- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) If H is a complex Hilbert space, then for each $T \in \mathcal{B}(H)$, there exist $A, B \in \mathcal{B}(H)$ such that A and B are invertible in $\mathcal{B}(H)$ and T = A + B.
 - (b) If H is a complex Hilbert space and $T \in \mathcal{B}(H)$ such that $3T^3 + 4I = 2T^2$, then $\sigma(T)$ must be a finite set.
 - (c) If H is a complex Hilbert space and $T \in \mathcal{B}(H)$ such that $r_{\sigma}(T) = ||T||$, then it is necessary that $||T^{n}|| = ||T||^{n}$ for all $n \in \mathbb{N}$.
 - (d) If H is a complex Hilbert space and if $T \in \mathcal{B}(H)$ is self-adjoint, then I + iT must be invertible in $\mathcal{B}(H)$.
 - (e) If H is an infinite dimensional complex Hilbert space and $T \in \mathcal{B}(H)$ such that T^2 is compact, then it is necessary that $0 \in \sigma(T)$.
 - (f) If X is a nonzero Banach space over \mathbb{C} and $T \in \mathcal{B}_0(X)$, then it is necessary that $\sigma(T) = \sigma_{ap}(T)$.
 - (g) There does not exist any nonzero proper reducing subspace in the Hilbert space \mathbb{C}^2 for $T \in \mathcal{B}(\mathbb{C}^2)$, where T(x, y) = (y, 0) for all $(x, y) \in \mathbb{C}^2$.
 - (h) If H is an infinite dimensional separable Hilbert space over \mathbb{C} and $T \in \mathcal{B}(H)$ is normal, then $\sigma_p(T)$ must be countable.
 - (i) If H is a complex Hilbert space and $T \in \mathcal{B}_0(H)$ such that I + T is one-one, then I + T must be invertible in $\mathcal{B}(H)$.
- 2. Let *H* be a Hilbert space and let $T \in \mathcal{B}(H)$ be normal. If $\lambda \in \mathbb{K}$, then show that ker $(T \lambda I)$ is a reducing subspace in *H* for *T*.
- 3. Let *H* be a Hilbert space and let $T \in \mathcal{B}(H)$ be normal. Show that $\{x \in H : ||Tx|| = ||T|| ||x||\}$ is a reducing subspace in *H* for *T*.
- 4. Let *H* be an infinite dimensional Hilbert space and let $T, S \in \mathcal{B}(H)$ such that $S \neq 0, I$ and STS = TS. Show that there exists a nonzero proper invariant subspace in *H* under *T*.
- 5. Let H be a Hilbert space and $T \in \mathcal{B}_0(H)$. If M is a closed subspace of H which is invariant under T and if S(x+M) = Tx + M for all $x \in H$, then show that $S \in \mathcal{B}_0(H/M)$.
- 6. If H is a non-separable Hilbert space and if $T \in \mathcal{B}(H)$, then show that H contains a nonzero proper invariant subspace for T.
- 7. Show that there is no nonzero proper reducing subspace of the right shift operator on ℓ^2 .
- 8. Let X be a Banach space and let $T \in \mathcal{B}(X)$ such that $||T^m|| < 1$ for some $m \in \mathbb{N}$. Show that I T is invertible in $\mathcal{B}(X)$ and that $(I T)^{-1} = \sum_{n=0}^{\infty} T^n$.
- 9. Let X be a Banach space and $T \in B(X)$. Prove that $\exp(T) = \sum_{0}^{\infty} \frac{T^n}{n!}$ is invertible and $\sigma(\exp T) = \exp(\sigma(T))$.

- 10. Let H be a Hilbert space. Let (T_n) and (S_n) be sequences in $\mathcal{B}(H)$ and let $T, S \in \mathcal{B}(H)$. If $T_n \to T$ (in norm) and $S_n \xrightarrow{WOT} S$, then show that $T_n S_n \xrightarrow{WOT} TS$.
- 11. Let H be a Hilbert space. Let (T_n) be a sequence in $\mathcal{B}(H)$ and let $T \in \mathcal{B}(H)$. If for each $x \in H$, $||T_n x|| \to ||Tx||$ and $\langle T_n x, x \rangle \to \langle Tx, x \rangle$ as $n \to \infty$, then show that $T_n \xrightarrow{SOT} T$.
- 12. Let H be a Hilbert space. Let $T_n \in \mathcal{B}(H)$ be normal for each $n \in \mathbb{N}$ and let $T \in \mathcal{B}(H)$ be normal. If $T_n \xrightarrow{SOT} T$, then show that $T_n^* \xrightarrow{SOT} T^*$.
- 13. Let X be a nonzero Banach space over \mathbb{C} and let $T \in \mathcal{B}(X)$. If E is the set of all eigenvectors of T and if $E^0 \neq \emptyset$, then show that there exists $\lambda \in \mathbb{C}$ such that $T = \lambda I$.
- 14. Let S be the left shift operator on ℓ^2 . Show that there does not exist any $T \in \mathcal{B}(\ell^2)$ such that $T^2 = S$.
