outer part of f, and λBS is called the inner part of f. We write [f ] = fout and λBS = finn.

If f = λ[f ], then f is called outer.

It is clear from the above theorem that if p = 2, then definition of inner and outer functions
coincide with previous ones.

Corollary 5.7.10. Let w ∈ L1
+(T), and p ≥ 1. The followings are equivalent.

(i) There exists f ∈ Hp, f ̸≡ 0 such that |f |p = w a.e. on T.

(ii) logw ∈ L1.

Proof. As Hp ⊂ H1, and p ≥ 1 (i) implies (ii) follows from the boundary uniqueness theorem
Corollary 5.4.1.

Now (ii) implies (i) follows by taking f = [w1/p]. Since if

f(z) := [w1/p](z) = exp
(∫

T
P (zξ̄) log |w(ξ)|1/pdm(ξ)

)
,

then by Theorem 5.7.1 (i), f ∈ Hp(D).
Since

|f(z)|p = exp
(∫

T
P (zξ̄) log |w(ξ)|dm(ξ)

)
by Fatou’s theorem 5.6.2, we get |f |p = w a.e. on T.

5.8 Approximation by inner functions and Blaschke products

Using Fatou’s theorem, we prove two important theorems on uniform approximation by inner
functions.

Theorem 5.8.1. (R. Douglas and W. Rudin, 1969 ) Let Σ be the set of all inner functions. Then

L∞(T) = clos
L∞

(
Θ̄H∞ : Θ ∈ Σ

)
= spanL∞

(
Θ̄1Θ2 : Θ1,Θ2 ∈ Σ

)
. (5.8.1)

Moreover, any unimodular function in L∞(T) belongs to

clos
L∞

(Π)
(
Θ̄1Θ2 : Θ1,Θ2 ∈ Σ

)
.

Proof. It is enough to show that χσ ∈ spanL∞

(
Θ̄1Θ2 : Θ1,Θ2 ∈ Σ

)
for every Borel measurable

set σ in T. Let
fn =

[
nχσ + 1

n
χT∖σ

]
, n = 2, 3, . . .

and An = {z ∈ C : 1
n < |z| < n}. It is clear that fn(D) ⊂ An (by maximum principle) and

fn(T) ⊂ ∂An. Now let ϕ1(ζ) = ζ + 1
ζ for ζ ∈ C ∖ {0}, and w : ϕ1(An) → D be a conformal
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(Riemann) mapping of the ellipse ϕ1(An) onto D. Since the boundary of ellipse is smooth, w can
be continuously extended to clos ϕ1(An), and hence

w ◦ ϕ1 ◦ fn = θ1

is an inner function (because θ1 ∈ H∞(D), and by Fatou’s theorem |θ1| = 1 a.e. on T). Since
w−1 is continuous on clos(D), it can be approximated by its Fejer polynomials. Therefore,

fn + 1
fn

= ϕ1 ◦ fn = w−1 ◦ θ1 ∈ span
L∞

(θn
1 : n ≥ 0) .

Doing the same for the function ϕ2(ζ) = ζ − 1
ζ , we get an inner function θ2 such that fn − 1

fn
∈

spanL∞ (θn
2 : n ≥ 0) . Hence fn ∈ spanL∞{θk

1θ
n
2 : k, n ≥ 0}, implies

|fn|2 ∈ spanL∞

(
θk

1θ
n
2 θ

−l
1 θ−m

2 : k, n, l,m ≥ 0
)
.

Thus,
χσ + 1

n4χT∖σ ∈ spanL∞

(
Θ̄1Θ2 : Θ1,Θ2 ∈ Σ

)
, forn = 1, 2, . . . .

Letting n → ∞, we get χσ ∈ spanL∞

(
Θ̄1Θ2 : Θ1, Θ2 ∈ Σ

)
.

Let u ∈ L∞(T), and |u| = 1 a.e. and u1 ∈ L∞(T) with |u1| = 1 a.e. and u = u2
1. Given

ϵ > 0, by (5.8.1) there exists φ,Θj ∈ Σ such that |u1 − φ̄g| < ϵ, where g =
n∑

j=1
ajΘj , aj ∈ C.

Set Θ = ∏n
j=1 Θj , and observe that ḡΘ ∈ H∞. Since [ḡΘ] = [g] (because |ḡΘ| = |ḡ|), the

inner-outer factorizations of g and ḡΘ are of the form ḡΘ = v[g] and g = w[g], where v, w ∈ Σ,
and 1 − ϵ < |[g]| < 1 + ϵ. Now, |ū1 − φḡ| = |ū1 − φΘ̄v[g]| < ϵ gives

∣∣∣ 1
ū1

− 1
ϕΘ̄v[g]

∣∣∣ < ϵ

1 − ϵ
.

Since |u1 − a| < ϵ and |u1 − b| < ϵ implies that |u2
1 − ab| ≤ |u1 − a| + |a||u1 − b|, we obtain

∣∣∣u− ϕ̄w[g]ϕ̄Θv̄ 1
[g]
∣∣∣ < 2ϵ

1 − ϵ
,

which completes the proof.

Theorem 5.8.2. (O. Frostman, 1935 ) Let Θ be a (non-constant) inner function and ζ ∈ T. Then
btζ ◦ Θ are Blaschke products with simple zeros for a.e. t ∈ (0, 1), where bλ(z) = λ−z

1−λz
, λ ∈ D. In

particular, Θ is a uniform limit of Blaschke products with simple zeros.

Proof. Let ζ = 1. Then we need to show that Ht(z) := bt ◦ Θ(z) = t−Θ(z)
1−tΘ(z) , z ∈ D is Blaschke

product with simple zeros for all t ∈ [0, 1). Let ξ ∈ T, then the boundary function |H̃t(ξ)| =∣∣∣ t−θ̃(ξ)
1−tθ̃(ξ)

∣∣∣ =
∣∣∣∣ t−θ̃(ξ)

θ̃(ξ)−t

∣∣∣∣ =
∣∣∣∣ t−θ̃(ξ)

t−θ̃(ξ)

∣∣∣∣ = 1 =⇒ H̃t ∈ H∞(T). Hence Ht ∈ H∞(D).
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By the unique canonical factorization of Ht(z), Ht(z) = λBS[Ht](z) where

[Ht](z) = exp
∫
T

ξ + z

ξ − z
log |H̃t(ξ)|dm(ξ) = exp(0) = 1

since |H̃t(ξ)| = 1. Hence Ht(z) = λBS. Our claim is to show: S = 1, where

S(z) = exp
(

−
∫
T

ξ + z

ξ − z
dµt(ξ)

)
, µt ⊥ m,µt ≥ 0.

To show S = 1 we will show µt(T) = 0.
Then by Jensen’s formula (5.3.1) (and expression of S and S ∈ H∞ with ∥S∥∞ ≤ 1), and the

fact |Ht(rξ) ≤ |S(rξ)| =⇒ |S(rξ)|−1 ≤ |Ht(rξ)|−1, we get the following:

µt(T) = log |S(0)|−1 =
∫
T

log |S(rξ)|−1dm(ξ) ≤
∫
T

log |H̃t(rξ))|−1dm(ξ) = g(r, t),

for all t, r ∈ [0, 1). Therefore, it is sufficient to check that lim
r→1

g(r, t) = 0 a.e. t ∈ (0, 1). Now
µ(T) ≤ g(r, t) =⇒

∫ 1
0 limr→1 µt(T) ≤

∫ 1
0 limr→1 g(r, t)dt =⇒ µ(T) ≤

∫ 1
0 limr→1 g(r, t)dt. We

will show the right hand side is zero. For this we will show that∫ 1

0
lim
r→1

g(r, t)dt = lim
r→1

∫ 1

0
g(r, t)dt

This happens due to DCT: |g(r, t)| = |
∫
T log |Ht(rξ)|−1|dξ ≤

∫
T log |Ht(0)|−1dξ = log |Ht(0)|−1 ∈

L1(0, 1). So by DCT we can interchange the limit:
∫ 1

0
lim
r→1

g(r, t)dt = lim
r→1

∫ 1

0

∫
T

log |Ht(rξ)|dm(ξ)dt

= lim
r→1

∫
T

∫ 1

0
log |Ht(rξ)|dtdm(ξ) = 0

since
∫ 1

0 log |Ht(rξ)|−1dt = 0. Let u : D → R, by u(w) =
∫ 1

0 log |bt(w)|−1dt = −
∫ 1

0 log |bt(w)|dt. u
is continuous then

u(T) = −
∫ 1

0
log |bt(eiφ)|dt

= −
∫ 1

0
log | t− eiφ

1 − teiφ
|dt

= −
∫ 1

0
{log |t− eiφ| − log |t− eiφ|}dt

= 0.

Therefore
∫ 1

0 log |H̃t(ξ)|−1dt = 0 =⇒ µ(T) = 0.
■ The zeros of bλ ◦ Θ are simple if λ − Θ(zj) ̸= 0, ∀ j, where (zj)j≥1 are the zeroes of Θ′.
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Indeed, if bλ(Θ(z)) = 0, then λ− Θ(zj) = 0 and hence (bλ ◦ Θ)′(z) = b′
λ(Θ(z))Θ′(z) ̸= 0.

Finally, we show thar u is continuous on D̄. Note that the integrals
∫ 1

0 log |1 − tw|dt and∫ 1
0 log |t− w|dt are similar and for w = x+ iy, we have

∫ 1

0
log |t− w|2dt =

∫ 1

0
log{(t− x)2 + y2}dt

is continuous in x and y ( for instance
∫ 1

0 log(t− x)2dt = χ(0,1) ∗ log(x2) ).

5.9 Exercises

Exercise 5.9.1. Show that H2(D)H2(D) = H1(D).

Proof. If f, g ∈ H2, then ∥fg∥1 ≤ ∥f1∥2∥g1∥2∥ < ∞ which implies H2H2 ⊆ H1. For the converse,
let f ∈ H1 consider G = f

B then G ̸= 0 in D. Hence G = g2 for some function g.
Also we have ∥G∥ = ∥f∥ =⇒ G ∈ H1 =⇒ g ∈ H2. Take h = Bg. Since B ∈ H1(D) and

g ∈ H2(D) ⊂ H1(D) =⇒ h = Bg ∈ H2(D) and f = GB = g2B = g(Bg) = gh

Exercise 5.9.2. f ∈ H1, f(T) ⊆ R then f is a constant.

Proof. Since f ∈ H1 for z ∈ D,

f(z) =
∫
T

1 − |z|2

|ζ − z|2
f̃(ζ)dm(ζ)(= Pf(z))

If f̃(T) ⊆ R and the Poison kernal Pz(ζ) is always real then f(z) is real from the above integration.
But the only analytic function which is real must be constant.

Exercise 5.9.3. Let f ∈ H1/2. Assume that f ≥ 0 a.e. on T. Then f is a constant.

Proof. Assume f ̸≡ 0. By the canonical factorization theorem we have: f = Bg where B is the
Blaschke product associated with f and g belongs to H1/2 and has no zeros on D. That is why
we can define h = g1/2, and the function h belongs to H1 with ∥h∥1 = ∥g∥ 1

2
. Clearly, f = Bh2.

The condition f ≥ 0 ensures that f = |f | a.e. on T. Hence, since B is unimodular on T, we
have Bh2 = h̄ a.e. on T.

Now on one hand we have, Bh ∈ H1, and on the other hand h̄ ∈ H̄1. We know that H1 ∩H1

contains only the constant functions. Therefore Bh is a constant function. By the uniqueness of
the canonical factorization this happens precisely when B is a unimodular constant and h is a
constant. Thus eventually h is a constant.

Example 5.9.4. If f(z) = exp( z+1
z−1) then f is a singular inner function.

Proof. Recall that |ew| = |eRe w+i Im w| = |eRe w| = eRe w. Hence |f(z)| = exp
(
Re( z+1

z−1)
)

=
|z|2−1
|z−1|2 < 0 for z ∈ D. It follows that |f(z)| < 1∀z ∈ D. Thus f ∈ H∞. Moreover for |z| = 1 and
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z ≠ 1 implies Re z+1
z−1 = 0 and therefore |f̃(eiθ)| = 1 for all θ ≠ 0. Since ew is never zero for any

complex number w, it follows that f is an inner function with no zeros on D.

Remark 5.9.5. The function f(z) = exp(1+z
1−z ) is not an inner. This function is the reciprocal of

the function in earlier example hence |f(eiθ)| = 1 for θ ∈ (0, 2π). However for 0 < r < 1

|f(r)| = exp
(1 + r

1 − r

)
→ ∞, uadr → 1−

Although f has unimodular boundary value almost everywhere on T, it is unbounded on D and
hence is not an inner function. Thus when checking to see whether or not an analytic function is
inner one must be careful to check at first that it is actually bounded on D.

Exercise 5.9.6. Let r > 0, s > 0, t > 0 be such that 1
r = 1

s + 1
t . Show that Hr = Hs ·Ht and

moreover ∥fr∥ = min
{
∥g∥s∥h∥t : g ∈ Hs, h ∈ Ht s.t. f = gh

}
Proof. By Holders inequality, if g ∈ Hs(D), h ∈ H1(D) then f = gh ∈ Hol(D) and for every ρ, 0 <
ρ < 1, we have ∥fρ∥ ≤ ∥gρ∥s∥hρ∥t, which implies f ∈ Hr(D) and ∥f∥r ≤ ∥g∥s∥h∥t. Conversely, if
f ∈ Hr(D), with f = λBV [f ] its Canonical factorization, then by g = λBV [f ]r/s, h = [f ]r/t, we
obtain f = gh and ∥f∥r = ∥g∥s∥h∥t.

Exercise 5.9.7. Let λ ∈ D and φλ be an evaluating functional on Hp, 1 ≤ p ≤ ∞, i.e.

φλ(f) = f(λ), f ∈ Hp.

Show that ∥φλ∥ = (1 − |λ|2)−1/p.

Proof. When p = 2, φλ(f) = f(λ) = ∑
k≥0 f̂(k)λk = (f, kλ)H2 , where

kλ(z) =
∑
k≥0

λ
k
zk, z ∈ D,

is the Szego reproducing kernal of H2, hence ∥φλ∥ = ∥kλ∥2 = (1 − |λ|2)−1/2. When p-is arbitrary,
recall that for every function f, |f(λ)| ≤ |[f ]λ| and ∥f∥p = ∥[f ]p/2∥2/p

2 which leads to:

∥φλ∥ = sup{|f(λ)| : f ∈ Hp, ∥f∥p ≤ 1} = sup{|[f ]p/2(λ)|2/p : ∥[f ]p/2∥ ≤ 1}

=
(
(1 − |λ|2)−1/2

)2/p
.

Exercise 5.9.8. ( Neuwirth and Newman, 1967 ) Let f ∈ Hp(D), p > 0. Show that f = constant

if and only if the following hypothesis is verified:
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(i) p ≥ 1 and f(ζ) is real a.e. ζ ∈ T.

(ii) p ≥ 1/2 and f(ζ) ≥ 0 a.e. ζ ∈ T.

Show that the conclusion no longer holds if p < 1.

Proof. Case (i) is evident, because in this case f, f ∈ H1(T), which implies f=constant.
For (ii) see Exercise 5.9.3.
For the last assertion, consider the function f1 = i1+z

1−z respectively f2 = f2
1 . It is easy to see

that f1 ∈ Hp(D) for any p < 1 and f2 ∈ Hp(D) for any p < 1/2.

Exercise 5.9.9. Let f, g ∈ H2 and h = fg. Show that |ĥ(n)| ≤
∑

k+j=n |f̂(k)| · |ĝ(j)|.

Proof. The Fourier series g = ∑
j∈Z ĝ(z)zj converges in L2(T) hence by Cauchy Schwartz’s

inequality the series h = fg = ∑
j∈Z ĝ(z)fzj converges in L1(T) and by continuity of h 7→ ĥ(n),

we obtain ĥ(n) = ∑
j∈Z f̂(n− j)ĝ(j); the result follows.

Exercise 5.9.10. Let φ(eit) = i(t− π) for 0 < t < 2π. Find the Fourier coefficients of φ.

Proof. φ̂(0) = 0 and for k ̸= 0,

φ̂(k) =
∫ 2π

0
i(t− π)e−iktdt/2π

=
[
−(t− π)e−ikt/2πk

]2π

t=0
+
∫ 2π

0
e−iktdt/2πk

= −1/k

Exercise 5.9.11. (The Hilbert Inequality, 1908) Let f, g ∈ H2. Show that∣∣∣∣∣∣
∑

k,j≥0

f̂(k)ĝ(k)
k + j + 1

∣∣∣∣∣∣ ≤ π∥f∥2∥g∥2.

Proof. For F,G ∈ L2(T) and Φ ∈ L∞(T) just as in (a) above, we have (ΦF,G) = ∑
i+j+k=0 φ̂(i)F̂ (k)Ĝ(j),

which gives

(φf, zg) = −
∑

k,j≥0

f̂(k)ĝ(j)
k + j + 1 .

Then the result follows from

|(φf, zg)| ≤ ∥φf∥2∥zg∥2 ≤ ∥φ∥∞∥f∥2∥g∥2 = π∥f∥2∥g∥2.
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Exercise 5.9.12. (The Hardy Inequality, 1926): For every function h ∈ H1,
∑

k≥0
|̂h(k)|
k+1 ≤ π∥h∥1.

