
Assignment 1: Metric and Normed Linear Spaces.

1. State TRUE or FALSE giving proper justification for each of the following statements.

(a) It is impossible to define a metric d on R such that only finitely many subsets of R are
open in (R, d).

(b) If A and B are open (closed) subsets of a normed vector space X, then A + B = {a + b :
a ∈ A, b ∈ B} is open (closed) in X.

(c) If A and B are closed subsets of [0,∞) (with the usual metric), then A + B is closed in
[0,∞).

(d) It is possible to define a metric d on R such that the sequence (1, 0, 1, 0, ...) converges in
(R, d).

(e) It is possible to define a metric d on R2 such that (( 1
n
, n
n+1

)) is not a Cauchy sequence in
(R2, d).

(f) It is possible to define a metric d on R2 such that in (R2, d), the sequence (( 1
n
, 0)) converges

but the sequence (( 1
n
, 1
n
)) does not converge.

(g) If (xn) is a sequence in a complete normed vector space X such that ‖xn+1 − xn‖ → 0 as
n→∞, then (xn) must converge in X.

(h) If (fn) is a sequence in C[0, 1] such that |fn+1(x) − fn(x)| ≤ 1
n2 for all n ∈ N and for all

x ∈ [0, 1], then there must exist f ∈ C[0, 1] such that
1∫
0

|fn(x)− f(x)| dx→ 0 as n→∞.

(i) If (xn) is a Cauchy sequence in a normed vector space, then lim
n→∞

‖xn‖ must exist.

(j) {f ∈ C[0, 1] : ‖f‖1 ≤ 1} is a bounded subset of the normed vector space (C[0, 1], ‖ · ‖∞).

(k) The space (C1[0, 1], ‖ . ‖) , where ‖f‖ = (‖f‖22 + ‖f ′‖22)
1
2 is a Banach space.

(l) Let f ∈ C1[0, 1] and ‖f‖ = ‖f ′‖2 + ‖f‖∞. Then (C1[0, 1], ‖ . ‖) is a Banach space.

(m) Let f ∈ C1[0, 1]. Then ‖f‖ = min (‖f ′‖2, ‖f‖∞) defines a norm on C1[0, 1].

(n) Let X = {f ∈ C1[0, 1] : f(0) = 0}. Then ‖f‖ = ‖f ′‖2 is a norm on C1[0, 1] but not
complete.

2. Examine whether (X, d) is a metric space, where

(a) X = R and d(x, y) = |x−y|
1+|xy| for all x, y ∈ R.

(b) X = R and d(x, y) = |x− y|p for all x, y ∈ R (0 < p < 1).

(c) X = Rn and d(x, y) = [
∑n

i=1
1
i
(xi − yi)2]

1
2 for all x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn.

(d) X = C and for all z, w ∈ C, d(z, w) =

{
|z − w| if z

|z| = w
|w| ,

|z|+ |w| otherwise.



(e) X = The class of all finite subsets of a nonempty set and d(A,B) = The number of elements
of the set A4B (the symmetric difference of A and B).

3. Examine whether ‖ · ‖ is a norm on R2, where for each (x, y) ∈ R2,

(a) ‖(x, y)‖ = (|x|p + |y|p)
1
p , where 0 < p < 1.

(b) ‖(x, y)‖ =
√

x2

9
+ y2

4
.

(c) ‖(x, y)‖ =

{ √
x2 + y2 if xy ≥ 0,

max{|x|, |y|} if xy < 0.

4. Let ‖f‖ = min{‖f‖∞, 2‖f‖1} for all f ∈ C[0, 1]. Prove that ‖ · ‖ is not a norm on C[0, 1].

5. If x ∈ Rn, then show that lim
p→∞
‖x‖p = ‖x‖∞.

6. If 1 ≤ p < q ≤ ∞, then show that ‖x‖q ≤ ‖x‖p for all x ∈ `p.

7. Let d be a metric on a real vector space X satisfying the following two conditions:

(i) d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X,

(ii) d(αx, αy) = |α|d(x, y) for all x, y ∈ X and for all α ∈ R.

Show that there exists a norm ‖ · ‖ on X such that d(x, y) = ‖x− y‖ for all x, y ∈ X.

8. Let R∞ be the real vector space of all sequences in R, where addition and scalar multiplication

are defined componentwise. Let d((xn), (yn)) =
∞∑
n=1

1
2n
· |xn−yn|
1+|xn−yn| for all (xn), (yn) ∈ R∞. Show

that d is a metric on R∞ but that no norm on R∞ induces d.

9. Let (X, ‖ · ‖) be a nonzero normed vector space. Consider the metrics d1, d2 and d3 on X:

d1(x, y) := min{1, ‖x− y‖},

d2(x, y) :=
‖x− y‖

1 + ‖x− y‖
,

d3(x, y) :=

{
1 + ‖x− y‖ if x 6= y,
0 if x = y,

for all x, y ∈ X. Prove that none of d1, d2 and d3 is induced by any norm on X.

10. Let X be a normed vector space containing more than one point, let x, y ∈ X and let ε, δ > 0.
If Bε[x] = Bδ[y], show that x = y and ε = δ. Does the result remain true if X is assumed to
be a metric space? Justify.

11. Let A = {(x, y, z) ∈ R3 : x2 + y2 < 1} and B = {(x, y, z) ∈ R3 : z = 0}. Examine whether
A ∩B is a closed/an open subset of R3 with respect to the usual metric on R3.



