Assignment 1: Metric and Normed Linear Spaces.

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) It is impossible to define a metric d on \mathbb{R} such that only finitely many subsets of \mathbb{R} are open in (\mathbb{R}, d) .
 - (b) If A and B are open (closed) subsets of a normed vector space X, then $A + B = \{a + b : a \in A, b \in B\}$ is open (closed) in X.
 - (c) If A and B are closed subsets of $[0, \infty)$ (with the usual metric), then A + B is closed in $[0, \infty)$.
 - (d) It is possible to define a metric d on \mathbb{R} such that the sequence (1, 0, 1, 0, ...) converges in (\mathbb{R}, d) .
 - (e) It is possible to define a metric d on \mathbb{R}^2 such that $\left(\left(\frac{1}{n}, \frac{n}{n+1}\right)\right)$ is not a Cauchy sequence in (\mathbb{R}^2, d) .
 - (f) It is possible to define a metric d on \mathbb{R}^2 such that in (\mathbb{R}^2, d) , the sequence $((\frac{1}{n}, 0))$ converges but the sequence $((\frac{1}{n}, \frac{1}{n}))$ does not converge.
 - (g) If (x_n) is a sequence in a complete normed vector space X such that $||x_{n+1} x_n|| \to 0$ as $n \to \infty$, then (x_n) must converge in X.
 - (h) If (f_n) is a sequence in C[0,1] such that $|f_{n+1}(x) f_n(x)| \le \frac{1}{n^2}$ for all $n \in \mathbb{N}$ and for all $x \in [0,1]$, then there must exist $f \in C[0,1]$ such that $\int_{0}^{1} |f_n(x) f(x)| dx \to 0$ as $n \to \infty$.
 - (i) If (x_n) is a Cauchy sequence in a normed vector space, then $\lim_{n\to\infty} ||x_n||$ must exist.
 - (j) $\{f \in C[0,1] : \|f\|_1 \le 1\}$ is a bounded subset of the normed vector space $(C[0,1], \|\cdot\|_{\infty})$.
 - (k) The space $(C^1[0,1], \| . \|)$, where $\|f\| = (\|f\|_2^2 + \|f'\|_2^2)^{\frac{1}{2}}$ is a Banach space.
 - (l) Let $f \in C^1[0,1]$ and $||f|| = ||f'||_2 + ||f||_{\infty}$. Then $(C^1[0,1], ||.||)$ is a Banach space.
 - (m) Let $f \in C^1[0,1]$. Then $||f|| = \min(||f'||_2, ||f||_\infty)$ defines a norm on $C^1[0,1]$.
 - (n) Let $X = \{f \in C^1[0,1] : f(0) = 0\}$. Then $||f|| = ||f'||_2$ is a norm on $C^1[0,1]$ but not complete.
- 2. Examine whether (X, d) is a metric space, where
 - (a) $X = \mathbb{R}$ and $d(x, y) = \frac{|x-y|}{1+|xy|}$ for all $x, y \in \mathbb{R}$.
 - (b) $X = \mathbb{R}$ and $d(x, y) = |x y|^p$ for all $x, y \in \mathbb{R}$ (0 .
 - (c) $X = \mathbb{R}^n$ and $d(x, y) = \left[\sum_{i=1}^n \frac{1}{i}(x_i y_i)^2\right]^{\frac{1}{2}}$ for all $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{R}^n$.
 - (d) $X = \mathbb{C}$ and for all $z, w \in \mathbb{C}$, $d(z, w) = \begin{cases} |z w| & \text{if } \frac{z}{|z|} = \frac{w}{|w|}, \\ |z| + |w| & \text{otherwise.} \end{cases}$

- (e) X = The class of all finite subsets of a nonempty set and d(A, B) = The number of elements of the set $A \triangle B$ (the symmetric difference of A and B).
- 3. Examine whether $\|\cdot\|$ is a norm on \mathbb{R}^2 , where for each $(x, y) \in \mathbb{R}^2$,

(a)
$$||(x,y)|| = (|x|^p + |y|^p)^{\frac{1}{p}}$$
, where $0
(b) $||(x,y)|| = \sqrt{\frac{x^2}{9} + \frac{y^2}{4}}$.
(c) $||(x,y)|| = \begin{cases} \sqrt{x^2 + y^2} & \text{if } xy \ge 0, \\ \max\{|x|, |y|\} & \text{if } xy < 0. \end{cases}$$