Proof. By Exercise 5.9.6, h = fg with f, g ∈ H2 and ∥f∥2
2 = ∥g∥2

2 = ∥h∥1 and by Exercises 5.9.9
and 5.9.11 ∑

k≥0

|ĥ(k)|
k + 1 ≤

∑
k≥0

∑
i+j=k |f̂(i)||ĝ(j)|

k + 1 ≤ π∥f∥2∥g∥2 = π∥h∥1.

We have seen that every Hp function f(reiθ) converges almost everywhere to an Lp boundary
function f(eiθ). It is important to know that whether f(reiθ) always tends to f(eiθ) in the sense
of the Lp mean or not.

Exercise 5.9.13. (Mean convergence theorem) If f ∈ Hp(0 < p < ∞) then

lim
r→1

∫ 2π

0
|f(reiθ)|p =

∫ 2π

0
|f(eiθ)|p (5.9.1)

and
lim
r→1

∫ 2π

0

∣∣∣f(reiθ) − f(eiθ)
∣∣∣p dθ = 0 (5.9.2)

Proof. First let us prove 5.9.2 for p = 2. If f(z) = ∑
anz

n is in H2, then ∑ |an|2 < ∞. But by
Fatou’s Lemma ∫ 2π

0
|f(reiθ) − f(eiθ)|2dθ ≤ lim inf

ρ→1

∫ 2π

0
|f(reiθ) − f(ρeiθ)|2dθ

=2π
∞∑

n=1
|an|2(1 − rn)2,

which tends to 0 ar r → 1. This proves (5.9.2) and hence (5.9.1) for p = 2.
■ If f ∈ Hp(0 < p < ∞), we use the factorization f = Bg. Since [g(z)]p/2 ∈ H2, it follows

from what we have just proved that∫ 2π

0
|f(reiθ)|pdθ ≤

∫ 2π

0
|g(reiθ)|pdθ →

∫ 2π

0
|g(eiθ)|pdθ =

∫ 2π

0
|f(eiθ)|pdθ

This together with the Fatou’s Lemma proves (5.9.1)
The following lemma can now be applied to deduce (5.9.2) from (5.9.1).

Lemma 5.9.14. [12][p. 21] Let Ω be a measurable subset of R and let φn ∈ Lp(ω), 0 < p <

∞;n = 1, 2, . . . As n → ∞, suppose φn(x) → φ(x) a.e. on Ω and∫
Ω

|φn(x)|pdx →
∫

Ω
|φ(x)|pdx < ∞
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then ∫
Ω

|φn(x) − φ(x)|pdx → 0.

Corollary 5.9.15. If f ∈ Hp for some p > 0, then

lim
r→1

∫ 2π

0

∣∣∣log+ |f(reiθ)| − log+ |f(eiθ)|
∣∣∣ dθ = 0

Proof. Immediately follows from Mean convergence theorem 5.9.13 and the following inequality:

| log+ a− log+ b| ≤ 1
p

|a− b|p, a ≥ 0, b ≥ 0, 0 < p ≤ 1

For the proof the inequality see [12][p. 22]

Exercise 5.9.16. [12][p. 34] A function f analytic in D is representable in the form f(z) = Pφ(z)
i.e.

f(z) := 1
2π

∫ 2π

0
Pr(θ − t)f(eit)dt

as a Poisson-integral φ ∈ L1 if and only if f ∈ H1. In this case φ(t) = f(eit) a.e.

Proof. If an analytic funcition f(z) has the form f(z) = Pφ(z) then
∫ 2π

0
|f(reiθ)|dθ ≤

∫ 2π

0
|φ(t)|dt

so that f ∈ H1.

Conversely, suppose f ∈ H1, and write

Φ(z) := 1
2π

∫ 2π

0
Pr(θ − t)f(eit)dt

For any fixed ρ, 0 < ρ < 1
f(ρz) = 1

2π

∫ 2π

0
Pr(θ − t)f(ρeit)dt

But by the Exercise 5.9.13
∫ 2π

0 |f(ρeit) − f(eit)|dt → 0 as ρ → 1, so f(ρz) → Φ(z). Hence
Φ(z) = f(z).

Corollary 5.9.17. A function f(z) is analytic in |z| < 1 is the Poisson integral of a function
φ ∈ Lp(1 ≤ p ≤ ∞) if and only if f ∈ Hp.
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Chapter 6

Szegö infimum and generalized
Phragmén–Lindelöf principle

In this section, we consider two applications of the canonical Riesz-Smirnov factorization. Namely,
the Szegö infimum dist(1, H2

0 (µ)) is expressed in terms of measure µ, the cyclic functions of L2(T)
are described. The classical logarithmic integral criterion for completeness of the polynomials,
the case of incompleteness, and the closure of the polynomials H2(µ) is described in terms of
the outer function related to Radon-Nikodym derivative w = dµ

dm . We consider outer functions,
their extremal and extension properties, and distribution value properties. The important
Smirnov subclass of Nevanlinna functions is considered. After transferring these results to an
arbitrary simply connected domain of C, we use these techniques to get a remarkably general
Phragmén–Lindelöf type principle due to Smirnov (1920) and then by Helson (1960).

6.1 Szegö infimum and weighted polynomial approximation

Theorem 6.1.1. (Szegö, Kolmogorov) Let dµ = wdm+ dµs be a Borel measure. Then

inf
p∈P0

+

∫
T

|1 − p|2dµ = exp
(∫

T
logw dm

)
.

Proof. By the Theorem 4.7.1 two cases are possible

(i) If there exists f ∈ H2 such that |f |2 = w a.e. m then dist2 = 0; otherwise

(ii) dist2 = |f̂(0)|2

By the Corollary 5.7.10, Case (ii) ⇔ logw ∈ L1 holds if and only if logw ∈ L1 and in this case:

f(z) = exp
∫
T

ξ + z

ξ − z
logw

1
2 (ξ)dm(ξ)
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Since f ∈ H2, f̂(0) = f(0) and |f̂(0)|2 = |f(0)|2 = exp
∫
T logwdm.

Let f ∈ L2(T), and write Ef = span{znf : n ≥ 0}. If Ef = L2(T), we say f is a cyclic
vector. Note that the half of the trigonometric system (zn)n≥0 is far from being complete
in L2(T), but multiplying by a suitable function f one can get completeness property i.e.
span{znf : n ≥ 0} = L2(T). It may happen that for different halfs of (zn)n∈Z, nothing similar is
true.

Corollary 6.1.2. Let f ∈ L2. Then Ef = span{znf : n ≥ 0} = L2 if and only if f(ξ) ̸= 0 a.e.
on T and

∫
T log |f |dm = −∞.

Proof. Two cases may possible: Either zEf = Ef or, zEf ⊊ Ef . In the first case by N-Weiner
Theorem 3.0.4 there exists σ ⊂ T such that Eσ = χσL

2(µ). If the second case holds: zEf ⊊ Ef . ⇔
there exists θ such that |θ| = 1 and Ef = θH2. Since Ef = L2 =⇒ zEf = L2 again, hence only
the first case is possible, so second case does not possible, i.e., ∀θ such that |θ| = 1, Ef ≠ θH2 ⇔
there does not exists g ∈ H2 such that znf = θg ∀n ⇔ 1.|f | = 1.|g| ⇔ |f | = |g| ⇔ log |f | ∈ L1

by Corollary 5.7.10.
( ⇐= ) there exists σ ∈ T such that Ef = χσL

2(T). As f ∈ χσL
2(T) and f ≠ 0 a.e. on T we

get σ = T, and then Ef = L2(T).

Example 6.1.3. (a) If f(eiθ) = |1 − eiθ|α, α > −1
2 , then Ef ̸= L2(T).

(b) If f(eiθ) = exp
(

−1
1−eiθ

)
, then Ef = L2(T).

The following two theorems are final statements on weighted polynomial approximation on
the circle T.

Theorem 6.1.4. Let µ be a positive measure on T and let w = dµ
dm its Radon-Nikodym derivative.

Then polynomials P+ are dense in L2(µ) if and only if logw ̸∈ L1(T).

Proof. Polynomials are dense in L2(µ) if and only if the Szego distance is zero follows from
Corollary 4.3.4. This holds if and only if there does not exists an outer such that |f |2 = w (
using Theorem 4.7.1), which is immediate from Corollary 5.7.10.

Theorem 6.1.5. Let µ be a positive measure on T, let dµ = wdm + dµs be its Lebesgue
decomposition and suppose that logw ∈ L1(T). Let ϕ ∈ H2 be the outer function defined by
ϕ = [w 1

2 ]. Then closure H2(µ) = closL2(µ) P+ is given by

H2(µ) = L2(µs) ⊕ (ϕ−1H2) = L2(µs) ⊕ {f ∈ Hol(D) : fϕ ∈ H2}.

Proof. Indeed, Corollary 4.3.1 gives H2(µ) = H2(wdm) ⊕L2(µs) and Lemma 4.3.3 and Theorem
6.1.1 show that H2(wdm) is 1-invariant (non-reducing) subspace of L2(wdm) ( see also Remark
4.3.2). ⇔ H2(wdm) = θH2 for some θ such that |θ|2w = 1 by the Helson Theorem 3.3.3
=⇒ θ = [w 1

2 ]−1 = 1
w

1
2
. Hence H2(wdm) = 1

w1/2H
2 = φ−1H2 since φ = [w1/2].
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6.2 Properties of Outer functions

Note that from Theorem 5.7.1 to define [f ] the condition log |f | ∈ L1 is sufficient, but the extra
condition f ∈ Lp ensures that [f ] ∈ Hp(D). In general, the definition of the outer function is
defined as follows:

Definition 6.2.1 ( Outer functions ). Let h be a measurable function on T with log |h| ∈ L1(T).
An outer function ( of absolute value |h| ) is a function f = λ[h] with |λ| = 1 and, as in Theorem
5.7.1:

[h](z) = exp
(∫

T

ζ + z

ζ − z
log |h(ζ)|dm(ζ)

)
, |z| < 1.

Below we are discussing few properties of outer functions:

Properties 6.2.2. (i) An outer function f admits non-tangential boundary limits f̃ . Moreover,
f ∈ Hp(D) ⇔ f̃ ∈ Lp(T)

Proof. By Fatou’s theorem limr→1 log |[f ]|(rξ) = limr→1
∫
T Prξ(ζ) log |f |(ζ)dm(ζ) = log |f̃ |(ξ)

exists non-tangentially a.e. on T. Hence |[f ](ξ)| = |f̃(ξ)| =⇒ |[f ]| = |f̃ |.

If f̃ ∈ Lp(T) then [f ] ∈ Hp(D) follows from the Theorem 5.7.1 (i). If [f ] ∈ Hp(D) then
f̃ ∈ Lp since |[f ]| = |f̃ |.

(ii) Let f ∈ Hp, p ≥ 1. Then f is outer if and only if Ef = closHp(fPa) = Hp(⇔ f is cyclic in Hp)

(iii) If f ∈ Hp and 1
f ∈ Hq (p > 0, q > 0), then f is outer.

Proof. f = λ1B1S1[f ] and 1
f = λ2B2S2[ 1

f ] =⇒ 1
λ1B1S1[f ] = λ2B2S2[ 1

f ] =⇒ 1 =
λBS[ f

f ] = λBS =⇒ B = 1, S = 1( since |B| < 1, |S| < 1 on T) Similarly, B1 = B2 = 1
and S1 = S2 = 1. Hence f is an outer ( 1

f is also an outer.)

(iv)

Theorem 6.2.3. (Smirnov, 1928)

(a) If f ∈ Hol(D) and Re f(z) ≥ 0 for all z ∈ D, then f ∈ Hp, 0 < p < 1 (but perhaps
f /∈ H1(D)) . Moreover, f is an outer.

Proof. Note that Re f(z) ≥ 0, ∀z ∈ D =⇒ Re f(z) > 0, ∀z ∈ D. Indeed if there
exists a point z0 ∈ D such that Re f(z0) = 0 then by maximal/minimum principle
for harmonic functions Re f = 0 on D, so f is constant, identically equal to 0, a
contradiction [see [11] p.150.]
As the values of f are in the right-half plane:

C+ = {z ∈ C : Re(z) ≥ 0}
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the function z 7−→ (f(z))p is analytic and we can choose arg f(z) such that | arg f(z)p| ≤
pπ/2, z ∈ D. Hence if 0 < p < 1, then there exists cp > 0 such that |f(z)|p ≤ cp

Ref(z)p [since Re f(z)p = |f(z)|p cos(arg(f(z))p)]. The MVT applied to the harmonic
function Ref(z)p gives

∫ 2π

0
|f(reiθ)|p dt2π ≤

∫ 2π

0
Re(f(reiθ)p)/ cos(πp/2) dt2π = Re(f(0)p)/ cos(πp/2)

for 0 ≤ r < 1. Hence f ∈ Hp(D), 0 < p < 1.
■Moreover, since Re ( 1

f(z)) ≥ 0 in D, we have f and 1
f in Hp, 0 < p < 1. By Property

(iii), f is an outer function.

(b) More generally, if f ∈ Hol(D), f(z) ̸= 0 and α := ∑
z∈D | arg(f(z))| < ∞ then f is

outer and f ∈ Hp(D) for every 0 < p < π/2α (but perhaps f ̸= H
π

2α (D).)

Proof. Apply the first case to g = fπ/2α.

(c) For every h ∈ L1(T), Γh ∈ ∩0<p<1H
p(D) for every 0 < p < π/2α where

Γh(z) =
∫
T

ζ + z

ζ − z
h(ζ)dm(ζ)

Proof. If h ≥ 0 then Re Γh(z) ≥ 0 in D, hence Γh ∈ ∩0<p<1H
p(D). The general case

follows from h = h1 − h2 + ih3 − ih4 where 0 ≤ hj ≤ |h|.

Remark: By the Herglot’z Theorem 5.7.2, the general form of a function f ∈ Hol(D)
with Re(f) ≥ 0 is

Γµ(z) =
∫
T

ζ + z

ζ − z
dµ(ζ) + ic

where µ is a positive measure on T and c ∈ R.

Example 6.2.4. (Herglotz Integral) Let µ ∈ M(T) such that

fµ =
∫
T

ξ + z

ξ − z
dµ(ξ).

Then fµ ∈ Hp, 0 < p < 1 since Re fµ(z) =
∫
T

1−|z|2
|ξ−z|2 dµ =

∫
T Pz(ξ)dµ ≥ 0 if µ ≥ 0 and

µ = µ1 − µ2 + iµ3 − iµ4 where 0 ≤ µj ≤ |µ|.
■ If µ ≥ 0 then also Re( 1

fµ
) ≥ 0 =⇒ 1

fµ
∈ Hp, hence fµ is an outer.

Example 6.2.5. (Cauchy Integral) If f is integrable then F (z) = 1
2πi

∫
T

f(ξ)
ξ−z dξ =

1
2πi

∫ 2π
0

eitf(eit)
eit−z

dt =⇒ F (z) = 1
2πi

∫ 2π
0

eit

eit−z
dµ(t). If µ ≥ 0 then Re{ eit

eit−z } =
1−r cos(t−θ)

1−2r cos(t−θ)+r2 > 0. Hence f ∈ Hp, 0 < p < 1.

(v) If f ∈ H∞ and ∥f∥∞ ≤ 1, then 1 + f is outer.
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Proof. Re(1 + f) ≥ 0 and apply Theorem 6.2.3 (a)

(vi) The set of outer functions is a commutative group for standard point-wise-point multiplica-
tion.

(vii) Let f, g ∈ Hp(p > 0)

(a) Then fg is outer if and only if f, g are outer.

Proof. Let f = λ1B1S1[f ] and g = λ2B2S2[g], hence fg = (λ1λ2)B1B2S1S2[fg], then
use the uniqueness part of the Smirnov Canonical Factorization Theorem 5.7.6.

(b) Let f be an outer function and let |f | ≤ |g|, then g is an outer.

Proof. Obviously, f
g ∈ H∞ and f

g has no zeros in D. By Theorem 5.7.6 we get the
representation f

g = λSF, where F is outer. Suppose that g is not outer. Then
g = λ1S1F1 with S1 is a non-trivial singular inner function and f = (λλ1)(SS1)(FF1)
with SS1 ̸≡ constant, which contradicts the hypothesis.

(c) If f ∈ Hp(D), p ≥ 1 and inf
z∈D

|f(z)| > 0, then f is outer.

Proof. It is clear that for g ∈ Hq (q ≥ 1) we have g
f ∈ Hq and hence by Theorem 5.7.7

(iv) f is outer.

Theorem 6.2.6. Let p > 0.

(i) Let fn ∈ Hp be a sequence of outer functions with fn(0) > 0. If |fn| ↘ on T, then
f(z) = lim

n→∞
fn(z), z ∈ D exists uniformly on compact sets. Moreover, if lim

n→∞
fn(0) = 0,

then f ≡ 0, otherwise f is an outer Hp function.

(ii) Let f ∈ Hp be an outer function. Then there exists a sequence of outer functions fn ∈ Hp

and inf
z∈D

|fn(z)| > 0, n ≥ 1, |fn| ↘ |f | on T (and hence on D) and f(z) = lim
n→∞

fn(z), z ∈ D.

Proof. (i) As the functions fn are outer, we have

log |fn(z)| =
∫
T
P (zξ̄) log |fn(ξ)|dm(ξ).

