DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA642: Real Analysis-I Instructor: Rajesh Srivastava Time duration: Two hours Mid Semester Exam February 28, 2017 Maximum Marks: 30

1

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Is $\{(n, \sin \frac{1}{n}) : n \in \mathbb{N}\}$ a closed set w.r.t. usual metric on \mathbb{R}^2 ?
 - (b) Can the function $f(x) = \frac{x}{|x|}, x \neq 0$ be extended continuously on \mathbb{R} ?
 - (c) Let (X, d) be a metric space. Then $d(x, y) = 0 \forall x, y \in X$ if and only if
 - (d) Does there exist an unbounded set $A \subset \mathbb{R}$ such that $\lambda(A) = 0$, but $\lambda(\overline{A}) = 1$? 1
 - (e) Does it possible that any metric d on an infinite set X satisfying that every closed and bounded set is compact? 1
- 2. For $x, y \in (l^{\infty}, \|\cdot\|_{\infty})$ define $d(x, y) = \sharp\{n \in \mathbb{N} : x_n \neq y_n\}$. Prove or disprove that d is a metric on l^{∞} .
- 3. Let $(X, \|\cdot\|)$ be a normed linear space. Show that $\|x\| = \sup\{|\alpha| : |\alpha| < \|x\|\}$. 2
- 4. Let f be a non-negative function on a linear space X such that $f(\alpha x) = |\alpha| f(x)$ for all $\alpha \in \mathbb{C}$. Show that f is norm on X if and only if f is a convex map which can vanish at most at one point. 2+2
- 5. For $x \in (c_o, \|\cdot\|_{\infty})$, define $f_n(x) = \frac{1}{n+1} \sum_{j=1}^n x_j$. Show that $\lim_{n \to \infty} f_n(x) = 0$. Further, prove that $\sup_{\|x\|_{\infty}=1} |f_n(x)| = 1$. **2+3**
- 6. Show that $\{f \in C[0,1] : \|f\|_2 < 1\}$ is an unbounded subset of the normed linear space $(C[0,1], \|\cdot\|_{\infty}).$
- 7. Let $X = \{f \in C[-1,1] : f(0) = 0\}$ and $M = \left\{f \in X : \int_{-1}^{1} f(t)dt = 0\right\}$. Show that M is an infinite dimensional closed subspace of the normed linear space $(X, \|\cdot\|_{\infty})$. Does there exist a unit vector $f \in (X, \|\cdot\|_{\infty})$ such that $\|f + M\| > 1$? [3+1]
- 8. Let M be a closed subspace of normed linear space X. Define $\pi : X \to X/M$ by $\pi(x) = x + M$. Show that $\pi^{-1}(\pi(E)) = E + M$. Further, deduce that π is open. [3+2]