- 15. Let R be the right shift operator on l^2 . Prove that
 - (a) resolvent set $\rho(R) = \{\lambda \in \mathbb{C} : |\lambda| > 1\},\$
 - (b) point spectrum set $\sigma_p(R) = \emptyset$,
 - (c) continuous spectrum set $\sigma_c(R) = \{\lambda \in \mathbb{C} : |\lambda| = 1\},\$
 - (d) residual spectrum set $\sigma_r(R) = \{\lambda \in \mathbb{C} : |\lambda| < 1\}.$
- 16. Let $T : (C[0,1], \|.\|_{\infty}) \to (C[0,1], \|.\|_{\infty})$ be a linear map defined by $Tf(t) = f\left(\frac{t}{3}\right)$. Find the spectral radius of T and show that $0 \in \sigma(T)$. Is T compact?
- 17. Let $T: L^2[0,1] \to L^2[0,1]$ be a linear map defined by $T(f)(x) = \int_0^x f(t)dt$. Show that spectral radius r(T) = 0 and $0 \in \sigma_c(T)$, continuous spectrum.
- 18. Let $g \in C[0,1]$ and $T: L^2[0,1] \to L^2[0,1]$ be a linear map defined by T(f)(t) = g(t)f(t). Find the spectrum $\sigma(T)$ and deduce that T is not compact.
- 19. Let $T: l^2(\mathbb{Z}) \to l^2(\mathbb{Z})$. For $x = (x_k)_{-\infty}^{\infty} \in l^2(\mathbb{Z})$, define $T(x) = (x_{k-1})_{-\infty}^{\infty}$ (right shift operator). Show that
 - (a) the point spectrum $\sigma_p(T) = \emptyset$,
 - (b) $\operatorname{Im}(\lambda I T) = l^2(\mathbb{Z})$ if $|\lambda| \neq 1$,
 - (c) spectrum $\sigma(T) = \{\lambda : |\lambda| = 1\}.$
- 20. Let $T: l^2(\mathbb{N}) \to l^2(\mathbb{N})$. For $x \in l^2(\mathbb{N})$, define $T(x) = (x_2, x_3, \ldots)$. Prove that (a) $\rho(T) = \{\lambda \in \mathbb{C} : |\lambda| > 1\}$. (b) $\sigma_c((T) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$. (c) $\sigma_p((T) = \{\lambda \in \mathbb{C} : |\lambda| < 1\}$. (d) $\sigma_r(T) = \emptyset$.
- 21. Let g be a continuous and bounded function on \mathbb{R} . Let $T: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be linear map defined by T(f)(t) = g(t)f(t). Show that T is bounded and spectrum $\sigma(T) = \overline{\{g(x) : x \in \mathbb{R}\}}$.

- 22. Let P be an orthogonal projection on a Hilbert space H. Show that $\sigma(P) = \sigma_p(P) = \{0, 1\}$. Further, derive that the resolvent function for P is given by $R_P(\lambda) = (\lambda I - P)^{-1} = \frac{I}{\lambda} + \frac{1}{\lambda(1-\lambda)}P$.
- 23. A bounded linear operator T on a separable Hilbert space H is called Hilbert-Schmidt operator if there exists an orthonormal basis $\{e_n : n \in \mathbb{N}\}$ such that $\sum ||Te_n||^2 < \infty$. Write $||T||_{\text{H.S.}} = (\sum ||Te_n||^2)^{1/2}$. Show that
 - (a) T is a compact operator.
 - (b) $||T^*||_{\text{H.S.}} = ||T||_{\text{H.S.}}$
 - (c) Hilbert-Schmidt norm is independent of choice of orthonormal basis.
- 24. Let $y \in C([0,1],\mathbb{R})$ and let $T : (C([0,1],\mathbb{R}), \|\cdot\|_{\infty}) \to (C([0,1],\mathbb{R}), \|\cdot\|_{\infty})$ be defined by Tx(t) = x(t)y(t) for all $t \in [0,1]$. Determine $\sigma(T)$.
- 25. If X is a complex Banach space and if $T \in \mathcal{B}(X)$ such that $T^n = 0$ for some $n \in \mathbb{N}$, then show that $\sigma(T) = \{0\}$.
- 26. If X is a complex Banach space and if $T \in \mathcal{B}(X)$ is invertible in $\mathcal{B}(X)$, then show that $\sigma(T^{-1}) = \{\lambda^{-1} : \lambda \in \sigma(T)\}.$
- 27. If X is a complex Banach space and if $T, S \in \mathcal{B}(X)$, then show that $\sigma(TS) \cup \{0\} = \sigma(ST) \cup \{0\}$, although it is not necessary that $\sigma(TS) = \sigma(ST)$.
- 28. Let X be a nonzero Banach space over \mathbb{C} and let $T, S \in \mathcal{B}(X)$. If T is invertible in $\mathcal{B}(X)$, then show that $\sigma(TS) = \sigma(ST)$.