To show the uniform convergence of fn, it is enough to show that fn is uniformly Cauchy
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sequence. For this, we will show log |fn(z)| is a uniformly Cauchy.

| log |fn(z)| − log |fn+p(z)|| =
∣∣∣ ∫

T
P (zξ̄) log |fn(ξ)|

|fn+p(ξ)|dm(ξ)
∣∣∣

≤ sup
|z|≤R

|P (zξ̄)|
∫
T

∣∣∣ log |fn(ξ)|
|fn+p(ξ)|

∣∣∣dm(ξ)

= const
∫
T

log |fn(ξ)|
|fn+p(ξ)|dm(ξ)

= const
( ∫

T
log |fn(ξ)|dm(ξ) −

∫
T

log |fn+p(ξ)|dm(ξ)
)
.

The conclusion is followed by monotone convergence theorem.

Suppose that inf
n≥1

fn(0) = 0, then

lim
n→∞

∫
T

log |fn|dm = lim
n→∞

log fn = −∞.

For a point z0 ∈ D, we have P (z0ξ̄) ≤ 1+|z0|
1−|z0| = C0. Hence,

log |fn(z0)| ≤ C0

∫
T

log |fn|dm.

We conclude that lim
n→∞

log |fn(z0)| = −∞ and similarly for all z ∈ D and we get f ≡ 0.
If inf

n≥1
fn(0) > 0 and |fn| ↘ h on T, then

∫
T

log hdm = lim
n→∞

∫
T

log |fn|dm > −∞,

and hence log h ∈ L1. Now, it is obvious that lim
n→∞

fn(z) = f(z) with f = [h].

(ii) Without loss of generality, we may assume that f(0) > 0. Set fn = [|f | + δn], where δn > 0
an appropriate sequence with lim

n→∞
δn = 0 and

∫
T log(|f | + δn)dm < ∞. Then fn satisfies

the desired properties.

6.3 The Nevanlinna (N) and Smirnov (N+) classes

We know that Nevanlinna class can be represented as

N =
{
f ∈ Hol(D) : there exist f1, f2 ∈

⋃
p>0

Hp such that f = f1/f2
}
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and let

D =
{
f ∈ Hol(D) : there exist f1, f2 ∈

⋃
p>0

Hp such that f = f1/f2 and f2 is outer
}

be the Smirnov class (sometimes denoted by N+).

Lemma 6.3.1. We have

N =
{
f ∈ Hol(D) : there exist f1, f2 ∈ H∞ such that f = f1/f2

}
and

D =
{
f ∈ Hol(D) : there exist f1, f2 ∈ H∞ such that f = f1/f2 and f2 is outer

}
.

Proof. Let f ∈ N, f ̸≡ 0 and f = f1
f2
, where f1, f2 ∈ Hp’s have canonical factorizations f1 =

λ[f1]B1S1 and f2 = λ[f2]S2. Set F1 = λ[min(1, |f |)]B1S1 and F2 = [min(|f |−1, 1)]S2. Clearly
F1, F2 ∈ H∞ and since |f |.min(|f |−1, 1) = min(1, |f |), we also get f = F1

F2
.

[|f |].[min(|f |−1, 1)] = [min(1, |f |)]

=⇒ [f ] = [|f |] = [min(1, |f |)]
[min(|f |−1, 1)]

Now, F1
F2

= λ[min(1,|f |)]B1S1
[min(|f |−1,1)]S2

= λ[f ]B1S1
S2

= λ[f ]B1S3.

Hence f = f1
f2

= λ[f1]B1S1
[f2]S2

= λ[ f1
f2

]B1S3 = λ[f ]B1S3 = F1
F2
.

Definition 6.3.2. (Outer in Nevanlinna class) A function f ∈ N is called outer if there exist
two outer functions f1, f2 such that f = f1

f2
.

Properties 6.3.3. (of the class D and Nevanlinna outer functions)

(a) If f is outer, then f ∈ D.

(b) If f1 and f2 is outer, then so is f1f2.

(c) If f1f2 are outer, and f1, f2 ∈ D, then f1, f2 are outer.

(d) If f1, f2 ∈ D, then f1f2 ∈ D.

(e) If F ∈ Hol(D), G ∈ D and |F | ≤ |G| in D, then F ∈ D.

To verify (c), just let G = G1
G2

with G1, G2 ∈ H∞, and G2 outer. By hypothesis |G2F | ≤ |G1| in
D, and hence G2F ∈ H∞. We conclude that F = G2F

G2
∈ D

Theorem 6.3.4. (Generalized Maximum Principle) Let f ∈ D and g be an outer function in N.

If |f | ≤ |g| on T, then |f | ≤ |g| on D.
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Proof. Let f = f1
f2

and g = g1
g2

where f2, g1 and g2 are outer functions in H∞ and f1 ∈ H∞. By
assumption |f1g2| ≤ |f2g1| on T and hence |f1g2| ≤ |[f1g2]| ≤ |[f2g1]| = |f2g1| in D.

Remark 6.3.5. This result is not true in general if f ∈ N \ D and/or if g is not outer.

Let us recall that by Fatou’s theorem every f ∈ H∞ has a non-tangential limit a.e. on T and
the boundary function satisfies: ∫

T
log |f |dm > −∞,

that means the non-tangential limits of f are non-zero a.e. From here we see that:

Proposition 6.3.6. Every function in N class has a non-tangential limit a.e. on T.

Proposition 6.3.7. Hp ⊂ N+

Proof. Hint: If f ∈ Hp\{0} then f = λBS[f ] where

[f ](z) = exp
(∫

T

ζ + z

ζ − z
log |f(ζ)|dm(ζ)

)
.

Now log = log+ − log− and consider f1, f2 corresponding to functions log+ and log−.

So we have the relation: Hp ⊂ N+ ⊂ N.

Theorem 6.3.8. (Smirnov Theorem) f ∈ N+ and its boundary limit function belongs to Lp then
f ∈ Hp i.e. N+ ∩ Lp = Hp.

Proof. The proof depends on the Arithmetic-Geometric Mean Inequality:

exp
(∫

T
log hdσ

)
≤
∫
T
hdσ,

where h is a non-negative function on T which is integrable.
If f ∈ N+ then f = g1/g2 where g1, g2 ∈ H∞ and g2 is outer. Since the presence of an inner
factor in g1 will not affect whether or not f ∈ H2, we can also assume that g1 is also an outer.
Using the definition of an outer function applied to functions g1 and g2 we see that

g1
g2

(z) = exp
(∫

T

ζ + z

ζ − z
log |g1(ζ)|

|g2(ζ)|dm(ζ).
)

Furthermore, for each r ∈ (0, 1) and w ∈ T

∣∣∣∣g1
g2

(rw)
∣∣∣∣2 = exp

(∫
T
Prw(ζ) log |g1(ζ)|2

|g2(ζ)|2dm(ζ
)

Now apply the Arithmetic-Geometric Mean inequality to the function |g1/g2| and the measure
Prwdm: ∣∣∣∣g1

g2
(rw)

∣∣∣∣2 ≤
∫
T

∣∣∣∣g1
g2

(ζ)
∣∣∣∣2 Prwdm(ζ). (6.3.1)
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Integrate both sides: ∫
T

|f(rw)|2dm(w) =
∫
T

g1
g2

(rw)|2dm(w)

≤
∫
T

(∫
T

∣∣∣∣g1
g2

(ζ)
∣∣∣∣2 Prw(ζ)dm(ζ)

)
dm(w)

=
∫
T

(∫
T

|f(ζ)|2 Prw(ζ)dm(ζ)
)
dm(w)

=
∫
T

|f(ζ)|2
(∫

T
Prw(ζ)dm(w)

)
dm(ζ)

=
∫
T

|f |2dm

Thus sup0<r<1
∫
T |f(rw)|2dm(w) ≤

∫
T |f |2dm, which implies f ∈ H2.

To prove the second statement of the theorem, observe that if f ∈ N+ and f |T ∈ L∞ then as
before we can assume f = g1/g2 and g1, g2 are bounded outer functions. By (6.3.1) we see that

|f(rw)|2 =
∣∣∣∣g1
g2

(rw)
∣∣∣∣2 ≤

∫
T

∣∣∣∣g1
g2

(ζ)
∣∣∣∣2 Prw(ζ)dm(ζ)

=
∫
T

|f(ζ)|2Prw(ζ)dm(ζ)

≤ ∥f |T∥2
∞

∫
T
Prwdm(zeta)

= ∥f |T|2∞,

which implies f ∈ H∞.

Remark 6.3.9. Smirnov’s theorem is no longer true for f ∈ N even when f is analytic on D. For
instance the function

f(z) = exp
(1 + z

1 − z

)
which is the reciprocal of the atomic inner function described in Example 5.9.4 belongs to N
class, analytic on D and has boundary values of unit modulus a.e. on T. However it does not
belongs to H2 since as in Remark 5.9.5

|f(r)| = exp
(1 + r

1 − r

)
, r ∈ (0, 1)

which does not satisfy the necessary growth condition for an H2 function as described in
see[8](p. 59):

|f(λ)| ≤ ∥f∥√
1 − |λ|2

, f ∈ H2.

The original definition of the Nevanlinna class is different from definition in 6.3. f ∈ N if and
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only if

sup
0≤r<1

∫
T

log+ |f(rξ)|dξ < ∞.

The equivalence of the two definitions is not at all obvious; the proof can be found in Nevanlinna
and Nevanlinna (1922), Privalov (1941), Duren (1970) [12][p.16], and Koosis (1998) [4] . We will

state the theorem as follows:

Theorem 6.3.10. [12][p.16] A function analytic in the unit disk belong to the class N if and
only if it is the quotient of two bounded analytic function.

Proof. (⇐) Suppose first that f(z) = φ(z)/ψ(z) where φ,ψ are analytic and bounded in D.
There is no loss of generality in assuming |φ(z)| ≤ 1, |ψ(z)| ≤ 1 and ψ(0) ̸= 0. Then

∫ 2π

0
log+ |f(reiθ)|dθ ≤ −

∫ 2π

0
log |ψ(reiθ)|dθ.

But by Jensen’s formula (see Ahlforse, p. 206)

1
2π

∫ 2π

0
log |ψ(reiθ)|dθ = log |ψ(0)| +

∑
|xn|<r

log r

|zn|
,

where zn are zeroes of ψ. This shows that
∫

log |ψ| increases with r, so f ∈ N.

(⇒) Let f(z) ̸≡ 0 be of class N. Let f has a zero of multiplicity m ≥ 0 at the origin, so that
z−mf(z) → α ̸= 0 as z → 0. Let zn be the other zeroes of f, repeated according to multiplicity
and arranged so that 0 < |z1| ≤ |z2| ≤ · · · < 1. If f(z) ̸= 0 on the circle |z| = ρ < 1, the function

F (z) = log
{
f(z)ρ

m

zm
Π|zn|<ρ

(
ρ2 − znz

ρ(z − zn)

)}

is analytic in |z| ≤ ρ, and ReF (z) = log |f(z)| on |z| = ρ. Hence by analytic completion of the
Poisson formula:

F (z) = 1
2π

∫ 2π

0
log |f(ρeit)|ρe

it + z

ρeit − z
dt+ iC.

This is sometimes called the Poisson-Jensen formula. After exponentiation, it takes of the form
f(z) = φρ(z)/ψρ(z) where

φρ(z) = zm

ρm
Π|zn|<ρ

ρ(z − zn)
ρ2 − znz

. exp
{

− 1
2π

∫ 2π

0
log− |f(ρeit)|ρe

it + z

ρeit − z
dt+ iC

}

ψρ(z) = exp
{

− 1
2π

∫ 2π

0
log+ |f(ρeit)|ρe

it + z

ρeit − z
dt

}

Now choose a sequence {ρk} increasing to 1 such that f(z) ̸= 0 on the circles |z| = ρk. Let
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Φk(z) = φρk
(ρkz; ); Ψk(z) = ψρk

(ρkz). Then f(ρkz) = Φk(z)/Ψk(z) in D. But the functions are
analytic in the unit disk, and |Φk(z)| ≤ 1, |Ψk(z)| ≤ 1. Hence {Φk} and {Ψk} are normal families,
and there exists a sequence {ki} such that Φki

(z) → φ(z) and Ψki
(z) → ψ(z) uniformly in

each disk |z| ≤ R < 1. The function φ,ψ are analytic in unit disk and |φ(z)| ≤ 1, |ψ(z)| ≤ 1.
According to the definition of ψρ the fact that

∫
log+ |f | is bounded gives a uniform estimate

|Ψk(0)| ≥ δ > 0, so ψ(z) ̸≡ 0. Thus f = φ/ψ and the proof is completed.

The importance of this theorem is that it allows properties of functions in N to be deduced from
the corresponding properties of bounded analytic functions. The boundary behavior, for

example, can now be discussed.

Theorem 6.3.11. For each f ∈ N, the non-tangential limit f(eiθ) exists almost everywhere and
log |f(eiθ)| is integrable unless f(z) ≡ 0. If f ∈ Hp for some p > 0, then f(eiθ) ∈ Lp.

Proof. Assuming f(z) ̸≡ 0, represent in the form φ(z)/ψ(z), where |φ(z)| ≤ 1 and |ψ(z)| ≤ 1.
Since φ and ψ are bounded analytic functions, they have non-tangential limits φ(eiθ) and ψ(eiθ)
almost everywhere. Appleaing to Fatou’s Lemma we have∫ 2π

0
| log |φ(eiθ)||dθ ≤ lim inf

r→1

{
−
∫ 2π

0
log |φ(reiθ)dθ

}

But
∫

logφ(reiθ)dθ increases with r, by Jensen’s theorem. Hence log |φ(eiθ)| ∈ L1 and similarly
for ψ. In particular ψ(eiθ) cannot vanish on a set of positive measure. The radial limit f(eiθ)
therefore exists almost everywhere, and log |f(eiθ)| ∈ L1. Another application of Fatou’s lemma
shows that f(eiθ) ∈ Lp if f ∈ Hp.

The theorem says that if f ∈ N and if f(eiθ) = 0 on a set of positive measure, then f(z) ≡ 0. In
other words, a function of class N is uniquely determined by its boundary values on any set of

positive measure.
It is evident from the representation f = φ/ψ that

∫
log− |f(reiθ)|dθ is bounded if f ∈ N. Hence

f ∈ N if and only if
∫ ∣∣∣log |f(reiθ)|

∣∣∣ dθ is bounded.

6.4 A conformally invariant framework

Here we consider the classes Nev(Ω) and D(Ω), where Ω is a simply connected domain (̸= C),
that is, domains that are conformally equivalent to the open unit D.

Definition 6.4.1. Define

H∞(Ω) = {f ∈ Hol(Ω) : ∥f∥H∞ = sup
z∈Ω

|f(z)| < ∞}

and
N(Ω) = {f ∈ Hol(Ω) : there exist f1, f2 ∈ H∞(Ω) such that f = f1/f2} .
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For ω : D → Ω be an onto conformal map. A function f ∈ Nev(Ω) is called outer if f ◦ w is an
outer in Nev(D). With this definition, we get

D(Ω) =
{
f ∈ Hol(Ω) : there exist f1, f2 ∈ H∞(Ω) such that f = f1/f2 and f2 is outer

}
.

The following two results are simple factorization to Ω of the corresponding well known facts in
D. Note if ω : Ω → D extends to a homeomorphism of clos (Ω) onto clos (D), then we say Ω is

Jordan domain.

Lemma 6.4.2. (Generalized Maximum Principle) Let Ω be a Jordan domain. Let λ ∈ ∂Ω, f ∈
D(Ω) ∩ C

(
clos(Ω) \ {λ}

)
and let g be an outer function such that g ∈ C

(
clos(Ω) \ {λ}

)
and

|f | ≤ |g| on ∂Ω \ {λ}. Then |f | ≤ |g| on Ω.

Lemma 6.4.3. Let f ∈ H∞(Ω). Then f is outer if and only if there exists a sequence of outer
functions (fn)n≥1 ∈ H∞(Ω) such that

inf
z∈Ω

|fn(z)| > 0, n ≥ 1, lim
n→∞

fn(z) = f(z), |fn(z)| ↘ |f(z)|, z ∈ Ω.

Corollary 6.4.4. Let Ω1 ⊂ Ω2 be two simply connected domains and f ∈ N(Ω2).

(i) If f is outer on Ω2, then f |Ω1 is outer on Ω1.

(ii) If f ∈ D(Ω2), then f |Ω1 ∈ D(Ω1).

6.5 The generalized Phragmén–Lindelöf principle

The result of Theorem 6.3.4 and Lemma 6.4.2 are, in fact, the versions of the Phragmén–Lindelöf
principle. The difference is that, in general, the mejorants are not given by analytic functions.

Let Ω be a Jardon Domain, let M and M∗ be two non-negative functions on Ω, and let
ω ∈ C(∂Ω ∖ {λ}), where λ ∈ ∂ω, Ω > 0. Then M∗ is called Phragmén–Lindelöf majorant for M
and ω if for every f ∈ Hol(Ω) ∪ C(clos(Ω) ∖ {λ}) with |f | ≤ M on ∂Ω ∖ {λ} we have |f | ≤ M∗.

