DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Course: MA642: Real Analysis - I

Instructor: Rajesh Srivastava

Duration: 2.0 hours

MidSem

Date: September 16, 2025

Maximum Marks: 30

Note: Answers lacking rigorous justification will not be awarded marks.

- 1. (a) Suppose $\limsup a_n = L$. Is it necessarily true that for each $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $a_n < L + \epsilon$ for all $n \ge N$?
 - (b) Does there exist a metric d on \mathbb{R} such that the sequence $x_n = n$ converges in (\mathbb{R}, d) ?
 - (c) Is it possible to cover the set $\{0, 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$ by finitely many open intervals of arbitrarily small length?
 - (d) Determine the cardinality of the set of all metrics on an arbitrary finite set. $\boxed{1}$
 - (e) Let f be a continuous function on the Cantor set $C \subset [0,1]$. Is it always possible to extend f continuously to the entire interval [0,1]?
 - (f) Consider the set $\{f \in C[0,1] : f(0) = 0\}$. Is this set closed in $(C[0,1], \|\cdot\|_1)$?
- 2. Let $a_1 = 1$ and $a_{n+1} = \sqrt[3]{1 + a_n^2}$. Using fixed point theory, prove that the sequence $\{a_n\}$ is convergent, and that its limit satisfies the equation $x^3 x^2 1 = 0$.
- 3. For any $f \in C[0,1]$, prove that

$$\lim_{p \to \infty} ||f||_p = ||f||_{\infty}.$$

4

- 4. Construct a seminorm p on ℓ^{∞} such that p is discontinuous with respect to the norm topology induced by $\|\cdot\|_{\infty}$.
- 5. Let $f:(1,\infty)\to (1,\infty)$ be a contraction mapping and define $g(x)=x^3-f(x)$. Prove that $g:(1,\infty)\to\mathbb{R}$ is injective. Is g surjective as well? Justify your answer.
- 6. For $f \in C^1[0,1]$, define $||f|| = ||f||_1 + ||f||_{\infty}$. Determine whether $(C^1[0,1], ||\cdot||)$ is a complete normed linear space.
- 7. Investigate the uniform convergence of the sequence

$$f_n(t) = \frac{(n+1)t + n^2t^2}{1 + n^2t^2}, \qquad t \in \mathbb{R}.$$