- 4. Let $||f|| = \min\{||f||_{\infty}, 2||f||_1\}$ for all $f \in C[0, 1]$. Prove that $||\cdot||$ is not a norm on C[0, 1]. 5. If $\mathbf{x} \in \mathbb{R}^n$, then show that $\lim_{p \to \infty} ||\mathbf{x}||_p = ||\mathbf{x}||_{\infty}$.
- 6. If $1 \le p < q \le \infty$, then show that $||x||_q \le ||x||_p$ for all $x \in \ell^p$.
- 7. Let d be a metric on a real vector space X satisfying the following two conditions:
 - (i) d(x+z, y+z) = d(x, y) for all $x, y, z \in X$,
 - (ii) $d(\alpha x, \alpha y) = |\alpha| d(x, y)$ for all $x, y \in X$ and for all $\alpha \in \mathbb{R}$.

Show that there exists a norm $\|\cdot\|$ on X such that $d(x,y) = \|x-y\|$ for all $x, y \in X$.

- 8. Let \mathbb{R}^{∞} be the real vector space of all sequences in \mathbb{R} , where addition and scalar multiplication are defined componentwise. Let $d((x_n), (y_n)) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{|x_n - y_n|}{1 + |x_n - y_n|}$ for all $(x_n), (y_n) \in \mathbb{R}^{\infty}$. Show that d is a metric on \mathbb{R}^{∞} but that no norm on \mathbb{R}^{∞} induces d.
- 9. Let $(X, \|\cdot\|)$ be a nonzero normed vector space. Consider the metrics d_1, d_2 and d_3 on X:

$$d_1(x, y) := \min\{1, ||x - y||\},$$

$$d_2(x, y) := \frac{||x - y||}{1 + ||x - y||},$$

$$d_3(x, y) := \begin{cases} 1 + ||x - y|| & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

for all $x, y \in X$. Prove that none of d_1, d_2 and d_3 is induced by any norm on X.

- 10. Let X be a normed vector space containing more than one point, let $x, y \in X$ and let $\varepsilon, \delta > 0$. If $B_{\varepsilon}[x] = B_{\delta}[y]$, show that x = y and $\varepsilon = \delta$. Does the result remain true if X is assumed to be a metric space? Justify.
- 11. Let $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 1\}$ and $B = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$. Examine whether $A \cap B$ is a closed/an open subset of \mathbb{R}^3 with respect to the usual metric on \mathbb{R}^3 .

- 12. For all $x, y \in \mathbb{R}$, let $d_1(x, y) = |x y|$, $d_2(x, y) = \min\{1, |x y|\}$ and $d_3(x, y) = \frac{|x y|}{1 + |x y|}$. If G is an open set in any one of the three metric spaces (\mathbb{R}, d_i) (i = 1, 2, 3), then show that G is also open in the other two metric spaces.
- 13. Let X be a nonzero normed vector space. Show that $\{x \in X : ||x|| < 1\}$ is not closed in X and $\{x \in X : ||x|| \le 1\}$ is not open in X.
- 14. Let X be a normed vector space and let $Y \neq X$ be a subspace of X. Show that Y is not open in X.
- 15. Let (x_n) and (y_n) be Cauchy sequences in a metric space (X, d). Show that the sequence $(d(x_n, y_n))$ is convergent.
- 16. Let (x_n) be a sequence in a complete metric space (X, d) such that $\sum_{n=1}^{\infty} d(x_n, x_{n+1}) < \infty$. Show that (x_n) converges in (X, d).
- 17. Let (x_n) be a sequence in a metric space X such that each of the subsequences (x_{2n}) , (x_{2n-1}) and (x_{3n}) converges in X. Show that (x_n) converges in X.
- 18. Show that the following are incomplete metric spaces.
 - (a) (\mathbb{N}, d) , where $d(m, n) = \left|\frac{1}{m} \frac{1}{n}\right|$ for all $m, n \in \mathbb{N}$
 - (b) $((0,\infty),d)$, where $d(x,y) = |\frac{1}{x} \frac{1}{y}|$ for all $x, y \in (0,\infty)$
 - (c) (\mathbb{R}, d) , where $d(x, y) = \left|\frac{x}{1+|x|} \frac{y}{1+|y|}\right|$ for all $x, y \in \mathbb{R}$
 - (d) (\mathbb{R}, d) , where $d(x, y) = |e^x e^y|$ for all $x, y \in \mathbb{R}$
- 19. Examine whether the following metric spaces are complete.
 - (a) ([0,1), d), where $d(x, y) = \left|\frac{x}{1-x} \frac{y}{1-y}\right|$ for all $x, y \in [0, 1)$
 - (b) ((-1,1),d), where $d(x,y) = |\tan \frac{\pi x}{2} \tan \frac{\pi y}{2}|$ for all $x, y \in (-1,1)$
- 20. For $X \neq \emptyset \subset \mathbb{R}$, let $d(x, y) = \frac{|x-y|}{1+|x-y|}$ for all $x, y \in X$. Examine the completeness of the metric space (X, d), where X is
 - (a) $[0,1] \cap \mathbb{Q}$.
 - (b) $[-1,0] \cup [1,\infty).$
 - (c) $\{n^2 : n \in \mathbb{N}\}.$
- 21. Examine whether the sequence (f_n) is convergent in $(C[0,1], d_{\infty})$, where for all $n \in \mathbb{N}$ and for all $t \in [0,1]$,
 - (a) $f_n(t) = \frac{nt^2}{1+nt}$.
 - (b) $f_n(t) = 1 + t + \frac{t^2}{2!} + \dots + \frac{t^n}{n!}$.

