DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA642: Real Analysis -1 Quiz - I Instructor: Rajesh Srivastava September 1, 2025 Time duration: 1.5 hours Maximum Marks: 10

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Is it possible that every monotone continuous function on \mathbb{R} is uniformly continuous?
 - (b) Does $\{f \in C[0,1] \text{ with } ||f||_1 \leq 1\}$ a bounded subset of normed linea space $(C[0,1], ||\cdot||_2)$?
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a monotone decreasing and bounded function. Define $h(x) = \inf\{f(y): x > y\}$. If f is continuous at a, then show that f(a) = h(a).
- 3. Let $f(x) = e^{-x^2}$. Show that for $n \in \mathbb{N}$, there exists M > 0 which is independent of x such that $|f(x)| \leq \frac{M}{(1+x^{2n})^2}$. Whether M can be independent of n too?
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and $\lim_{|x| \to \infty} f(x) = \infty$. Show that f is bounded below and attains its infimum.
- 5. If $0 \neq x \in l^{p_o}$ for some $p_o \geq 1$, then show that $\lim_{p \to \infty} \sup ||x||_p \leq ||x||_{\infty}$.

END