Theorem 6.5.1. (Generalized Phragmén–Lindelöf principle) Let f ∈ D(Ω) and G ∈ N(Ω) ∩
C(clos(Ω) ∖ {λ}) be such that M ≤ |F | on Ω, ω ≤ |G| on ∂Ω ∖ {λ}. Then either there exists an
outer function [ω ◦ ω] (and then M∗ = |[ω ◦ ω] ◦ ω−1| is a Phragmén–Lindelöf majorant for M
and ω) or f ≡ 0 for all f ∈ Hol(Ω) ∪ C(clos(Ω) ∖ {λ}) such that |f | ≤ M on Ω and |f | ≤ ω on
∂Ω{λ} (and then M∗ = 0).

Proof. In view of (e) of Properties 6.3.3, the inequalities |F | ≤ M ≤ |F | show that f ∈ (Ω). If
there exists f ̸≡ 0, f ∈ N(Ω) such that

|f ◦ ω| ≤ ω ◦ ω ≤ |G ◦ ω|
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on T ∖ ω−1({λ}), then we can define the outer function [ω ◦ ω]. Applying Lemma 6.4.2 we get
|f ◦ ω| ≤ |[ω ◦ ω]| on T ∖ ω−1({λ}) and hence the desired result.

6.6 Exercises

Exercise 6.6.1. Let b be a non-constant function in the closed unit ball of H∞. Put

f = 1
1 − b

.

Then f is an outer in Hp, for 0 < p < 1.

Proof. Since b ∈ {∥f∥∞ ≤ 1 : f ∈ H∞} by the maximal principle, |b(z)| < ∥b∥∞ ≤ 1 for each
z ∈ D. Hence f is analytic on D. Moreover we have

Re 1
1 − b(z) = 1 − Re b(z)

|1 − b(z)|2 ≥ 1 − |b(z)|2
|1 − b(z)|2 > 0uad(z ∈ D).

Hence by Smirnov Theorem 6.2.3, f is an outer in Hp.

Exercise 6.6.2. If a polynomial p has no zero in the open disc D, then p is outer.

Proof. Consider p(z) = const
n∏

i=1

(
1− z

ξi

)
, |ξi| ≥ 1. As |z| < 1 and |ξi| ≥ 1, we have Re

(
1− z

ξi

)
≥ 0.

By applying Theorem 6.2.3 and the Property ( (a).)
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Chapter 7

Harmonic analysis in L2(T, µ)

The main result of this section is the Helson- Szegö theorem characterizing those L2(T, µ) in
which the Fourier series of every function f ∈ L2(T, µ) converges in the norm topology. This is

one of the main results of harmonic analysis on the circle group T. It is closely related to
generalized Fourier series with respect to a minimal sequence; harmonic conjugates, the Riesz

projections, and weighted estimates for Hilbert singular integrals.

Definition 7.0.1. A sequence (xn)n≥1 in Banach Space X is called minimal if xn ̸∈ Mn =
span{xk : k ̸= n}, and is called uniformly minimal if inf

n≥1
dist

( xn

∥xn∥
,Mn

)
> 0.

To proceed we need a corollary of the Hahn Banach Theorem.

Proposition 7.0.2. Let M be a linear subspace of a normed linear space X, and let x0 ∈ X.

Then x0 ∈ M if and only if there does not exists a bounded linear functional f on X such that
f(x) = 0 ∀x ∈ M but f(x0) ̸= 0 (in fact it is 1).

Proof. (⇐=) If x0 ∈ M, f is a bounded linear functional on X and f(x) = 0 ∀x ∈ M. The
continuity of f shows that f(x0) = 0 (since x0 ∈ M). So there does not exists a bounded linear
functional f on X such that f(x) = 0 ∀x ∈ M.

(=⇒) x0 /∈ M. Then ∃ a δ > 0 such that ∥x−x0∥ > δ, ∀x ∈ M. Let M ′ be the subspace generated
by M and x0 and define f : M ′ → C by f(x + λx0) = λ if x ∈ M and λ is a scaler. Since
δ|λ| ≤ |λ|∥x0 + λx∥ = ∥λx0 + x∥ =⇒ |f(x + λx0)| = |λ| ≤ 1

δ ∥λx0 + x∥. Also f(x) = 0 on M

and f(x0) = 1. By the Hahn Banach Theorem there exists unique f̃ which extends f from M ′ to
X.

Lemma 7.0.3. (i) A sequence (xn)n≥1 ⊂ X is minimal if and only if there exists fn ∈ X∗

such that (xk, fn) = δkn. Such a pair ((xn)n≥1, (fk)k≥1) will be called biorthonormal and
fn, n ≥ 1 coordinate functionals.

(ii) (xn)n≥1 ⊂ X is uniformly minimal if and only if there exists a sequence (fn)n≥1 of
coordinate functionals such that sup

n≥1
∥xn∥ ∥fn∥ < ∞.
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Proof. (i) By Hahn-Banach theorem, if xn ̸∈ Mn, then there exists a sequence fn ∈ X∗ with
∥fn∥ = 1, fn(xn) = ∥xn∥, f̃n(xn) = 1, f̃n = fn

∥xn∥ .

(ii) Moreover for any subspace E ⊂ X,

dist(x,E) = sup{|f(x)| : f ∈ X∗, f |E ≡ 0, ∥f∥ ≤ 1}.

For this, if x ∈ E then both sides are equal. So firstly we will show "≤". When x ̸∈ E,

by Hahn- Banach theorem there exists f̃ ∈ X∗ such that f̃(x) = dist(x,E), and f̃(E) = 0
with ∥f̃∥ ≤ 1. Implies

dist(x,E) = |f̃(x)| ≤ sup{|f(x)| : f ∈ X∗, f |E ≡ 0, ∥f∥ ≤ 1}.

For the other inequality, let y ∈ E, then we have

|f(x)| = |f(x− y)| ≤ ∥f∥∥x− y∥ ≤ ∥x− y∥,

and hence |f(x)| ≤ inf
y∈E

∥x− y∥ = dist(x,E). This implies

sup{|f(x)| : f ∈ X∗, f |E ≡ 0, ∥f∥ ≤ 1} ≤ dist(x,E).

Thus,
sup{|f(x)| : f ∈ X∗, f |E ≡ 0, ∥f∥ ≤ 1} = dist(x,E).

Now, replacing f by f/f(x), it follows that

inf
{

∥f∥ : f ∈ X∗, f |E ≡ 0, f(x) = 1} = 1
dist(x,E) .

(If ϕ ̸= S ⊂ (0,∞) then 1
sup(S) = inf 1

S = infs∈S
1
s )

Main Proof: Apply this to x = xn, E = Mn, and let fn ∈ X∗ be the corresponding
coordinate functionals with minimal norm. Then,

dist
( xn

∥xn∥
,Mn

)
= 1

∥xn∥
dist(xn,Mn) = 1

∥xn∥
1

∥fn∥
.

Thus,
inf
n≥1

dist
( xn

∥xn∥
,Mn

)
> 0 if and only if sup

n≥1
∥xn∥ ∥fn∥ < ∞.
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Definition 7.0.4. To a minimal sequence (xn) we associate the (formal) Fourier series

x ∼
∑
n≥1

(x, fn)xn, x ∈ X.

The operator x 7−→ Pnx = (x, fn)xn is called the projection on the nth Fourier component (or
the co-ordinate projection with respect to the biorthogonal pair ((xn)n≥1, (fk)k≥1).

Remark 7.0.5. We have ∥Pn∥ = ∥fn∥∥xn∥ (because fn(xn) = 1).

Proof. ∥Pn(xn)∥ = |fn(xn)|∥xn∥ = 1.∥xn∥ = ∥fn∥∥xn∥ (since fn(xn) = 1, and 1 = ∥fn∥). Also,
since Pnx = (x, fn)xn we have

sup
x̸=0

∥Pn(x)∥
∥x∥

≤ ∥fn∥∥xn∥

=⇒ ∥Pn∥ = ∥fn∥∥xn∥,

because at the point xn the function value attends its maximum.

Definition 7.0.6. A sequence (xn) in Banach space X is called a basis of X if for all x ∈ X there
exists a unique sequence (an) ⊂ C such that x =

∑
k≥1

akxk. Note that an = an(x) A sequence xn

is called a basis sequence if it is basis in spanX{xn : n ≥ 1}.

Theorem 7.0.7. (S. Banach, 1932 ) Let (xk) be a basis of the Banach space X. Then (xk) is
uniformly minimal and fk(x) = ak(x), x ∈ X are the coordinate functionals.

Definition 7.0.8. Let X be a Banach space and let (xn)n∈Z be a family in X. Then it is
called symmetric basis if for all x ∈ X, there exists a unique (ak(x))k∈Z ⊂ C such that

x = lim
n→∞

n∑
k=−n

ak(x)xk. It is called non-symmetric if x = lim
n,m→∞

n∑
k=−m

ak(x)xk.

Lemma 7.0.9. Let χ = (xk)k∈Z and (fk)k∈Z be a biorthogonal pair in a Banach space X. Set

Pm,n =
n∑

k=−m

(. , fk)xk, m, n ∈ Z. Then

(i) χ is a symmetric (respectively non-symmetric) basis if and only if sup
n≥1

∥P−n,n∥ < ∞

(respectively sup
m,n

∥Pm,n∥ < ∞) and χ is complete.

(ii) If χ is a (at least symmetric) basis, then (fk)k∈Z is total, i.e. fk(x) = 0 for all k ∈ Z
implies x = 0.

(iii) For σ ⊂ Z, define χσ = span{xk : k ∈ σ} and χσ = span{x ∈ X : fk(x) = 0 for all k ̸∈ σ}.
If χ is a basis, then for all σ ⊂ Z, we have χσ = χσ.

70



MA650: Advanced Hardy Spaces Theory Harmonic analysis in L2(T, µ)

Proof. (i) Since χ is a basis, lim
m,n

Pm,nx = x for all x ∈ Lin{xk : k ∈ Z}. By the UBP (uniform
bounded principle: pt-wise bounded implies uniform bounded) supm,n ∥Pm,n∥ < ∞.

(ii) If fk(x) = 0 for all k ∈ Z, then P−n,nx = 0 for all n ≥ 1. Hence x = 0.

(iii) The inclusion χσ ⊂ χσ is clear (even for minimal families). On the other hand, if x ∈ Xσ,

then x = lim
n→∞

P−n,nx with P−n,nx ∈ Xσ. Hence x ∈ Xσ.

7.1 Skew projections

Let L,M be two subspaces of a vector space X such that L ∩M = {0}. Define P : L+M → X

by P (x+ y) = x, then P 2 = P, P |L = id and P |M = 0. Then P is called skew projection onto
L parallel to M and denoted as P := PL||M .

Lemma 7.1.1. Let L,M be two subspaces of a Banach space X verifying L ∩M = {0}. Then

(i) PL||M is continuous if and only if PL̄||M̄ is well defined and continuous (here L̄ = clos L
and M̄ = clos M).

Proof. Let x+ y ∈ L+M,x ∈ L, y ∈ M. Then PL||M is continuous ⇐⇒ ∥PL||M (x+ y)∥ =
∥x∥ ≤ c∥x+ y∥ for every x ∈ L, y ∈ M ⇐⇒ ∥x∥ ≤ C∥x+ y∥, x ∈ L, and y ∈ M ⇐⇒ PL||M
is continuous.

(ii) If L,M are closed, then PL||M is continuous if and only if L+M = clos (L+M).

Proof. Apply closed graph theorem for the operator T = PL||M .

Definition 7.1.2. Let L,M be two subspaces of a Hilbert space H. Define angle α ∈ [0, π
2 ] (or

minimal angle) between L and M by

cos⟨L,M⟩ = cosα = sup
x∈L, y∈M

|⟨x, y⟩|
∥x∥∥y∥

.

NOTATION: We write α = ⟨L,M⟩.

Remark 7.1.3. L ⊥ M if and only if α = π
2 .

Lemma 7.1.4. With the above notations we have

cos⟨L,M⟩ = cos⟨L̄, M̄⟩ = ∥PM̄PL̄∥

and
sin⟨L,M⟩ = sin⟨L̄, M̄⟩ = ∥PL||M ∥−1,

where the symbols have obvious meaning.
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Proof. Clearly, sup
y∈M\{0}

|(PM̄x, y)|
∥y∥

= ∥PM̄x∥. Moreover, ⟨x, y⟩ = ⟨PM̄x, y⟩ for y ∈ M and hence

cos⟨L,M⟩ = sup
0̸=x∈L, 0̸=y∈M

|⟨x, y⟩|
∥x∥∥y∥

= sup
0̸=x∈L, 0̸=y∈M

|⟨PMx, y⟩|
∥x∥∥y∥

= sup
0̸=x∈L

1
∥x∥

sup
0̸=y∈M

|⟨PMx, y⟩|
∥y∥

= sup
0̸=x∈L

∥PM̄x∥
∥x∥

.

But
sup

0̸=x∈L

∥PM̄x∥
∥x∥

= sup
0̸=x∈L

∥PM̄PL̄x∥
∥x∥

= sup
0̸=x∈H

∥PM̄PL̄x∥
∥x∥

= ∥PM̄PL̄∥.

Hence cos⟨L,M⟩ = ∥PM̄PL̄∥
Now,

∥PL||M ∥2 = sup
0̸=x∈L, 0̸=y∈M

∥PL||M (x+ y)∥2

∥x+ y∥2

= sup
0̸=x∈L, 0̸=y∈M

∥x∥2

∥x+ y∥2

= sup
0̸=x∈L

∥x∥2

inf0̸=y∈M ∥x+ y∥2

= sup
0̸=x∈L

∥x∥2

∥(1 − PM̄ )x∥2 .

This now gives

sin2⟨L,M⟩ = 1 − cos2⟨L,M⟩ = 1 − sup
0̸=x∈L

∥PM̄x∥2

∥x∥2 = inf
0̸=x∈L

∥(1 − PM̄ )x∥2

∥x∥2 = 1
∥PL||M ∥2.

So sin⟨L,M⟩ = 1
∥PL||M ∥ .

Corollary 7.1.5. The projection PL||M is continuous if and only if ∥PL̄PM̄ ∥ < 1 (and hence if
and only if ⟨L,M⟩ > 0). Moreover, ∥PL||M ∥ = ∥PM ||L∥.

Proof. PL||M is continuous ⇔ ∥PL||M ∥ exists and > 0 ⇔ 1
PL||M

exists and > 0 ⇔ sin⟨L,M⟩ >
0 ⇔ ⟨L,M⟩ > 0. Since sin⟨L,M⟩ > 0 ⇔ cos⟨L,M⟩ < 1 ⇔ ∥PMPL∥ < 1 by Lemma 7.1.4

7.2 Bases of exponentials in L2(T, µ)

Now, let X = L2(T, µ), where µ is a finite Borel measure, and xk = eikt, k ∈ Z (or,
xk = zk, k ∈ Z).
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Lemma 7.2.1. If (eikt)k∈Z is a basis of L2(µ) then µs ≡ 0.

Proof. Let σn = {k : k > n}, let L2
σn

= spanL2(µ){zk : k > n}, and let fk be coordinate
functionals associated to (eikt)k∈Z, then

⋂
n≥1

L2
σn

= {x ∈ L2(µ) : fk(x) = 0 for all k ∈ Z} = {0}

(∵ x ∈ L2(µ) =⇒ x = ∑
k∈Z⟨x, fk⟩zk = ∑

k∈Z fk(x)zk and fk(x) = 0 since fk ⊥ L2(σk) for all k ≥
1( by Proposition 7.0.2 ) =⇒ x = 0 (by Banach theorem 7.0.7). Clearly, L2

σn
is an invariant

subspace, and zn ∈ L2
σn

and zn ̸= 0 on T. So it can be deduced (as in Corollary 4.3.1) that
L2

σn
= L2

σn
(µa) + L2(µs) for all n ∈ Z. But then also

⋂
n≥1

L2
σn

⊃ L2(µs), implies L2(µs) = 0.

Remark 7.2.2. For studying exponential basis in L2(T, µ) one can restrict to measure which is
absolutely continuous with respect to the Lebesgue measure m, dµ = wdm, w ∈ L1

+(T,m).

Lemma 7.2.3. (Kolmogorov, 1941 ) Let w ≥ 0, w ∈ L1
+. Then (zn)n∈Z is a minimal sequence in

L2(wdm) if and only if 1
w ∈ L1(T).

Proof. Due to biorthogonality, we have

δn,k = (zn, fk)L2(wdm) =
∫
T
znf̄kwdm, n, k ∈ Z.

So we deduce that f̄kw = z̄k, k ∈ Z, that is fk = zk

w , k ∈ Z. Hence

fk ∈ L2(wdm) if and only if
∫
T

1
w2wdm < ∞.

7.3 Riesz Projection

Let P,P+ be as earlier and P− = span{eikt : k < 0}. Define the Riesz projection P+ by

P+f =
∑
k≥0

f̂(k)eikt, f ∈ P.

Then

P+ = PP+||P− .

Let also

Pm,nf =
n∑

k=m

f̂(k)eikt, f ∈ P, m, n ∈ Z, m ≤ n.
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The following result gives the principle link between the problem of bases and the norm
estimation of the Riesz projection.

Lemma 7.3.1. Let w ∈ L1
+. Then the followings are equivalent.

(i) (zk)k∈Z is a nonsymmetric basis of L2(wdm).

(ii) sup
n,m∈Z

∥Pm,n∥ < ∞.

(iii) (zk)k∈Z is a symmetric basis of L2(wdm).

(iv) sup
n∈Z

∥P−n,n∥ < ∞.

