Assignment 3: Functions of several variables - II.

1. Find the point on the surface $f(x, y, z)=3 x^{2}-y^{2}-z=0$ at which the tangent plane is parallel to the plane $6 x+4 y-z=5$.
2. Find the equation of the surface generated by the normals to the surface $f(x, y, z)=x+2 y z+x y z^{2}=0$ at all points on the z-axis.
3. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be differentiable and $g(t)=(x(t), y(t), z(t)), t \in \mathbb{R}$, be a differentiable curve. Suppose that $f(g(t))$ attains its minimum at some point t_{o}. Show that $\nabla f\left(g\left(t_{o}\right)\right)$ is perpendicular to $g^{\prime}\left(t_{o}\right)$.
4. Consider the surface $z=f(x, y)=x^{2}-2 x y+2 y$. Find a point on the surface at which the surface has a horizontal tangent plane.
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be function given by $z=f(x, y)=x^{4}+y^{4}$. Find a point on the surface $z=f(x, y)$, where normal to the surface is perpendicular to the chord joining the points $(0,0, f(0,0))$ and $(1,1, f(1,1))$.
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a map defined by $f(x, y)=x^{2}+y^{2}$. Find the maximum rate of change of f along the ellipse $R(t)=(a \cos t, b \sin t), t \in[0,2 \pi)$.
7. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be function given by $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sin \left(x_{1}+x_{2}+\cdots, x_{n}\right)$. For the points $X, Y \in \mathbb{R}^{n}$, show that $|f(Y)-f(X)| \leq \sqrt{n}\|Y-X\|$.
8. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function. Show that f is convex if and only if $f(Y) \geq f(X)+f^{\prime}(X) .(Y-X)$, for all $X, Y \in \mathbb{R}^{2}$.
9. Let $f(x, y)=(x-y)\left(x-y^{2}\right)$. Examine the functions f for local maxima, local minima and saddle at $(0,0)$.
10. Find the points of absolute maximum and absolute minimum of the function $f(x, y)=x^{2}+y^{2}-2 x+2$ on the region $\left\{(x, y): x^{2}+y^{2} \leq 4\right.$ with $\left.y \geq 0\right\}$.
11. Let R be the region in \mathbb{R}^{2} bounded by the straight lines $y=x, y=3 x$ and $x+y=4$. Consider the transformation $T(u, v)=(u-v, u+v)$. Find the set S satisfying $T(S)=R$.
12. Evaluate the following integrals.
(a) $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \sqrt{1-y^{2}} d y d x$
(b) $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} d y d x$
13. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Show that $\int_{y=0}^{x} \int_{t=0}^{y} f(t) d t d y=\int_{t=0}^{x}(x-t) f(t) d t$.
14. Let R be the region in \mathbb{R}^{2} bounded by the curves $y=2 x^{2}$ and $y=1+x^{2}$. Evaluate the double integral $\iint_{R}\left(2 x^{2}+y\right) d x d y$.
15. Evaluate $\int_{C} T \cdot d R$, where C is the circle $x^{2}+y^{2}=1$ and T is the unit tangent vector.
16. Let \vec{N} the unit outward normal vector on the ellipse $x^{2}+2 y^{2}=1$. Evaluate the line integral $\int_{C} \vec{N} \cdot \overrightarrow{d R}$ along the circle $C=\left\{(x, y): x^{2}+y^{2}=1\right\}$.
17. Let S be the part of the cylinder $y^{2}+z^{2}=1$ that lies between the planes $x=0$ and $x=3$ in the first octant. Evaluate $\iint_{S}(z+2 x y) d \sigma$
18. Use Green's Theorem to compute $\int_{C}\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$ where C is the boundary of the region $\left\{(x, y): x, y \geq 0 \& x^{2}+y^{2} \leq 1\right\}$.
19. Let C be the boundary of the cone $z=x^{2}+y^{2}$ and $0 \leq z \leq 1$. Use Stoke's theorem to evaluate the line integral $\int_{C} \vec{F} \cdot \overrightarrow{d R}$ where $\vec{F}=(y, x z, 1)$.
20. Let $\vec{F}=(x y, y z, z x)$ and S be the surface $z=4-x^{2}-y^{2}$ with $2 \leq z \leq 4$. Use divergence theorem to find the surface integral $\iint_{S} \vec{F} \cdot \vec{n} d S$.
