DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA642: Real Analysis-I Instructor: Rajesh Srivastava Time duration: Three hours End Semester Exam April 30, 2017 Maximum Marks: 45

1

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does the space of polynomials P[0,1] complete in any norm on it?
 - (b) Is it possible that \mathbb{R}^2 can be written as countable union of connected paths? 1
 - (c) What is the cardinality of set of all the polynomials on \mathbb{R} such that complement of their zero set are connected? **1**
 - (d) Does there exist a sequence (x_n) such that $x_n \to 0$ but not in any of the sequence space l^p for $1 \le p < \infty$?
 - (e) For $f \in C([0,1] \times [0,1])$, define $f_n(x) = f(x, \frac{1}{n})$. Does the sequence (f_n) equicontinuous in C[0,1]?
- 2. Let $f: (X, d) \to [0, 1]$ be continuous map. Show that $f^{-1}(0)$ is a closed G_{δ} set. 2
- 3. Show that $(l^1, \|.\|_1)$ is a proper open subspace of $(l^2, \|.\|_2)$. Does $(l^1, \|.\|_1)$ closed subspace of $(l^2, \|.\|_2)$? **3+1**
- 4. Let A be a bounded open convex and symmetric (A = (-1)A) set in \mathbb{R}^2 containing the origin. Show that $||x|| = \inf\{\alpha > 0 : x \in \alpha A\}$ defines a norm on \mathbb{R}^2 . Does any norm on \mathbb{R}^2 can be defined in this way? 3+1
- 5. Let $W \subset (C[0,1], \|.\|_u)$ be such that every $f \in W$ satisfies $|f(x) f(y)| \le |x y|$ and $\int_0^1 f(x) dx = 1$. Show that W is compact in C[0,1]. 3
- 6. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \begin{cases} \frac{x\sqrt{x^2 + y^2}}{y} & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$

Show that f has all directional derivative at (0,0) but not continuous at (0,0). Further, show that the map $\varphi: S^1 \to \mathbb{R}$ defined by $\varphi(v) = D_v f(0,0)$ is onto. **2+1**

- 7. Let $f : \mathbb{R}^n \to [0, 1]^n$ be a differentiable map whose all the partial derivatives are bounded by 1. Show that $||f(x) - f(y)|| \le \sqrt{n}||x - y||$. 3
- 8. Let $A \in GL_n(\mathbb{R})$ and $\alpha \geq 2$. If $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ satisfies $\|\varphi(x) \leq \|\|x\|^{\alpha}$. Show that the map $g = \varphi + A$ is a C^1 map at 0 and g is invertible in a neighborhood of 0. 3+1
- 9. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuous such that f(x) > ||x|| for all $x \in \mathbb{R}^n$. Show that $f^{-1}(K)$ is compact, whenever K is compact in \mathbb{R} .

- 10. Define a function $\varphi : \mathbb{R} \to \mathbb{R}$ by $\varphi(x) = d(x, \mathbb{Z})$. Show that $f_n(x) = \varphi(2^n x) \to 0$, however $||f_n||_{\infty} = \frac{1}{2}$.
- 11. Let $T : \left(C\left[0, \frac{\pi}{2}\right], \|.\|_u\right) \to \left(C\left[0, \frac{\pi}{2}\right], \|.\|_u\right)$ be defined by $(Tf)(x) = \int_{s=0}^x f(s) \sin s ds$. Show that T is not a contraction but T^2 is a contraction. 1+2
- 12. Use the method of Lagrange's multiplier to find the extremum values of the function f(x, y) = xy on the ellipse $\frac{x^2}{2} + \frac{y^2}{8} = 1$.
- 13. Let \overrightarrow{N} the unit outward normal vector on the ellipse $x^2 + 2y^2 = 1$. Evaluate the line integral $\int_C \overrightarrow{N} \cdot \overrightarrow{dg}$ along the circle $C = \{(x, y) : x^2 + y^2 = 1\}$.
- 14. Show that the system of equations xy 1 = 0 and $y^2 + z^2 1 = 0$ can be solved for x and y in terms of z near $(2, \frac{1}{2}, \frac{\sqrt{3}}{2})$ as $x = \varphi(z)$ and $y = \psi(z)$. Further, find the values of $\varphi'(\frac{\sqrt{3}}{2})$ and $\psi'(\frac{\sqrt{3}}{2})$.

END