DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA642: Real Analysis-I
End Semester Exam
Instructor: Rajesh Srivastava
Time duration: Three hours
April 30, 2017
Maximum Marks: 45
N.B. Answer without proper justification will attract zero mark.

1. (a) Does the space of polynomials $P[0,1]$ complete in any norm on it? 1
(b) Is it possible that \mathbb{R}^{2} can be written as countable union of connected paths? $\mathbf{1}$
(c) What is the cardinality of set of all the polynomials on \mathbb{R} such that complement of their zero set are connected?
(d) Does there exist a sequence $\left(x_{n}\right)$ such that $x_{n} \rightarrow 0$ but not in any of the sequence space l^{p} for $1 \leq p<\infty$?
(e) For $f \in C([0,1] \times[0,1])$, define $f_{n}(x)=f\left(x, \frac{1}{n}\right)$. Does the sequence $\left(f_{n}\right)$ equicontinuous in $C[0,1]$?
2. Let $f:(X, d) \rightarrow[0,1]$ be continuous map. Show that $f^{-1}(0)$ is a closed G_{δ} set.
3. Show that $\left(l^{1},\|\cdot\|_{1}\right)$ is a proper open subspace of $\left(l^{2},\|\cdot\|_{2}\right)$. Does $\left(l^{1},\|.\|_{1}\right)$ closed subspace of $\left(l^{2},\|\cdot\|_{2}\right)$?
4. Let A be a bounded open convex and symmetric $(A=(-1) A)$ set in \mathbb{R}^{2} containing the origin. Show that $\|x\|=\inf \{\alpha>0: x \in \alpha A\}$ defines a norm on \mathbb{R}^{2}. Does any norm on \mathbb{R}^{2} can be defined in this way?
$3+1$
5. Let $W \subset(C[0,1],\|\cdot\| u)$ be such that every $f \in W$ satisfies $|f(x)-f(y)| \leq|x-y|$ and $\int_{0}^{1} f(x) d x=1$. Show that W is compact in $C[0,1]$.
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\left\{\begin{array}{cl}\frac{x \sqrt{x^{2}+y^{2}}}{y} & \text { if } y \neq 0, \\ 0 & \text { if } y=0 .\end{array}\right.$

Show that f has all directional derivative at $(0,0)$ but not continuous at $(0,0)$. Further, show that the map $\varphi: S^{1} \rightarrow \mathbb{R}$ defined by $\varphi(v)=D_{v} f(0,0)$ is onto.
7. Let $f: \mathbb{R}^{n} \rightarrow[0,1]^{n}$ be a differetiable map whose all the partial derivatives are bounded by 1 . Show that $\|f(x)-f(y)\| \leq \sqrt{n}\|x-y\|$.
8. Let $A \in G L_{n}(\mathbb{R})$ and $\alpha \geq 2$. If $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies $\|\varphi(x) \leq\| x \|^{\alpha}$. Show that the map $g=\varphi+A$ is a C^{1} - map at 0 and g is invertible in a neighborhood of $0 . \quad \mathbf{3 + 1}$
9. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuous such that $f(x)>\|x\|$ for all $x \in \mathbb{R}^{n}$. Show that $f^{-1}(K)$ is compact, whenever K is compact in \mathbb{R}.
10. Define a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ by $\varphi(x)=d(x, \mathbb{Z})$. Show that $f_{n}(x)=\varphi\left(2^{n} x\right) \rightarrow 0$, however $\left\|f_{n}\right\|_{\infty}=\frac{1}{2}$.
$1+2$
11. Let $T:\left(C\left[0, \frac{\pi}{2}\right],\|\cdot\|_{u}\right) \rightarrow\left(C\left[0, \frac{\pi}{2}\right],\|\cdot\|_{u}\right)$ be defined by $(T f)(x)=\int_{s=0}^{x} f(s) \sin s d s$. Show that T is not a contraction but T^{2} is a contraction.
12. Use the method of Lagrange's multiplier to find the extremum values of the function $f(x, y)=x y$ on the ellipse $\frac{x^{2}}{2}+\frac{y^{2}}{8}=1$.
13. Let \vec{N} the unit outward normal vector on the ellipse $x^{2}+2 y^{2}=1$. Evaluate the line integral $\int_{C} \vec{N} \cdot \overrightarrow{d g}$ along the circle $C=\left\{(x, y): x^{2}+y^{2}=1\right\}$.
14. Show that the system of equations $x y-1=0$ and $y^{2}+z^{2}-1=0$ can be solved for x and y in terms of z near $\left(2, \frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ as $x=\varphi(z)$ and $y=\psi(z)$. Further, find the values of $\varphi^{\prime}\left(\frac{\sqrt{3}}{2}\right)$ and $\psi^{\prime}\left(\frac{\sqrt{3}}{2}\right)$.

