DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA642: Real Analysis Instructor: Rajesh Srivastava Time duration: 02 hours Quiz - II April 16, 2017 Maximum Marks: 10

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does there exist a non-empty open and connected set $A \subset \mathbb{R}^n$ such that every real valued function on A is continuous? 1
 - (b) Does there exist a discontinuous function $f : \mathbb{R} \to \mathbb{R}$ such that the graph G_f is connected in \mathbb{R}^2 but $\operatorname{int}(\overline{G}_f)$ is non-empty?
 - (c) Let $f_n \in C^1[0, 1]$. Does it imply that the set $\{f'_n : n = 1, 2, ...\}$ is equicontinuous in C[0, 1]?
 - (d) Let $f_n : [0,1] \to \mathbb{R}$ be defined by $f_n = \chi_{[0,1/n]}$ and f_n converges point-wise to f. Does it imply that $\{f, f_n : n = 1, 2, ...\}$ is compact in $L^{\infty}[0,1]$?
- 2. Show that $GL_n(\mathbb{C})$ is path connected by using the fact that every polynomial on \mathbb{C} has finitely many zeros. Does the set $GL_n(\mathbb{C})$ is open in $M_n(\mathbb{C})$? 2+1
- 3. Let $f_n : (0,1) \to \mathbb{R}$ be a sequence of uniformly continuous functions having uniform limit f. Show that $\{f, f_n : n = 1, 2, ...\}$ is a compact subset of C[0,1]. **2+1**

END