(v) The Riesz projection P+ is continuous on L2(wdm).

(vi) ⟨P+, P−⟩ > 0 (or ⟨H2
+, H

2
−⟩ > 0, where H2

± = closL2(wdm) P±.

Proof. In view of Lemma 7.0.9 we get (i) ⇔ (ii) and (iii) ⇔ (iv). It is also clear that (ii)
implies (iv). Using Lemma 7.1.4 and Corollary 7.1.5 we obtain (v) ⇔ (vi). Next, we verify that
(iv) implies (v). Pick f ∈ P, then for n = n(f) sufficiently large, we get (using the relation:
ẑ−nf(k) = f̂(n + k)), P+f = znP−n,nz

−nf, so ∥P+f∥ = ∥P−n,nz
−nf∥ ≤ ∥P−n,n∥∥f∥ implies

∥P+∥ ≤ sup
n≥1

∥P−n,n∥. It remains to show that (v) implies (ii). Note that

Pm,nf = zn+1(1 − P+)z−(n+m+1)P+z
mf, f ∈ P.

But then

∥Pm,nf∥ = ∥(1 − P+)z−(n+m+1)P+z
mf∥ ≤ ∥P+∥∥P+z

mf∥ ≤ ∥P+∥2∥f∥

for all f ∈ P, since ∥1 − P+∥ = ∥P+∥, (by Corollary 7.1.5). Hence the result follows.

7.4 Harmonic conjugates

In order to get the desired characterization of exponential type bases in L2(µ), we need a result
of analytic type, namely, the so-called harmonic conjugation on T (or D).

Theorem 7.4.1. Let u ∈ L2(T) be a real valued function. Then there exist a unique real valued
function v ∈ L2(T) such that v̂(0) = 0 and u + iv ∈ H2. The mapping u 7→ v is linear and
continuous with ∥v∥ ≤ ∥u∥.

Proof. Let u =
∑
n∈Z

û(n)eint ∈ L2. Then ū =
∑
n∈Z

¯̂u(n)e−int. Since u is real valued, ū = u ⇔

¯̂u(n) = û(−n), n ∈ Z. Define
f = û(0) + 2

∑
n≥1

û(n)zn.

74



MA650: Advanced Hardy Spaces Theory Harmonic analysis in L2(T, µ)

Then f ∈ H2 and

Re f = 1
2(f + f̄) = û(0) +

∑
n≥1

û(n)eint +
∑
n≥1

¯̂u(n)e−int = u.

This means that v = Im f will satisfy the conclusion of the theorem. Next, we show that v
is unique. If u + iv = u + iv1 ∈ H2, then v − v1 ∈ H2. As v − v1 is real valued v − v1 ∈ H2.

But this is possible only if v − v1 = c. Also c = v(0) − v1(0) = v̂(0) − v̂1(0) = 0[since for
v, v1 ∈ H2 =⇒ v(0) = v̂(0), v1(0) = v̂1(0); and v̂(0) = v̂1(0) = 0 from assumption.] Finally, we
have

v = Im f = f − f̄

2i = 1
i

(∑
n≥1

û(n)eint −
∑
n≥1

¯̂u(n)e−int
)

= 1
i

(∑
n>0

û(n)eint −
∑
n<0

û(n)eint
)
.

The process u 7−→ v is linear and

∥v∥2 =
∑
k ̸=0

|û(k)|2 ≤ ∥u∥2,

and if û(0) = 0, then ∥u∥ = ∥v∥.

Definition 7.4.2. The function v is called Harmonic conjugate of u. Let v = ũ. The mapping
H : L2(T) → L2(T), u 7−→ ũ is called the Hilbert transform.

7.5 Different formula for ũ

(a) We can translate the above formula for ũ in terms of Riesz projections

ũ = 1
i
(P+u− P−u) − 1

i
û(0).

In particular, if û(0) = 0, then ũ = 1
i (P+u−P−u). Also, we have f = u+ iũ = 2P+u− û(0).

(b) If u verify the conditions of the theorem, then f = u+ iv ∈ H2 and u = Re f. As f extends
to D so Re f does as well. For z ∈ D, u(z) = Ref ∗ Pz = u ∗ Pz. Since the Poisson kernel
verify Pz(ζ) = Re

(ζ + z

ζ − z

)
, we get u(z) = Ref1(z), where

f1(z) =
∫
T

ζ + z

ζ − z
u(ζ)dm(ζ).

Note that f1 ∈ Hol(D)∗1 and Re f1 = u, f1(0) =
∫
T
udm ∈ R. By uniqueness, we have

f = f1 and

ũ = Im f = Im f1 =
∫
T

Im
(ζ + z

ζ − z

)
u(ζ)dm(ζ) =

∫ 2π

0
Qr(τ − t)u(eit) dt2π

75



MA650: Advanced Hardy Spaces Theory Harmonic analysis in L2(T, µ)

where z = reit and
Qr(t) = Im

(ζ + z

ζ − z

)
= 2r sin t

1 − 2r cos t+ r2 .

∗1[
uad

eit + z

eit − z
= 1 + 2

∞∑
n=1

zne−int =⇒ 1
2π

∫ π

−π
(e

it + z

eit − z
)f(eit))dt

= 1
2π

∫ π

−π
f(eit)dt+ 2

2π

∫ π

−π

∞∑
n=1

zne−intf(eit)dt

= f̂(0) + 2
∞∑

n=1
f̂(n)z−n.

Since it has a power series it is analytic. (See [9] p.12 )
]

Remark 7.5.1. For r → 1, Qr ∼ sin t
1 − cos t = cot(t/2). In fact, one can show that

ũ(τ) = (u ∗ cot(./2))(τ) =
∫ 2π

0
u(τ − t) cot

(
t/2
) dt
2π

in the sense of Cauchy principle valued integral.

7.6 The Helson-Szegö theorem

Theorem 7.6.1. Let µ be a finite Borel measure on T. Then the followings are equivalent.

(i) The family (zn)n∈Z is a (symmetric or nonsymmetric) basis of L2(µ).

(ii) The Riesz projection P+ is bounded on L2(µ).

(iii) The angle satisfies sin⟨P+, P−⟩ > 0.

(iv) dµ = |h|2dm, where h ∈ H2 is an outer function such that dist
( h̄
h
,H∞

)
< 1.

(v) dµ = wdm, where w = eu+ṽ and u, v are real valued bounded functions and ∥v∥∞ < π
2

(condition (HS)).

The proof of the theorem will be given in several steps based on the following lemmas.

Lemma 7.6.2. The mapping j : H2 ×H2 → H1, (ϕ, ψ) 7−→ ϕψ is continuous and symmetric.
Moreover, j(B2 ×B2) = B1, where Bp is the unit ball in Hp.

Proof. The continuity follows from the Cauchy Schwarz inequality ∥ϕψ∥1 ≤ ∥ϕ∥2∥ψ∥2. For
surjectively, let f ∈ H1, then f = λBS[f ]. Write ϕ = λBS[f ] 1

2 and ψ = [f ] 1
2 then ϕψ ∈ H2.
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Lemma 7.6.3. Let E be a subspace of the Banach space X, and Φ ∈ X∗. Then

∥Φ|E∥ = inf{∥Ψ∥X∗ : Ψ = Φ on E} = inf{∥Φ + α∥X∗ : α ∈ X∗ and α|E = 0}

Proof. The inequality "≤" is clear. For "≥" apply Hahn-Banach theorem. Let Ψ′ = Φ|E . Then

∥Ψ∥X∗ = sup
x∈X

|Ψ(x)| ≥ ∥Ψ′∥X∗ = sup
x∈X

|Ψ′(x)| = ∥Φ|E∥.

By Hahn-Banach theorem, there exists Ψ′ ∈ X∗ such that ∥Φ|E∥ = ∥Ψ′∥X∗ , and hence the result
follows.

Lemma 7.6.4. Let f ∈ H1 and suppose that f(T) ⊂ A ⊂ C. Then f(D) ⊂ convA) (the closed
convex hull of A).

Proof. Observe that for z = rw ∈ D, |w| = 1 we have f(z) = Pz ∗ f =
∫
T

1−|z|2
|ζ−z|2 f(ζ)dζ ∈ conv(A).

However, conv(A) = ∩H where the intersection is taken over all the half-planes: H = {z ∈
C : Re(az + b) ≥ 0} containing A, a, b ∈ C. Since Pr > 0 and

∫
T Prdm(ξ) = 1, we see that the

condition Re(af(ζ + b) ≥ 0) for a.e. ζ ∈ T as f(ζ) ∈ A ⊂ H =⇒ Re(af(z) + b) ≥ 0 =⇒ f(z) ∈
conv(A)

Lemma 7.6.5. (V. Smirnov, A. Kolmogorov) Let v ∈ L∞(T) be a real valued function then
eλṽ ∈ L1(T) if λ∥v∥∞ < π

2 .

Proof. It is sufficient to show that ∥u∥∞ < π
2 implies eũ ∈ L1. Set f = e−i(u+iũ), which is well

defined in D, since u + iũ ∈ H2. Clearly |f | = eũ and | arg f | = |u| < π(1 − ϵ)
2 for some ϵ > 0

(on T and hence on D in view of Lemma 7.6.4). The same reasoning as in (Theorem 6.2.3) now
gives f ∈ H1 and hence |f | = eũ ∈ L1(T).

Proof. Implication (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) of Helson-Szegö theorem.
Recall that we may restrict to dµ = wdm, w ∈ L1

+(T). By Lemma 7.3.1 we get the equivalence
of (i),(ii) and (iii).
Next we show (i) and (ii) are equivalent to (iv) (see Figure 7.1): Note that if the sequence
(zn)n∈Z is a basis, then we can see from Banach’s (Theorem 7.0.7) and Kolmogorov’s (Lemma
7.2.3) that 1

w ∈ L1 and hence logw ∈ L1 (this can be justified without using Banach theorem as
z̄ ̸∈ H2(µ) we get logw ∈ L1). In view of the later observation, we suppose that there exists an
outer function h ∈ H2 such that |h|2 = w. Thus,

(f, g)L2(µ) =
∫
T
fḡwdm =

∫
T
fhḡh

h̄h

h2 dm =
∫
T
(fh)(ḡh) h̄

h
dm =

∫
T
FG

h̄

h
dm

for all f ∈ P+ and g ∈ P− and therefore,

∥f∥2
L2(µ) =

∫
|fh|2dm = ∥F∥2

L2(T), ∥g∥2
L2(µ) = ∥G∥2

L2(T).
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Figure 7.1: Geometry used in the proof of the Helson–Szegő theorem (schematic).

Clearly F = fh ∈ H2, since ḡ ∈ P0
+, we get G ∈ H2

0 . By definition of outer function, it follows
that span{F = fh : f ∈ P+} = H2, and also A := {F = fh : f ∈ P+, ∥F∥ ≤ 1} is dense in the
unit ball B2 of H2. For the same reason, we see that B := {G = ḡh : g ∈ P−, ∥G∥ ≤ 1} is dense
in B2 ∩H2

0 . We deduce that

cos⟨P+,P−⟩L2(µ) = sup{|(f, g)| : f ∈ P+, g ∈ P− ∥f∥2
L(µ) ≤ 1, ∥g∥2

L(µ) ≤ 1}

= sup
{∣∣∣ ∫

T
FG

h̄

h
dm
∣∣∣ : F ∈ A, G ∈ B

}
.

Set Φ(k) =
∫
T
k( h̄

h)dm, k ∈ L1(T). As h̄/h ∈ L∞(T), we get Φ ∈ (L1(T))∗. By (Lemma 7.6.2),

we see that the angle ⟨P+,P−⟩ = ∥Φ|H1
0
∥, and by means of (Lemma 7.6.3), we can express it in

terms of h:

cos⟨P+,P−⟩L2(µ) = ∥Φ|H1
0
∥ = dist

L∞(T)

( h̄
h
, (H1

0 )⊥
)

= dist
L∞(T)

( h̄
h
,H∞

)
.

The last equality is the consequence of the relation

(H1
0 )⊥ = {g ∈ L∞ :

∫
T
gfdm = 0 for all f ∈ H1

0 } = H∞.
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Figure 7.2: Fig2

Now, we conclude that cos⟨P+,P−⟩ < 1 if and only if logw ∈ L1, w = |h|2 for an outer function
h ∈ H2 satisfying distL∞(T)( h̄

h , H
∞) < 1, that is (i) and (ii) are equivalent to (iv).

Proof of implication (iv) =⇒ (v):(See Fig 2) Suppose distL∞(T)( h̄
h , H

∞) < 1, where h is a
outer and |h|2 = w. Then there exists g ∈ H∞ such that ∥ h̄

h −g∥∞ < 1. That is for ϵ > 0, we have
| h̄
h − g| < 1 − ϵ a.e. on T, and hence ||h|2 − gh2| < (1 − ϵ)|h|2 a.e. on T. Setting a = |h(ξ)|2 > 0

for ξ ∈ T, we see that |a− gh2| < (1 − ϵ)a.
Geometrically, it means that if α ∈ (0, π

2 ) is such that sinα = 1 − ϵ, and A = {z : | arg z| < α},
then we get gh2(T) ⊂ A (cf. Figure 1).
From (Lemma 7.6.4) we get gh2(D) ⊂ A, so log gh2 is analytic in D. We set v = − Im log gh2 =
− arg gh2 and get |ṽ| = Re log gh2 + c = log |gh|2 + c, where c has to be chosen such that
ṽ(0) = 0. We obtain log gh2 = ṽ − iv − c and gh2 = eṽ−iv−c on T, we have | h̄

h − g| < 1 − ϵ,

which implies that |1 − |g|| < 1 − ϵ, hence ϵ ≤ |g| ≤ 2 − ϵ. Finally, |h|2 = eṽ−c

|g|
= eu+ṽ, where

u = − log |g| − c ∈ L∞(T) and ∥v∥∞ < π
2 .

Proof of implication (v) implies (iv):
Let wdm = eu+ṽdm, where u, v ∈ L∞(T) are real valued and ∥v∥∞ < π

2 . Clearly logw = u+ṽ ∈ L1

and by (Lemma 7.6.5) we have w ∈ L1(T). Hence there exists an outer function h ∈ H2 such that
|h|2 = w. Thus log |h|2 = u+ ṽ and log h2 = u+ ṽ + i(u+ ṽ)∼ = u+ ṽ + i(ũ− v + c) for some
constant c ∈ R. Setting g = e−(u+iũ)−ic we obtain, in view of |g| = e−u, a bounded holomorphic
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function g ∈ H∞. Moreover,

h

h̄
g = h2

|h|2
g = exp(i(ũ− v + c) − u− iũ− ic) = exp(−u− iv),

where ∥v∥∞ < π
2 . This gives the following estimates on T.

e−∥u∥∞ ≤
∣∣∣h
h̄
g
∣∣∣ ≤ e∥u∥∞ ,

∣∣∣ arg(h
h̄

)g
∣∣∣ = |v| < π

(1 − ϵ)
2 .

(cf. Figure 2). The value of (h
h̄
)g thus belongs to

D :=
{
z ∈ C : e−∥u∥∞ ≤ |z| ≤ e∥u∥∞ , | arg z| < π

(1 − ϵ)
2

}
.

For λ sufficiently big and some δ > 0 we have B(λ, (1 − δ)λ) ⊃ clos D or λ−1B(λ, (1 − δ)λ) =
B(1, 1−δ) ⊃ λ−1 clos D. Then λ−1 h

h̄
g ∈ B(1, 1−δ) a.e. on T. In other words, |λ−1(h

h̄
)g−1| < 1−δ

a.e. on T, and |λ−1g − ( h̄
h)| < 1 − δ a.e. T. As g ∈ H∞, this gives distL∞(T)( h̄

h , H
∞) < 1.

7.7 An example

Let ω(eit) = |t|α, t ∈ (−π, π), α ∈ R. Then for α ≥ 1 we have 1/ω ̸∈ L1(T) and (eint)n∈Z cannot
be uniformly minimal in view of Lemma 7.2.3. For α ≤ −1, ω ̸∈ L1. Thus, the only interesting

case is |α| < 1.
First note that if the quotient ω1/ω2 and ω2/ω1 are bounded, then the sequence (eint)n∈Z is a
basis of L2(ω1) if and only if it is one of L2(ω2).

[
|w1
w2

| < K and |w2
w1

| < K1. By the Lemma 7.2.3,
(eint)n∈Z is a basis of L2(w1) ⇔ 1

w1
∈ L1. Now

∫
| 1
w2

| ≤
∫

|K
w1

| = K

∫ 1
|w1|

< ∞ ⇒ 1
w2

∈ L1 ⇔

(eint)n∈Z is a basis of L2(w2) by Lemma 7.2.3. Similarly the other case follows.]
The identity map f 7−→ f is an isomorphism from L2(ω1) to L2(ω2).

Next, let ω1 = ω and ω2 = (1 − eit)α. Then

logω2 = log |1 − eit|α = αRe arg(1 − eit) := u.

Necessarily, we get
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ũ(t) = α arg(1 − eit) = α arg(eit/2(e−it/2 − eit/2)

= α arg(eit/2(−2i sin t/2).

=
{
α(t/2 − π/2) if t > 0
α(π/2 − t/2) if t < 0.