12. For all x, y ∈ R, let d1(x, y) = |x− y|, d2(x, y) = min{1, |x− y|} and d3(x, y) = |x−y|
1+|x−y| . If G is

an open set in any one of the three metric spaces (R, di) (i = 1, 2, 3), then show that G is also
open in the other two metric spaces.

13. Let X be a nonzero normed vector space. Show that {x ∈ X : ‖x‖ < 1} is not closed in X and
{x ∈ X : ‖x‖ ≤ 1} is not open in X.

14. Let X be a normed vector space and let Y (6= X) be a subspace of X. Show that Y is not open
in X.

15. Let (xn) and (yn) be Cauchy sequences in a metric space (X, d). Show that the sequence
(d(xn, yn)) is convergent.

16. Let (xn) be a sequence in a complete metric space (X, d) such that
∞∑
n=1

d(xn, xn+1) <∞. Show

that (xn) converges in (X, d).

17. Let (xn) be a sequence in a metric space X such that each of the subsequences (x2n), (x2n−1)
and (x3n) converges in X. Show that (xn) converges in X.

18. Show that the following are incomplete metric spaces.

(a) (N, d), where d(m,n) = | 1
m
− 1

n
| for all m,n ∈ N

(b) ((0,∞), d), where d(x, y) = | 1
x
− 1

y
| for all x, y ∈ (0,∞)

(c) (R, d), where d(x, y) = | x
1+|x| −

y
1+|y| | for all x, y ∈ R

(d) (R, d), where d(x, y) = |ex − ey| for all x, y ∈ R

19. Examine whether the following metric spaces are complete.

(a) ([0, 1), d), where d(x, y) = | x
1−x −

y
1−y | for all x, y ∈ [0, 1)

(b) ((−1, 1), d), where d(x, y) = | tan πx
2
− tan πy

2
| for all x, y ∈ (−1, 1)

20. For X(6= ∅) ⊂ R, let d(x, y) = |x−y|
1+|x−y| for all x, y ∈ X. Examine the completeness of the metric

space (X, d), where X is

(a) [0, 1] ∩Q.

(b) [−1, 0] ∪ [1,∞).

(c) {n2 : n ∈ N}.

21. Examine whether the sequence (fn) is convergent in (C[0, 1], d∞), where for all n ∈ N and for
all t ∈ [0, 1],

(a) fn(t) = nt2

1+nt
.

(b) fn(t) = 1 + t+ t2

2!
+ · · ·+ tn

n!
.



(c) fn(t) =

{
nt if 0 ≤ t ≤ 1

n
,

1
nt

if 1
n
< t ≤ 1.

(d) fn(t) =

{
nt if 0 ≤ t ≤ 1

n
,

n
n−1(1− t) if 1

n
< t ≤ 1.

22. Let X be the class of all continuous functions f : R→ C such that for each ε > 0, there exists a
compact set K ⊂ R such that |f(x)| < ε, for all x ∈ R \K. Show that (X, ‖ . ‖∞) is a Banach
space.

23. Let X = C[0, 1] be the space all the continuous functions on interval [0, 1]. Prove that norms
‖ . ‖∞ and ‖ . ‖1 on X are not equivalent.

24. Let C1[0, 1] denote the space of all continuously differentiable functions on [0, 1]. For f ∈
C1[0, 1], define ‖f‖ = ‖f‖∞ + ‖f ′‖∞. Show that space (C1[0, 1], ‖ . ‖) is a Banach space.

25. Let 1 ≤ p <∞. Let Xp be a class of all the Riemann integrable functions on [0, 1]. Prove that

‖f‖p =
(∫ 1

0
|f |p
) 1

p
<∞. Prove that (Xp, ‖ . ‖p) is a normed linear space but not complete.

26. Let 1 ≤ p < ∞. Let Lp[0, 1] = {f : [0, 1] → C, f is Lebesgue measurable } with ‖f‖p =(∫ 1

0
|f |p
) 1

p
<∞. show that Lp[0, 1] is proper dense subspace of L1[0, 1], whenever 1 < p <∞.

27. Let (xn) be a sequence in a normed linear space X which converges to a non-zero vector x ∈ X.
Show that

x1 + · · ·+ xn
nα

→ x

if and only if α = 1. If the sequence xn → 0, prove that

x1 + · · ·+ xn
nα

→ 0, for all α ≥ 1.

28. Prove that l∞ = {x = (x1, x2, . . .) : ‖x‖∞ = sup
j
|xj|} is a Banach space but not separable.

29. Let M be a subspace of a normed linear space X. Then show that M is closed if and only if
{y ∈M : ‖y‖ ≤ 1} is closed in X.

30. Let D = {z ∈ C : |z| < 1}. Let X be the class of all functions f which are analytic on D

and continuous on D̄. Define ‖f‖∞ = sup{|f(eit)| : 0 ≤ t ≤ 2π}. Prove that (X, ‖ . ‖∞) is a
Banach space.

31. Let M be a closed subspace of a normed linear space X. Prove that projection π : X → X/M
defined by π(x) = x̃ is a continuous map.

32. Let X be a normed linear space. Prove that norm of any x ∈ X, can be expressed as
‖x‖ = inf {|α| : α ∈ C \ {0} with ‖x‖ ≤ |α|} .


