DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA641: Operator Theory in Hilbert Spaces Instructor: Rajesh Srivastava Time duration: Two hours Quiz I February 21, 2020 Maximum Marks: 10

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Let M be subspace of a Hilbert space H and let P_M be a projection map on M. Does it imply that extension of P_M to \overline{M} is an orthogonal projection? $\boxed{1}$
- 2. Show that a subspace M of Hilbert space H is closed if and only if there exists $f \in H^*$ such that $M = \ker f$.
- 3. Suppose $T: L^2[0,1] \to L^2[0,1]$ is a linear map defined by $T(f)(x) = \int_0^1 (x-t)f(t)dt$. Show that T is one-one and continuous.

4. Let $\{e_n\}$ be an orthonormal basis for a Hilbert space H. Suppose $T : H \to H$ is linear transformation that satisfying $\sum_{n=1}^{\infty} |\langle Te_n, e_n \rangle| < \infty$. Show that there exists $y \in H$ such that $\langle Tx, y \rangle = \sum_{n=1}^{\infty} \langle Tx, e_n \rangle \overline{\langle Te_n, e_n \rangle}$. Whether such y is unique? 4

END