We deduce that ∥ũ∥∞ = |α|π
2 <

π
2 if |α| < 1. Hence (eint)n∈Z is a basis in L2(|t|αdt) ⇔ |α| < 1.
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Chapter 8

Transfer to the upper half-plane

In this section, we give an outline of the Hardy-space theory in the half-plane and on the line.
We restrict ourselves to the key results only: an isometric correspondence between Hardy-space

in the disc and in the half-plane, the canonical factorization, the Fourier transform
representation (Paley-Wiener theorem), and invariant subspaces.

8.1 A unitary mapping from Lp(T) to Lp(R)

Let ω : D → C, ω(z) = i1+z
1−z , be the usual conformal mapping of the disc D to the upper

half-plane C+ = {ξ ∈ C : Im ξ > 0}.
The restriction to the boundary ω|T is a one to one correspondence between T∖ {1} and R. The

inverse ω−1, ω−1(x) = x− i

x+ i
has Jacobian |J(x)| = 2

1 + x2 , x ∈ R. Hence the mapping

U = Up : Lp(T) → Lp(R)

Upf(x) =
( 1
π(x+ i)2

)1/p

f(ω−1(x)), x ∈ R,

is an isomorphic isomorphism (unitary for p = 2) of the space Lp(T) onto Lp(R).
First, we give three descriptions of the image under U of the Hardy-space H2(T) ⊂ L2(T), then

pass to arbitrary p, 1 ≤ p ≤ ∞. Clearly, UpH
p(T) is a closed subspace of Lp(R).

8.2 Cauchy kernel and Fourier transform

The first description of U2H
2(T) is straightforward.

Lemma 8.2.1.
U2H

2(T) = spanL2(R)

{ 1
x− µ̄

: Im µ > 0
}
.

To prove this we first need the following proposition:
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Proposition 8.2.2. H2(D) = span{cλ = 1
λ−z

: λ ∈ D}

Proof. From Corollary 5.2.2 for f ∈ H2, and for each λ ∈ D the evaluation map φλ is bounded
and by Riesz-representation theorem it takes of the form: φλ(f) = f(λ) = ⟨f, cλ⟩ where cλ ∈ H2

is unique. We now calculate cλ and see that it is 1
λ−z

, z ∈ D. For each λ ∈ D, the function
λ → 1

λ−z
∈ H2, since

1
λ− z

=
∑
n≥0

λ
n
zn and (λn) ∈ ℓ2(N0)

and so

∥ 1
1 − λz

∥ = ∥
∑
n≥0

λ
n
zn∥ =

〈∑
n≥0

λ
n
zn,

∑
n≥0

λ
n
zn

〉 1
2

= 1
1 − ∥λ∥2 < ∞.

Furthure, if f = ∑
n≥0 anz

n ∈ H2 then
〈
f,

1
1 − λz

〉
=
∑
n≥0

anλ
n = f(λ).

By the uniqueness of the Riesz-representation theory: cλ = 1
λ−z

. Moreover, ∥cλ∥2 = ⟨cλ, cλ⟩ =
cλ(λ) = 1

1−|λ|2 . cλ is called the Cauchy Kernal or Szego Kernal. The space H2 is called the
Reproducing Kernal Hilbert space.
It is easy to check that the set D = {cλ : λ ∈ D} is linearly independent. Also if f ∈ H2 is
orthogonal to cλ, ∀λ ∈ D then f = 0 ( since f(λ) = ⟨f, cλ⟩). Hence D is dense in H2. (A set D
in X is dense if and only if D⊥ = {0}.)

Proof of Lemma 8.2.1. Since H2(T) = spanL2(T)

{
1

1−λ̄z
: |λ| < 1

}
, and U2 is an isometry, we

have

H2(T) = spanL2(T)

{
U2(1 − λ̄z)−1 = Cλ

z − ω(λ)
: λ ∈ D

}
= span{ 1

z − µ
: Imµ > 0}.

Clearly, µ = ω(λ) runs over the entire upper half-plane C+.

Now, we recall that Fourier transform F and its inverse F−1,

F(f)(z) = 1√
2π

∫
R
f(x)e−ixzdx,

F−1(f)(z) = 1√
2π

∫
R
f(x)eixzdx

are unitary mapping of L2(R) onto itself.

Lemma 8.2.3. U2H
2 = F−1L2(R+), where L2(R+) = {f ∈ L2(R) : f = 0 on (−∞, 0)}.
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Proof. Compute the inverse Fourier transform of the function χR+e
iλx ∈ L2(R+), where Imλ > 0 :

F−1(χR+e
iλx) = 1√

2π

∫
R
χR+e

iλxeixzdx = 1√
2π

1
i(z + λ) [ix(z + λ)]∞x=0 = i√

2π
1

z − (−λ) ,

where −λ = µ runs, again, over the entire half-plane C+. Since F−1 is an isometry, Lemma 8.2.3
reduces to the proof of the following identity:

L2(R+) = span{χR+e
iλx Imλ > 0}.

The equality follows from the injectivity (classical Fourier uniqueness theorem) of the Fourier
transform F . Let f ∈ L2(R+) and suppose that f⊥χR+e

iλx for all λ with Im λ > 0.∫
R
f(x)χR+e

−λxdx = 0

=⇒
∫
R
f(x)χR+e

−xe−iyxdx = 0 (putting λ = y + i)

=⇒ F(fχR+e
−x)(y) = 0 (∀y ∈ R)

=⇒ f χR+e
−x = 0 a.e. on R [ since f̂ = 0 =⇒ f = 0]

=⇒ f = 0

8.3 The Hardy space Hp
+ = Hp(C+)

Here we see from real line R to the half-plane C+. We identify the subspace UpH
p ⊂ L2(R) with

the space of boundary values of a certain holomorphic space in the half-plane C+. Note that
ω−1(z) = z−i

z+i is a conformal mapping from C+ to D.
Hence the same formula as above, Up : Hp(C+) → Hp(D)

Upf(z) =
( 1
π(z + i)

)1/p

f(ω−1(z)), Im z > 0

defines a holomorphic function in C+ for all f ∈ Hp(C+).
Moreover, ω−1 is still conformal at the boundary points r ∈ R and transfers a Stolz angle in C+,

{x+ iy : |x− r| < cy}, into a Stolz angle in D. Now, Fatou’s theorem implies that the functions
Upf, f ∈ Hp(D), have non-tangential boundary limits (Up(f))R a.e. on R, Up(fT) = (Upf)R.

Hence in order to get another characterization of UpH
p(T), it remains to describe UpH

p(D) in
intrinsic terms as a subset of Hol(C+). This is done in the next theorem. But, first we define

Hardy classes on C+.
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Definition 8.3.1. Hardy space Hp
+ = Hp(C+), 0 < p ≤ ∞, is the class of functions g ∈ Hol(C+)

such that
∥g∥Hp

+
= sup

y>0

( ∫
R

|g(x+ iy)|pdx
) 1

p
< ∞,

with the usual modification for p = ∞. In order to compare Hp(C+) with UpH
p(D), we need the

following simple result.

Lemma 8.3.2. (i) Let γ be an arbitrary circle in D. Then∫
γ

|f(z)|p|dz| ≤ 2
∫
T

|f(z)|p|dz|

for all f ∈ Hp(D), 1 ≤ p < ∞, here |dz| stands for the arc length measure.

(ii) Let g ∈ Hp(C+), 1 ≤ p < ∞ and z ∈ C+, then

|g(z)| ≤
( 2
π Im z

) 1
p ∥g∥Hp

+
.

Proof. (i) First let p = 1. For u ∈ L1(µ), denote by u∗ be the harmonic extension of u in the
unit disc,

u∗(z) =
∫
T
u(ζ)1 − |z|2

|ζ − z|2
dm(ζ), z ∈ D.

We show that u 7−→ u∗|γ is a bounded operator from L1(π) to L1(γ) of norm at most 4π. Indeed,

∫
γ

|u∗(z)||dz| ≤
∫

γ
|u(ζ)|1 − |z|2

|ζ − z|2
dm(ζ)|dz|

=
∫
T

|u(ζ)|
( ∫

γ

1 − |z|2

|ζ − z|2
|dz|

)
dm(ζ)

= 2πr
∫
T

|u(ζ)|1 − |c|2

|ζ − c|2
dm(ζ),

where γ = γ(c, r). In the last inequality, we have used the MVT for harmonic functions applied to
the Poisson kernel Pz(ζ) = Re

( z+ζ
z−ζ

)
. Since 2πdm(z) = |dz| on T, r ≤ 1 − |c| and 1−|c|2

|ζ−c|2 ≤ 1+|c|
1−|c| ≤

2
1−|c| , we get the desired inequality. For an arbitrary p, 1 ≤ p < ∞, we have |u∗|p ≤ (|u|p)∗, from
Holder’s inequality, and the result follows.
(ii) Using the MVT in the disc, D = {x+ iy : |λ− (x+ iy)| < Im λ}, Holder’s inequality, and
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what is sometimes called the “rolling a disk" trick:

|g(λ)| = 1
π(Imλ)2

∫
D

|g dxdy|

≤ 1
π(Imλ)2 (

∫
D

|g|pdxdy)
1
p (
∫
D

1dxdy)
1
q

≤
( 1
π(Imλ)2

)( ∫
D

|g|pdxdy
) 1

p (π(Imλ)2)
1
q

≤
( 1
π(Imλ)

)2(1− 1
q

)( ∫ 2 Im λ

0
dy

∫
R

|g(x+ iy)|pdy
) 1

p

≤
( 2

(π Imλ)
) 1

p ∥g∥Hp
+
.

The following theorem is one of the main result of this section.

Theorem 8.3.3. Let 1 ≤ p ≤ ∞. Then UpH
p(D) = Hp(C+).

Proof. If g ∈ Hol(C+), y > 0, and Uf = g, then∫
R

|g(x+ iy)|pdx = 1
2π

∫
Cy

|f(z)|2|dz|,

where Cy is the circle in D having the interval [y−1
y+1 , 1] as diameter and being tangent to the

unit circle T at the point 1. A line on the upper half plane at a distance y parallel to x-axis
maps to the circle Cy := {z : |z − y

y+1 | = 1
y+1}, i.e., to check! for a point (x + iy0) in the line

parallel to x-axis in the upper half plane maps to Cy0 under w−1. i.e., w−1(x+ iy0) = x+iy0−i
x+iy0+i

satisfies |z − y0
y0+1 | = 1

y0+1 . There are two points to be noted from the above discussions (Fig 3):
(i) Infinite straight-line parallel to x-axis on the upper-half plane wraps around the circle Cy

(ii) The region Im z ≥ y > 0 maps into the inside of the circle Cy, easily check that (0, 2y) maps
to center of the circle ( y

y+1 , 0). Now

∫
R

|g(x+ iy0)|pdx =
∫ +∞

−∞

∣∣∣∣ 1
π(x+ iy0 + i)

∣∣∣∣ |f(ω−1(x+ iy0))|pdx

=
∫ +∞

−∞

1
π(x2 + (y0 + 1)2)

∣∣∣∣f (x+ iy0 − i

x+ iy0 + i

)∣∣∣∣p dx
=
∫

Cy0

|f(z)|p |dz|
2π

So it remains to verify that

sup
0<r<1

∫
T

|f(rξ)|p|dξ| < ∞ ⇔ sup
y>0

∫
Cy

|f |p|dz| < ∞,∀f ∈ Hol (D).
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( =⇒ ) Using Lemma 8.3.2 (i) =⇒ : for any closed curve γ ∈ D,∫
γ

|f(z)|pdz ≤ 2
∫
T

|f(z)|pdz

=⇒ sup
∫

γ
|f(z)|pdz ≤ 2 sup

∫
T

|f(z)|pdz

=⇒ sup
∫

γ
|f(z)|pdz < ∞

=⇒ sup
y>0

∫
Cy

|f(z)|pdz < ∞ [for γ = Cy]

( ⇐= )To prove the converse, let g ∈ Hp
+. By Lemma 8.3.2 (ii), g is bounded on every half-plane

Im z ≥ y > 0. Hence g◦w is bounded on the disc int(Cy). Since the function (1−z) is outer on the

int(Cy) (no-zero inside the interior) and f = π
(( 2i

1−z

)2) 1
p (g ow) ∈ Lp(Cy),∗1 we get f ∈ Hp(Cy)

by the integral maximum principle 5.7.7 (iv). (We use the previous theory for the following
classes Hp(D) over disc D = int (Cy), instead of the unit disc D; the corresponding modifications,
including the very definition of Hp(D), do not cause any difficulties and can be obtained by a
linear change of variable). Now, applying Lemma 8.3.2(i) to the circle γ(r) = {z ∈ C : |z| = r} ⊂
int(Cy), we get ∫

γ(r)
|f(z)|p|dz| ≤ 2 sup

y>0

∫
Cy

|f(z)|p|dz|.

In fact, the Poisson representation (Corollary 8.4.1) implies that for g ∈ Hp
+, the norms

( ∫
R

|g(x+ iy)|pdx
) 1

p

are monotonically increasing in y > 0 and tend to ∥g|R∥Lp as y → 0 (to see this, use approximate
identity properties of the Poisson kernel). This shows that ∥g|R∥Lp = ∥g∥Hp

+
.

∗1 [∫
Cy

(π( 2i
1−z )2)|gow|p(z)dz =

∫
{line passing through y} |gow|pdw =

∫
AB |g(w)|pdw < ∞ since

g ∈ Hp(C+) =⇒

sup
y>0

( ∫
R

|g(x+ iy)|pdx
) 1

p
< ∞ =⇒ ∀y > 0,

∫
R

|g(x+ iy)|pdx < ∞

]
Theorem 8.3.4. (R. Paley and N. Wiener, 1934 )

Hp(C+) = F−1L2(R+)

Proof. This is immediate from Lemma 8.2.3 and Theorem 8.3.3.
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Figure 8.1: Fig3

8.4 Canonical factorization and other properties

The following properties are straightforward consequences of the change of variables from
Section 8.1, Theorem 8.3.3, and the corresponding facts from Hp theory in the disc D.

Corollary 8.4.1. (Poisson formula) If f ∈ Hp(C+), 1 ≤ p ≤ ∞, then

f(x+ iy) = 1
π

∫
R

y

(x− t)2 + y2 f(t)dt, y > 0.

Proof. f ∈ HP (C+) =⇒ there exists g ∈ Hp(D) such that Upg(z) = f(z), z ∈ C+ =⇒ f(z) =
( 1

π(z+i))1/pg( z−i
z+i), z ∈ C+. Now put w = z−i

z+i ∈ D for z ∈ C+; then ( 1
z+i)2 = (1−w

2i )2 hence f(z)
can be re written as

f(z) =
( 1
π

(1 − w

2i )2
)1/p

g(w) for z ∈ C+ and w ∈ D.

= h(w) ∈ Hp(D)
[
since

( 1
π

(1 − w

2i )2
)1/p

is bounded on D and g ∈ Hp(D)
]
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Now using Poisson formula for h on D :

f(z) = f(x+ iy) = h(w) = 1
2π

∫ 2π

0
h̃(ξ)1 − |w|2

|ξ − w|2
|dξ|

= 1
2π

∫
R
h̃( t− i

t+ i
)

1 − | z−i
z+i |

2

| t−i
t+i − z−i

z+i |2
2dt

1 + t2
[since ξ = t− i

t+ i
, w = z − i

z + i
]

= 1
2π

∫
R
f̃(t) 2y

|t− z|2
dt

= 1
π

∫
R

y

(x− t)2 + y2 f̃(t)dt, y > 0

Corollary 8.4.2. (Boundary uniqueness theorem) If f ∈ Hp(C+), 1 ≤ p ≤ ∞ and f ̸= 0, then
∫
R

| log |f(x)||
1 + x2 dx < ∞.

Proof. Let f ∈ Hp(C+) =⇒ f(z) = h(w) for z ∈ C+, w ∈ D and h ∈ Hp(D) By the boundary
uniqueness theorem for the disk:

1
2π

∫ 2π

0
| log |h(ξ)|||dξ| < ∞

=⇒ 1
2π

∫
R

∣∣∣log |f̃(t)|
∣∣∣ 2dt

1 + t2
< ∞

=⇒
∫
R

| log |f̃(t)||
1 + t2

dt < ∞.

Corollary 8.4.3. (Blaschke condition and Blaschke product) If f ∈ Hp(C+), 1 ≤ p ≤ ∞, and
f ̸= 0, then ∑ Imλn

1 + |λn|2
< ∞,

where λn are the zero of f in C+ (counting multiplicities). The corresponding Blaschke product
(having similar properties as in D) is

B(z) =
∏
n

ϵn
z − λn

z − λ̄n

, z ∈ C+,

where ϵn = |λ2
n+1|

λ2
n+1 (by definition, ϵn = 1 for λn = i).

Proof. Let f ∈ HP (C+), 1 ≤ p ≤ ∞ and f ̸= 0. Then there exists g ∈ Hp(D) such that Upg = f.

Now, f(λn) = 0 =⇒ Upg(λn) = 0 =⇒
(

1
π(λn+i)2

)1/p
g(λn−i

λn+i) = 0 =⇒ g(γn) = 0 where
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γn = λn−i
λn+i ∈ D. So λ′

ns are roots of f if and only if γ′
ns are roots of g.

|γn| = |λn − i|
|λn + i|

=⇒ |γn|2 = γnγn = λn − i

λn + i
.
λn + i

λn − i
= |λn|2 + λni− iλn + 1

|λn|2 − λni+ iλn + 1
= 1 + |λn|2 − 2yn

1 + |λn|2 + 2yn

where yn = Im(λn).
Calculate 1 − |γn|2 = 4yn

1+|yn|2+2yn
.

