DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA641: Operator Theory in Hilbert Spaces Instructor: Rajesh Srivastava Time duration: Four hours EndSem June 8, 2020 Maximum Marks: 40

N.B. Answer without proper justification will attract zero mark.

- 1. Let $T: l^{\infty} \to l^{\infty}$ be define by $T(x_1, x_2, x_3, \ldots) = (x_1, \frac{x_1+x_2}{2}, \frac{x_1+x_2+x_3}{3}, \ldots)$. Find a non-zero proper separable invariant subspace of T.
- 2. Let $g \in L^{\infty}(\mathbb{R})$ and T on $L^{2}(\mathbb{R})$ be defined by Tf = gf. Show that $||T|| = ||g||_{\infty}$. Further, derive that $\sigma_{com}(T) = \emptyset$. 5
- 3. Let $T: L^2[0,1] \to L^2[0,1]$ be defined by $Tf(t) = f(\frac{t}{2})$. Find the adjoint T^* of T. Show that $0 \notin \sigma_c(T) \cup \sigma_p(T^*)$.
- 4. Let T be a positive compact operator on a complex Hilbert space H. Show that there exists a positive compact operator S on H such that $S^2 = T$.
- 5. Let $\{e_n\}$ be an orthonormal basis for a complex Hilbert space H. If $\lambda_n \in \mathbb{R}$ be such that $\lambda_n \to 0$. Then show that there exists a unique self-adjoint compact operator T such that $Te_n = \lambda_n e_n$.
- 6. If $T: l^2 \to l^2$ is define by $T(x_1, x_2, x_3, x_4, \ldots) = (x_1 + x_2, x_2, x_3 + x_4, x_4, \ldots)$. Then find $\rho(T), \sigma_p(T), \sigma_c(T)$ and $\sigma_r(T)$.
- 7. Let *H* be separable Hilbert space. Show that for every closed set *F* in \mathbb{C} , there exists a sequence T_n of compact operators on *H* such that $F = \bigcup_{n=1}^{\infty} \sigma(T_n)$. **5**
- 8. Let T be a nonzero bounded operator on a complex Hilbert space H. Does it imply $\sigma_{com}(T) \subset \{\lambda \in \mathbb{C} : |\lambda| < ||T||\}$?
- 9. Suppose $g \in L^{\infty}(\mathbb{R})$. Define an operator T on $L^{1}(\mathbb{R})$ by Tf = gf. Find a non-zero proper invariant subspace of T.
- 10. Let $T \in \mathcal{B}(l^2)$ be a normal operator. Show that $\sigma_p(T)$ of T is countable. 3

END