(c)
$$f_n(t) = \begin{cases} nt & \text{if } 0 \le t \le \frac{1}{n}, \\ \frac{1}{nt} & \text{if } \frac{1}{n} < t \le 1. \end{cases}$$

(d) $f_n(t) = \begin{cases} nt & \text{if } 0 \le t \le \frac{1}{n}, \\ \frac{n}{n-1}(1-t) & \text{if } \frac{1}{n} < t \le 1. \end{cases}$

- 22. Let X be the class of all continuous functions $f : \mathbb{R} \to \mathbb{C}$ such that for each $\epsilon > 0$, there exists a compact set $K \subset \mathbb{R}$ such that $|f(x)| < \epsilon$, for all $x \in \mathbb{R} \setminus K$. Show that $(X, \| \cdot \|_{\infty})$ is a Banach space.
- 23. Let X = C[0, 1] be the space all the continuous functions on interval [0, 1]. Prove that norms $\| \cdot \|_{\infty}$ and $\| \cdot \|_{1}$ on X are not equivalent.
- 24. Let $C^1[0,1]$ denote the space of all continuously differentiable functions on [0,1]. For $f \in C^1[0,1]$, define $||f|| = ||f||_{\infty} + ||f'||_{\infty}$. Show that space $(C^1[0,1], || . ||)$ is a Banach space.
- 25. Let $1 \le p < \infty$. Let X_p be a class of all the Riemann integrable functions on [0, 1]. Prove that $||f||_p = \left(\int_0^1 |f|^p\right)^{\frac{1}{p}} < \infty$. Prove that $(X_p, || . ||_p)$ is a normed linear space but not complete.
- 26. Let $1 \leq p < \infty$. Let $L^p[0,1] = \{f : [0,1] \to \mathbb{C}, f \text{ is Lebesgue measurable } \}$ with $||f||_p = \left(\int_0^1 |f|^p\right)^{\frac{1}{p}} < \infty$. show that $L^p[0,1]$ is proper dense subspace of $L^1[0,1]$, whenever 1 .
- 27. Let (x_n) be a sequence in a normed linear space X which converges to a non-zero vector $x \in X$. Show that

$$\frac{x_1 + \dots + x_n}{n^{\alpha}} \to x$$

if and only if $\alpha = 1$. If the sequence $x_n \to 0$, prove that

$$\frac{x_1 + \dots + x_n}{n^{\alpha}} \to 0, \text{ for all } \alpha \ge 1.$$

- 28. Prove that $l^{\infty} = \{x = (x_1, x_2, \ldots) : \|x\|_{\infty} = \sup_{i} |x_i|\}$ is a Banach space but not separable.
- 29. Let M be a subspace of a normed linear space X. Then show that M is closed if and only if $\{y \in M : \|y\| \le 1\}$ is closed in X.
- 30. Let $D = \{z \in \mathbb{C} : |z| < 1\}$. Let X be the class of all functions f which are analytic on D and continuous on \overline{D} . Define $||f||_{\infty} = \sup\{|f(e^{it})|: 0 \le t \le 2\pi\}$. Prove that $(X, ||.||_{\infty})$ is a Banach space.
- 31. Let M be a closed subspace of a normed linear space X. Prove that projection $\pi : X \to X/M$ defined by $\pi(x) = \tilde{x}$ is a continuous map.
- 32. Let X be a normed linear space. Prove that norm of any $x \in X$, can be expressed as $||x|| = \inf \{ |\alpha| : \alpha \in \mathbb{C} \setminus \{0\} \text{ with } ||x|| \le |\alpha| \}.$