We have g ∈ Hp(D). So |γn| → 1 when n → ∞ as ∑n≥1(1 − |γn|) < ∞ since ∑ an <

∞ =⇒ lim an = 0. So limn→∞(|λn| − 1) = 0 =⇒ limn→∞ |λn| = 1) since limn→∞
1−|λn|2
1−|λn| =

limn→∞(1 + |λn|) = 2(̸= 0). So ∑(1 − |γn|) < ∞ ⇔
∑(1 − |γn|2) < ∞ (Limit comparison Test of

the series). Now consider the series: ∑ yn

1+|λn|2

1 − |γn|2
yn

1+|λn|2
=

4yn

1+|yn|2+2yn

yn

1+|λn|2
= 4(1 + |λn|2)

1 + |λn|2 + 2yn
→ 4

( If |λn| → 1 in C+ =⇒ |λn| → x axis =⇒ Imλn = yn → 0 )
Hence by Comparison Test ∑(1 − |γn|2) < ∞ ⇔

∑ yn

1+|λn|2 < ∞. Hence the desired Blaschke
condition is: ∑ Im(λn)

1+|λn|2 < ∞.

■ The Blaschke factor for g ∈ Hp(D) is Πbγn

γn−w
1−γnw for w ∈ D and g(γn) = 0. Here bγn = |γn|

γn
=

| λn−i
λn+i

|
λn−i
λn+i

= (λn+i)|λn−i|
(λn−i)|λn+i| = |λ2

n+1|(λn+i)
(λn−i)|λn+i|2 = |λ2

n+1|(λn+i)(λn+i)
(λ2

n+1)(λn+i)(λn+i)
= |λ2

n+1|λn+i

λ2
n+1λn+1

Now

γn − w

1 − γnw
=

λn−i
λn+i − z−i

z+i

1 − (λn+i)(z−i)
(λn−i)(z+i)

= 2i(λn − z)(λn − i)
2i(λn − z)(λn + i)

. = (z − λn)(λn + i)
(z − λn)(λn + i)

B(z) = Πnbγn

γn−w
1−γnw = Πnϵn

z−λn

z−λn
where ϵn = |λ2

n+1|
λ2

n+1 .

Now λn = i =⇒ γn = 0 =⇒ w is a factor of B(w), w ∈ D =⇒ z−i
z+i is a factor of B(z) and

obviously ϵn = 1.

Theorem 8.4.4. Each function f ∈ Hp(C+); 1 ≤ p ≤ ∞, has a unique factorization of the form
f = λBV [f ], where λ ∈ T, B is the Blaschke product constructed from the zeroes of f, V is a
singular inner function (an H∞ function having no zeroes in C+ and with unimodular boundary
values on R) of the form

V (z) = eiazVv(z) = eiaz exp
(
i

∫
R

1 + tz

t− z
dv(t)

)
,

where a ≥ 0, and v is a finite positive singular measure on R, [f ] is the Schwarz-Herglotz outer
factor of the form

[f ](z) = exp
( 1
πi

∫
R

1 + tz

t− z
log |f(t)| dt

1 + t2

)
, z ∈ C+
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Proof. Let f ∈ Hp(C+). Then there exists g ∈ Hp(D) such that f(z) = g(w) for z ∈ C+ and
w ∈ D. Now

[g](w) = exp
[ 1

2π

∫ 2π

0

ξ + w

ξ − w
log |g̃(ξ)||dξ|

]
Putting ξ = t−i

t+i and w = z−i
z+i we have:

t− i

t+ i
± z − i

z + i
= {tz + 1 + it− iz} ± {tz + 1 − i(t− z)}

(t+ i)(z + i)

=⇒ ξ + w

ξ − w
= 1 + tz

i(t− z)

Hence [f ](z) = [g]( z−i
z+i) = exp

(
1
πi

∫
R

1+tz
t−z log |f̃(t)| dt

1+t2

)
, z ∈ C+

■ As g ∈ Hp(D), g can be written as g = λBS[g]. Here S(w) = exp
[
−
∫
T

ξ+w
ξ−wdµ(ξ)

]
for w ∈ D

and ξ ∈ T and µ ⊥ m. ∴ S( z−i
z+i) = exp

[
−
∫
R

1+tz
i(t−z)dµ

(
t−i
t+i

)]

S(w) = exp
[
−1 + w

1 − w
µ({1}) −

∫
T\{1}

ξ + w

ξ − w
dµ(ξ)

]

=⇒ S

(
z − i

z + i

)
= exp

[
iµ({1})z −

∫
R

1 + tz

i(t− z)dµ
(
t− i

t+ i

)]
[∵ i(1 + w)

1 − w
= −z]

∴ V (z) = eiαz exp
[∫

R

1 + tz

i(t− z)dν(t)
]

when α = µ{1}, dν(t) = dµ
(

t−i
t+i

)
= 2

1+t2dµ(t).

Remark 8.4.5. It is clear from the previous computations that other facts of the Hardy Nevanlinna
theory of Sections 3 and 4 in the disc can be transferred to the half-plane. In particular, the
properties of the inner outer factorization from subsections 6.2-6.3 still hold with corresponding
modifications caused by the change of variables. For instance, a function f ∈ Hp(C+) having
an analytic continuation across a point x ∈ R has singular representing measure zero in a
neighborhood of this point. To find the point mass of the singular measure, the logarithmic
residues of Section 4 (to be added) can be redefined and computed and so on and so on. In
particular, the point mass at ∞ is a = − lim

y→∞
1
y

log |f(iy)|.

8.5 Invariant subspaces

Here we consider translation invariant subspaces of L2(R) and their Fourier dual objects -
character invariant subspaces.
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8.6 Duality between translation and multiplication by
characters

Define the translation operator τs by

(τsf)(x) = f(x− s), x ∈ R, for s ∈ R.

This is a group of unitary operators on L2(R). A subspace E ⊂ L2(R) (closed, as always) is said
to be (translation) 2-invariant and if τsE ⊂ E for all s ∈ R, and (translation) 1-invariant if

τsE ⊂ E for all s ≥ 0 but not for (all) s < 0. The Fourier image of the translation operator τs is
the multiplication operator by the corresponding character eisx of the group R:

τs(Ff) = F(eisf), for all f ∈ L2(R).

Without any risk of confusion, we write eisx both for the function x 7−→ eisx and for the
multiplication operator by this function, f 7−→ eisxf. Hence, we have

τs = FeisxF−1,

that is, the groups (τs)s∈R and (eisx)s∈R are unitarily equivalent (conjugate) via the Fourier
transform.

We use the same terminology as above for eisx -invariant subspaces. A subspace E ⊂ L2(R) is
(character) 2-invariant if eisxE ⊂ E for all s ∈ R, and (character) 1-invariant if eisxE ⊂ E for
s ≥ 0 but for (all) s < 0. Hence, E is an 1- or 2- character invariant if and only if its Fourier

image FE is a 1- or 2- translation invariant subspace.
Clearly, the Hardy space H2(C+) is a character 1-invariant subspace, and FH2(C+) = L2(R+)

is translation 1-invariant.
Below, we will derive analogue of the Wiener theorem 3.0.4 and Beurling Helson theorem 3.1.1
for character invariant subspaces. First, we prepare the transfer of these results to L2(R) by

means of the operator U2.

Lemma 8.6.1. Let us = exp
(
s z+1

z−1
)
s ∈ R, and let E be a (closed) subspace of L2(R). The E is

a 2-invariant subspace (with respect to the shift operator f 7−→ zf) if and only if usE ⊂ E, for
all s ∈ R, and E is 1-invariant subspace if and only if usE ⊂ E, for all s ≥ 0, but not for (all)
s < 0.

Proof. If b ∈ H∞, and E is a z-invariant subspace of L2(T), then bE ⊂ E. Indeed, by DCT, we
have

lim
r→1

∥bf − brf∥2 = 0, for all f ∈ E,

where br(z) = b(rz).
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On the other hand, znf ∈ E, for n ≥ 0 and therefore, brf ∈ E, since Taylor series of br is
absolutely convergent on T. Hence bf ∈ E. The same holds true for b̄ ∈ H∞ and z̄−invariant
subspace E. These prove the “only if" part of the lemma.
By analogous reasoning, to prove the converse, it suffices to show that the function z is the
bounded pointwise limit of functions ϕs = us − (1 − s)

us − (1 + s) as s → 0+. We have Re(1 − us(ζ)) ≥ 0,

and hence |ϕs(ζ)| ≤ 1, for ζ ∈ T. On the other hand, using the standard formula
esw = 1 + sw + o(s) as s → 0+, we easily get lim

s→0
ϕs(ζ) = ζ for ζ ∈ T \ {1}.

Theorem 8.6.2. (P. Lax, 1959 ) Let E be a subspace of L2(R).

(i) E is a (character) 2-invariant subspace if and only if E = χΣL
2(R) for a measurable subset

Σ ⊂ R.

(ii) E is a (character) 1-invariant subspace if and only if E = FqH
2(C+) for a measurable

function q on R with |q| = 1 a.e.

Proof. Lemma 8.6.1 shows that E is 2 or 1-invariant if and only if its preimage U−1
2 E ⊂ L2(T)

has the same property with respect to the shift operator on L2(R). The results thus follow by
applying theorems 3.0.4, 3.1.1 and Theorem 8.3.3.

Corollary 8.6.3. Let E be a subspace of L2(R).

1. E is translation 2-invariant if and only if E = FχΣL
2(R) for a measurable subset Σ ⊂ R.

2. E is translation 1-invariant if and only if E = FqH2(C+) for a measurable function q on
R with |q| = 1 a.e.

Indeed, it suffices to use Theorem 8.6.2 and duality of Subsection 8.6.

Corollary 8.6.4. (i) If F ⊂ H2(C+), then spanH2
+

{eisxF : s ≥ 0} = ΘH2(C+), where Θ is
the g.c.d of the inner factors of f ∈ F.

(ii) If F ⊂ L2(R+), then spanL2(R+){τsF : s ≥ 0} = F(ΘH2(C+)), where Θ is the g.c.d of the
inner factors of F−1f, f ∈ F.

(iii) If f ∈ L2(R), then spanL2(R){eisxf : s ∈ R} = L2(R) if and only if f ̸= 0 a.e. on R.

(iv) If f ∈ L2(R), then spanL2(R){eisxf : s ≥ 0} = L2(R) if and only if f ̸= 0 a.e. and

∫
R

(1 + x2) log |f |dx = −∞

(v) If f ∈ L2(R), then spanL2(R){τsf : s ≥ 0} = L2(R) if and only if Ff ̸= 0 a.e. on R
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(vi) If f ∈ L2(R), then spanL2(R){τsf : s ≥ 0} = L2(R) if and only if Ff ̸= 0 a.e. and

∫
R

(1 + x2) log |Ff |dx = −∞.

Indeed, it suffices to use Theorem 8.6.2 and Corollary 8.6.3 and the corresponding properties of
z-invariant subspaces of L2(R).

Theorem 8.6.5. (Cauchy Representation) Assume that 1 ≤ p < ∞.

(i) Let F (z) belongs to Hp(C+) and let F (x) be its boundary function. Then F (x) ∈
Lp(−∞,∞). F (z) =

1
2π

∫ ∞

−∞

F (t)
t− z

dt, y > 0 and (8.6.1)

0 = 1
2πi

∫ ∞

−∞

F (t)
t− z

, y < 0. (8.6.2)

(ii) Let F (x) be any function in Lp(−∞,∞) satisfying (6.2). Then (6.1) and the Poisson
representation (Corollary 8.4.1 ) define one and the same function F (z) on C+. F (z)
belongs to Hp(C+) and the non-tangential boundary function is equal to F (x) a.e.

Proof. (i) By Fatou’s lemma and the definition of Hp(C+), we have:∫ ∞

∞
|F (x)|pdx ≤ lim

y→0
inf
∫ ∞

−∞
|F (x+ iy)|pdx < ∞ =⇒ F ∈ Lp(−∞,∞).

Let G(z) = 1
2πi

∫∞
−∞

F (t)
t−z dt, y ̸= 0 Then G(z) is homomorphic separately for y > 0 and y < 0. For

y > 0

G(z) −G(z) = 1
2πi

∫ ∞

−∞

[ 1
t− z

− 1
t− z

]
F (t)dt

= y

π

∫ ∞

−∞

F (t)
(t− x)2 + y2dt

= F (z).

Since F (z) and G(z) are homomorphic on C+ so is G(z), z ∈ C+. But

G(z) = − 1
2πi

∫
T

F (t)
t− z

dt, z ∈ C+

is also homomorphic. Since G(z) and G(z) are both holomorphic, hence G(z) is constant on C+.

Since G(−iy) → 0 as y → ∞, G(z ̸= 0) on C+. Thus (8.6.1) and (6.2) holds.
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(ii) Assuming

0 = 1
2πi

∫ ∞

−∞

F (t)
t− z

dt, ∀y < 0 =⇒ 0 = − 1
2πi

∫ ∞

−∞

F (t)
t− z

dt, ∀y > 0 =⇒ 0 = G(z), ∀y > 0

In (i) we have proved: G(z) − G(z) = F (z) for y > 0 =⇒ G(z) = F (z). Applying Holders
inequality:∫ ∞

−∞
|F (x+ iy)|pdx =

∫ ∞

−∞

∣∣∣∣∫ ∞

−∞

y/π

(t− x)2 + y2F (t)dt
∣∣∣∣p dx

=
∫ ∞

−∞

∣∣∣∣∣
∫ ∞

−∞

[
y/π

(t− x)2 + y2F (t)
]1/p [ y/π

(t− x)2 + y2

]1/q

dt

∣∣∣∣∣
p

dx

≤
∫ ∞

−∞

∣∣∣∣∣
(∫ ∞

−∞

y/π

(t− x)2 + y2 |F (t)|dt
)1/p (∫ ∞

−∞

y/π

(t− x)2 + y2dt

)1/q
∣∣∣∣∣
p

dx

≤
∫ ∞

−∞

∣∣∣∣∣
(∫ ∞

−∞

y/π

(t− x)2 + y2 |F (t)|dt
)(∫ ∞

−∞

y/π

(t− x)2 + y2dt

)p/q
∣∣∣∣∣ dx

≤
∫ ∞

−∞

∣∣∣∣(∫ ∞

−∞

y/π

(t− x)2 + y2 |F (t)|pdt
)∣∣∣∣ dx

≤
∫ ∞

−∞

∫ ∞

−∞

y/π

(t− x)2 + y2 |F (t)|pdxdt

≤
∫ ∞

−∞
|F (t)|pdt

This shows that F ∈ Hp(C+)

8.7 Cauchy kernels and Lp- decomposition

Theorem 8.7.1. (i) Show that Hp(C+) = spanL2(R)

{ 1
x− µ̄

: Imµ > 0
}

for 1 ≤ p ≤ ∞.

(Hint: Use Hp(C+) = UpH
p and solve Upf = 1

x−µ̄).

(ii) Let 1 < p < ∞. Show that Lp(R) = Hp(C+) ⊕Hp(C−), where ⊕ stands for the orthogonal
sum for p = 2 and direct sum for p ̸= 2.

(iii) Let

Cf(z) = 1
2πi

∫
R

f(t)
t− z

dt, z ∈ C \ R

be the Cauchy integral of f ∈ Lp(R), 1 ≤ p < ∞, then the followings are equivalent.

(a) f ∈ Hp(C+).

(b) Cf = f∗, where f∗ stands for the Poisson integral extension.

(c) Cf(z) = 0 for Im z < 0.

Proof. Previously solved.
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Theorem 8.7.2. (The Paley Wiener theorem) An entire function E is called of exponential type
if

lim|z|→∞
log |E(z)|

|z|
< ∞;

the limit itself is the type of E. Let Ea = set of all entire functions of exponential type ≤ a. For
a > 0, show that the followings are equivalent.

(i) E ∈ Ea and E|R ∈ L2(R).

(ii) There exists f ∈ L2(R) such that Ff = E and supp f ∈ [−a, a].

Hint: For (ii) =⇒ (i), estimate the exponential type of E applying the Cauchy inequality to the
Fourier transform of f :

|E(z)| =
∣∣∣ ∫ a

−a
e−ixzf(x)dx

∣∣∣ ≤ ∥f∥2
(e2a| Im z| − 1

Im z

) 1
2 ≤ (2a)

1
2 ea| Im z|.

Moreover, ∥E∥2 = ∥f∥2 by Plancherel’s theorem:
(i) =⇒ (ii): First suppose that E|R ∈ L2(R) ∩ L∞(R). Then by Phragmèn-Lindelöf theorem

|E(z)| ≤ ∥E∥∞e
a| Im z|, for z ∈ C, implies

|Eλ(z)| = iλ

z + iλ
eaizE(z) ∈ H2(C+), λ > 0.

The Paley Wiener theorem 8.3.4 entails that F(Eλ) = 0 a.e. on (−∞, 0) and hence
F(eaizE) = 0 on (−∞, a) (because lim

λ→∞
∥Eλ − eaizE∥L2(R) = 0). Therefore,

F(E) = τaF(eiazE) = 0 a.e on (−∞,−a). Similarly F(E) = 0 a.e. on (a,∞.) and we get (ii).
In general case, replace E by Eϵ(z) =

∫
RE(z − t)ϕϵ(t)dt, where ϕϵ(t) = ϵ−1ϕ( t

ϵ), ϕ ≥ 0 is
compactly supported in R. It is easy to see that Eϵ ∈ Ea+ϵ and supp (Eϵ) ⊂ [−a− ϵ, a+ ϵ], and

we have lim
ϵ→0

∥Eϵ − E∥L2(R) = 0.

Question 8.7.3. (a) Show that f ∈ H2(C+) if and only if f ∈ L2(R) and F(f) = 0 a.e. on R.

(b) Find f ∈ L1(R) ∩ L2(R) such that L2(R) = spanL2(R)(τsf : s ∈ R) and L1(R) ̸=
spanL1(R){τsf : s ∈ R} (Hint: Consider f = χ(a,b).)

(c) Riesz Brother’s theorem for R: Let µ be a complex Borel measure on R such that∫
R e

istdµ(t) = 0 for all s > 0. Show that µ << m.

8.8 Exercises

Exercise 8.8.1. H1(C+) = H2(C+)H2(C+)
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Proof. We know that w : D → C+ is a conformal map.

F ∈ H1(C+) =⇒ F · w′ ∈ H1(D)

=⇒ F · w′ = G1 ·G2 where G1, G2 ∈ H2(D)

=⇒ F = [G1 · (w′)−1/2][G2 · (w′)−1/2]

Now define two functions g1, g2 by the following forms:

g1 • w = G1 · (w′)−1/2

g2 • w = G2 · (w′)−1/2

=⇒ (g1 • w)(w′)1/2 = G1 ∈ H2(D)

=⇒ (g2 • w)(w′)1/2 = G2 ∈ H2(D)

=⇒ g1, g2 ∈ H2(C+)

and

F = (g1 • w)(g2 • w)

=⇒ F • w−1 = g1 · g2

=⇒ f = g1 · g2.
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Chapter 9

Problem Sets

9.1 Problem Set I

1. Determine the validity (TRUE/FALSE) of each of the following statements, providing
rigorous justification in every case.

(a) Every subspace of L2(T,m) of dimension greater than one is simply invariant.

(b) Let H2 = span{zn : n ≥ 0}. Is it true that H2 ⊥ zH2?

(c) If 0 ̸= f ∈ H2, then Ef = span{znf : n ≥ 0} is a reducing subspace of H2.

(d) Let µ be a finite measure on T. Is Ef necessarily a reducing subspace of L2(µ)?

(e) If Θ ∈ H2 is an inner function, does it follow that

span{znΘ : n ≥ 0} = ΘH2?

(f) Is H2(T,m) ∩ L∞(T,m) dense in L2(T,m)?

(g) Let µ be a finite Borel measure on T. If z̄2 ∈ H2(µ), does it follow that H2(µ) =
z2H2(µ)?

(h) Let f = χ[0, π
2 ]. Does it follow that

span{znf : n ≥ 0}

is a non-reducing subspace of H2(T,m)?
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(i) Suppose 0 ≤ µ ≪ m. Can it happen that H2(µ) is a proper reducing subspace of
L2(µ)?

2. Let µ be a finite Borel measure on T. Prove or disprove that

L2(µ) = L2(µ) · L2(µ).

3. Let µ be a finite Borel measure on C. Prove or disprove that for every f ∈ L2(C, µ) there
exist g, h ∈ L2(C, µ) such that f = gh.

4. Let w ∈ L1
+(T,m) = {g ∈ L1(T,m) : g ≥ 0}. Suppose there exists f ∈ H2 such that

|f |2 = w a.e. on T. Show that there exists a unique outer function fo satisfying |fo|2 = w

a.e. on T.

5. Let µ be a finite Borel measure on T. Define H2
0 (µ) = zH2(µ). Show that

H2
0 (µ) = H2

0 (µa) ⊕ L2(µs),

where µ = µa + µs is the Lebesgue decomposition of µ.

6. Let µ be a finite Borel measure on T. Prove that the following are equivalent:

(i) There exists a non-reducing subspace E ⊂ L2(µ) with zE ⊂ E.

(ii) There exists a nonzero complex measure ν absolutely continuous with respect to µ
and orthogonal to P+, i.e. ∫

T
zn dν = 0 ∀ n ≥ 1.

7. Let µ be a finite measure on T. Show that

zE ⊆ E ⊂ L2(µ) ⇒ zE = E

if and only if m is not absolutely continuous with respect to µ.

8. Let µ be a compactly supported finite measure on C. Show that every reducing subspace
E of L2(µ) is of the form

E = χσL
2(µ),

for some Borel set σ ⊂ C.
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9. Let L∞(T,m) denote the space of essentially bounded measurable functions on T. Prove
the following:

(i) If f ∈ H2 ∩ L∞, then fH2 ⊂ H2.

(ii) If f ∈ H2 ∩ L∞ with ∥f∥∞ < 1, then 1 + f is an outer function.

(iii) If f ∈ H2 ∩ L∞, then ef ∈ H2 is an outer function.

10. Show that z−λ is an outer function if and only if |λ| ≥ 1. Hence, deduce that a polynomial
p is outer if and only if p has no zero in the open unit disc D = {z ∈ C : |z| < 1}.

11. Let µ be a finite measure on T. If H2(µ) is a proper subspace of L2(µ), show that

dist(1, H2
0 (µ)) > 0.

12. If f ∈ H2 is an outer function, prove that

span{znf : n ≥ 1} = zH2.

13. Let µ be a finite Borel measure on T and define

H2
0 (µ) = span{zn : n ≥ 1} ⊂ L2(µ).

For f ∈ L2(µ), compute dist(f,H2
0 (µ)).

14. Let f ∈ H1(T,m) ∩ L∞(T,m). Show that there exist fj ∈ L2(T,m) (j = 1, 2) such that

Ef2 = f1Ef2 ,

where Eg := span{zng : n ≥ 0}.

15. Let f(z) = ez and suppose g ∈ H2(T,m) satisfies f ∗ g = 1. Show that g must be constant.

100



MA650: Advanced Hardy Spaces Theory Problem Sets

9.2 Problem Set II

1. Determine whether each of the following statements is TRUE or FALSE, providing
rigorous justification in each case.

(a) An infinite Blaschke product has only finitely many repeated factors.

(b) For functions in Hp(D) with 0 < p < 1, non-tangential limits coincide with radial
limits.

(c) Can a non-zero function f ∈ Hp(T), 0 < p < 1, vanish on a set of positive measure?

(d) If f ∈ H1(D) is outer, then necessarily log |f | ∈ L1(T).

(e) If f ∈ L∞(T), then there exist inner functions θ1, θ2 and a sequence of polynomials
Pn such that Pn(θ1θ2) → f uniformly.

(f) For p > 0, let f ∈ Hp(D) with f ̸≡ 0. Does this imply that log |f | ∈ L1(T)?

(g) Let f ∈ Hol(D). Does the existence of non-tangential limits of f at a.e. ξ ∈ T imply
the existence of radial limits at a.e. ξ ∈ T?

(h) If Θ is an inner function in H2(T,m) such that ΘH2(m) = H2(m), does it follow that
Θ is constant a.e. with respect to m?

(i) Suppose f, g ∈ H2(T,m) are two non-zero functions with ĝ(0) = 0. Does it follow
that (̂fg)(0) = 0?

(j) Let f ∈ H2(T) satisfy 1
f ∈ H∞(T). Does it follow that 1

f ∈ Ef ?

(k) For f ∈ H∞(D), define

f(r)(z) = f(rz), |z| < 1
r , 0 ≤ r < 1.

Does it follow that
lim
r→1

∥f(r)∥∞ = ∥f∥H∞(D)?

2. Let S1 = {z ∈ D : |z − 1| ≤ c(1 − |z|)}. For z = reiτ , |τ | ≤ π, 0 < r < 1, show that |τ |
1−r is

uniformly bounded on S1.

3. Prove that P0
+ is dense in Hp for 1 ≤ p < ∞, and also dense in H∞ ∩ C(D).

4. Prove that H∞ is not separable.

5. Show that Hp \Hq ̸= {0} whenever q < p.

6. For ξ ∈ D and 1 ≤ p < ∞, define

φξ : Hp → C, φξ(f) = f(ξ).
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Show that
∥φξ/H

p∥ = (1 − |ξ|2)−1/p.

7. The Nevanlinna class is defined as

N(D) =
{
f ∈ Hol(D) : sup

0<r<1

∫
T

log+ |fr| dm < ∞
}
,

where log+ t = max(0, log t) for t > 0 and fr(z) = f(rz).

(i) Let f ∈ N(D) with f ̸= 0. Set hr(ξ) = max(1, |fr(ξ)|) for ξ ∈ T, 0 < r < 1, and define
Φr = [hr]. Show that

max(1, |fr(z)|) ≤ |Φr(z)| (z ∈ D), Φr(0) ≤ ec,

where c = sup0<r<1
∫
T log+ |fr| dm.

(ii) Deduce that fr = ψr/φr, where φr = 1/Φr ∈ H∞ with |ψr| ≤ 1, ∥φr∥ ≤ 1 in D, and
|φr(0)| ≥ e−c for all 0 < r < 1. Applying Montel’s theorem, conclude that there exist
φ,ψ ∈ H∞ with f = ψ/φ.

(iii) Show that
N(D) = {ψ/φ : φ,ψ ∈ H∞} ∩ Hol(D).

Hence, for every f ∈ N(D), the non-tangential limits exist a.e., log |f | ∈ L1, and

f = λBVµ[h], (h = |f |),

where Vµ(z) = exp
( ∫

T
ζ+z
ζ−z dµ(ζ)

)
for |z| < 1 and µ is a singular measure on T.

(iv) Conversely, λBVµ[h] ∈ N(D) for every λ,B, Vµ, and every h > 0 with log h ∈ L1.
Moreover, Hp ⊂ Lp ∩N(D) for every p > 0, and Hp = Lp ∩N+, where

N+ = {λBVµ[h] ∈ N(D) : µ ≥ 0}.

(v) Let fk ∈ L2(T) (1 ≤ k ≤ n) and define

E = span{zmfk : m ≥ 0, 1 ≤ k ≤ n}.

Show that E is simply invariant (i.e., zE ⊊ E) if and only if

(a)
∫
T log |fk| dm > −∞ for all k, and

(b) θ
fj

fk
∈ N(D) for all j, k, where θ is an inner function.

8. Let f ∈ N(D) with f(0) ̸= 0, and let (λn)n≥1 = Z(f) be its zero sequence. Suppose µ
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satisfies
Vµ(z) = exp

( ∫
T

ζ + z

ζ − z
dµ(ζ)

)
.

(i) Show that
log |f(0)| +

∑
n≥1

log 1
|λn|

+ µ(T) =
∫
T

log |f | dm.

(ii) Let f ∈ H∞ with |f(z)| ≤ 1 in D and f(0) > 0. Show that f is a Blaschke product if
and only if

lim
r→1

∫
T

log |fr| dm = 0.

(iii) Let f ∈ Hol(D) with f(0) > 0. Show that f is a Blaschke product if and only if

lim
r→1

∫
T

log |fr| dm = 0.

(iv) Let f ∈ Hol(DR), R > 0, with zero set (λn)n≥1 (counted with multiplicities). Define

n(s) = card{λk : |λk| ≤ s}, s ≥ 0.

(a) Assuming f(0) ̸= 0, prove

log |f(0)| +
∫ r

0

n(s)
s

ds =
∫
T

log |f(rξ)| dm(ξ), r < R.

(b) Suppose f(0) ̸= 0. For 0 ≤ a < R, show that
∫ r

a

n(s)
s

ds ≤
∫
T

log |f(rξ)| dm(ξ) + C, a < r < R,

where C = C(f, a) depends only on f and a.

9. Let µ be a finite Borel measure on T singular with respect to m. Define

f(z) = exp
(

−
∫
T

ξ + z

ξ − z
dµ(ξ)

)
, z ∈ D.

Show that |f | = 1 a.e. on T.

10. Let f be holomorphic on D with f(0) > 0. If

lim
r→1

∫
T

| log |fr|| dm = 0,

prove that f is a Blaschke product.
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11. Let f ∈ Hol(D). Show that there exists g ∈ L∞(T) such that∣∣∣∣ [g]
f

∣∣∣∣ ≤ 1 a.e. on T.

12. Let f ∈ H∞. Show that there exists g ∈ N(D) such that

Z(f) ∩ D = {z ∈ D : g(z) = 1}.

13. Let {Θi ∈ H2 : i ∈ I} be a family of inner functions. Show that

span {ΘiH
2 : i ∈ I} = ΘH2,

where Θ = gcd{Θi : i ∈ I}.

14. Show that a polynomial p(z) is outer in H2(T) if and only if Z(p) ⊂ {z ∈ C : |z| ≥ 1}.

15. For w ∈ L1(T), define
Ew = span{znw : n ≥ 0}

∣∣
L1(T).

Does there exist w ∈ L1(T) such that z ∈ Ew? Determine all such w.

16. Let M(T) denote the space of all complex Borel measures on T, and define

W = {µ ∈ M(T) : µ̂(k) = 0 for k < 0}.

Suppose µn ∈ W converges to µ ∈ M(T) in the weak∗ topology of M(T). Show that there
exists h ∈ H1(T) such that µ̂(k) = ĥ(k) for all k ∈ Z.

17. Let f, g ∈ H2(T,m). Show that fg ∈ H1(T,m). Does the same conclusion hold if
f ∈ L2(T,m)?

18. Using the identification of H1(D) with H1(T), show that convergence in H1(T) implies
uniform convergence on every disc in D.

19. Let f ∈ H∞(D). Show that f(r) converges to f̃ in the weak∗ topology of L∞(T).

9.3 Problem Set III

1. (a) Let p > 0 and suppose f ∈ Hp(D) with f ̸≡ 0. Does it follow that log |f | ∈ L1(T)?

(b) Let f ∈ Hol(D). Does the existence of non-tangential limits of f at almost every ξ ∈ T
imply the existence of radial limits of f at almost every ξ ∈ T?
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2. Let µ be a finite Borel measure on T, singular with respect to m. Define

f(z) = exp
(

−
∫
T

ξ + z

ξ − z
dµ(ξ)

)
, z ∈ D.

Show that |f | = 1 almost everywhere on T.

3. Let f be holomorphic on the open unit disc D with f(0) > 0. If

lim
r→1

∫
T

∣∣ log |fr|
∣∣ dm = 0,

then show that f is a Blaschke product.

4. Let f ∈ Hol(D). Show that there exists a function g ∈ L∞(T) such that∣∣∣∣ [g]
f

∣∣∣∣ ≤ 1 a.e. on T.

5. Let f ∈ H∞. Show that there exists a function g ∈ Nev(D) such that

Z(f) ∩ D = {z ∈ D : g(z) = 1}.

Additional Exercises. The following exercises are from N. Nikolskii, Operators, Functions,
and Systems: An Easy Reading, Vol. I.

Chapter 4, Exercises: 4.8.1–4.8.3

9.4 Problem Set IV

1. Determine whether the following statements are true or false, providing rigorous justification
in each case:

(a) Can a Blaschke product be an outer function?

(b) Does the generalized Jensen inequality hold for Hp when 0 < p < 1?

(c) Can an inner function arise as the uniform limit of Blaschke products with distinct
zeros?

(d) If f ∈ Nev(D) is outer on D, does it follow that f is outer on 1
2D?

(e) If u ∈ L∞(T) is real-valued, does this imply that its Hilbert transform ũ also belongs
to L∞(T)?
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2. Let f ∈ Hol(D). Suppose there exists a non-negative harmonic function g on D such that
|f(z)| ≤ g(z) for all z ∈ D. Show that f ∈ H1(T).

3. Prove that {
g ∈ L∞(T) :

∫
T
gf dm = 0 for all f ∈ H1

0

}
= H∞.

4. Show that the function 1
λ− z

is outer in D whenever |λ| > 1.

5. Let p, q, r ≥ 1 and let f ∈ Hp(D). Suppose that for any g ∈ Hq, the condition g/f ∈ Lr(T)
implies g/f ∈ Hr. Prove that f must be outer.

6. Let σ ⊂ T have positive Lebesgue measure. Define

fn = nχσ + 1
n
χT\σ, n ≥ 2.

Show that 1
n < |fn(z)| < n for all z ∈ D and that |fn|(T) ⊂ { 1

n , n}.

7. Let
E = span{zmfk : fk ∈ L2(T), m ≥ 0, 1 ≤ k ≤ n}.

Show that if zE ̸= E, then for some inner function θ we have θ fj

fk
∈ Nev(D) for all j, k.

8. If f ∈ H1(C+) and f ̸≡ 0, show that
∫
R

| log |f(x)||
1 + x2 dx < ∞.

9. Let f ∈ Hol(D), f ̸≡ 0, and suppose f = f1/f2 with f, f2 ∈ H1. Show that there exist
g1, g2 ∈ H∞ such that f = g1/g2.

10. Prove that
H2(T) = spanL2(T)

{ 1
1 − λ̄z

: |λ| < 1
}
.

Additional Exercises. The following problems are taken from N. Nikolskii, Operators,
Functions, and Systems: An Easy Reading, Vol. I:

• Chapter 5, Exercises 5.7.1–5.7.2

• Chapter 6, Exercises 6.6.1–6.6.3
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