- 29. Let $T : (\ell^{\infty}, \|\cdot\|_{\infty}) \to (\ell^{\infty}, \|\cdot\|_{\infty})$ be defined by $T((x_n)) = (x_2, x_3, ...)$ for all $(x_n) \in \ell^{\infty}$. Determine $\sigma_p(T), \sigma_c(T)$ and $\sigma_r(T)$.
- 30. Let $T : \ell^2 \to \ell^2$ be defined by $T((x_n)) = \left(\frac{n}{n+1}x_n\right)$ for all $(x_n) \in \ell^2$. Determine $\sigma(T), \sigma_p(T), \sigma_c(T), \sigma_r(T), \sigma_{ap}(T)$ and $\sigma_{cp}(T)$.
- 31. Let T((x_n)) = (0, x₁, x₂/2, x₃/3, ...) and S((x_n)) = (x₂, x₃/2, x₄/3, ...) for all (x_n) ∈ l². Prove the following:
 (a) T, S ∈ B₀(l²).
 (b) σ(T) = {0}, σ_p(T) = Ø and σ(S) = σ_p(S) = {0}.
 (c) range(T) ≠ l² and range(S) = l².
- 32. Let *H* be a complex Hilbert space and let $T \in \mathcal{B}(H)$ such that $|\langle Tx, x \rangle| \ge \langle x, x \rangle$ for all $x \in H$. Show that $0 \notin \sigma(T)$.
- 33. Let *H* be a nonzero Hilbert space over \mathbb{C} and let $T \in \mathcal{B}(H)$. Show that $\sigma(T^*) = \sigma_{ap}(T^*) \cup \{\overline{\lambda} : \lambda \in \sigma_{ap}(T)\}.$
- 34. Let *H* be a complex Hilbert space and let $T \in \mathcal{B}(H)$. Show that $\{\lambda^n : \lambda \in \sigma_{ap}(T)\} \subset \sigma_{ap}(T^n)$ for all $n \in \mathbb{N}$.

- 35. If X is a complex Banach space and if $T \in \mathcal{B}(X)$, then show that $\sigma_{ap}(T)$ is a compact subset of \mathbb{C} .
- 36. Let X be a nonzero Banach space over \mathbb{C} . If (T_n) is a sequence in $\mathcal{G}(X)$ such that $T_n \xrightarrow{\|\cdot\|} T \in \mathcal{B}(X) \setminus \mathcal{G}(X)$, then show that $0 \in \sigma_{ap}(T)$.
- 37. If X is a complex Banach space and if $T \in \mathcal{B}(X)$, then show that $\partial \sigma(T) \subset \sigma_{ap}(T)$.
- 38. Let H be a complex Hilbert space and $y, z \in H$. If $Tx = \langle x, y \rangle z$ for all $x \in H$, then show that $\sigma(T) = \{0, \langle z, y \rangle\}.$
- 39. If H is a complex Hilbert space and if $T \in \mathcal{B}(H)$ is normal, then show that $\sigma_r(T) = \emptyset$, $\sigma_{ap}(T) = \sigma(T)$ and $r_{\sigma}(T) = ||T||$.
- 40. If H is a complex Hilbert space and $T \in \mathcal{B}(H)$, then show that $\sigma_r(T) \subset \{\lambda \in \mathbb{C} : |\lambda| < ||T||\}$.
- 41. Let *H* be a complex Hilbert space and let $T \in \mathcal{B}(H)$. If there is no nonzero proper invariant subspace in *H* under *T*, then show that $\sigma(T) = \sigma_c(T)$.
- 42. Let X be a complex Banach space and let $T \neq 0, I \in \mathcal{B}(X)$ such that $T^2 = T$. Show that $\sigma(T) = \sigma_p(T) = \{0, 1\}.$
- 43. Let H be a complex Hilbert space and let $T(\neq -I, I) \in \mathcal{B}(H)$ such that $T^2 = I$. Show that $\sigma(T) = \{-1, 1\}$.
- 44. Let X be a complex Banach space and let $T, T_n \in \mathcal{B}(X)$ for all $n \in \mathbb{N}$ such that $T_n \to T$. If $\lambda_n \in \sigma(T_n)$ for all $n \in \mathbb{N}$ and if $\lambda_n \to \lambda \in \mathbb{C}$, then show that $\lambda \in \sigma(T)$.
- 45. If H is a complex Hilbert space and if $T \in \mathcal{B}(H)$, then show that $\sigma_c(T^*) = \{\overline{\lambda} : \lambda \in \sigma_c(T)\}$.
- 46. If H is a non-separable Hilbert space and if $T \in \mathcal{B}_0(H)$, then show that $0 \in \sigma_p(T)$.
- 47. Let K be a nonempty compact subset of \mathbb{C} . Show that there exists $T \in \mathcal{B}((\ell^2, \|\cdot\|_2))$ such that $\sigma(T) = K$.
- 48. Let *H* be a complex Hilbert space. If $T \in \mathcal{B}(H)$ and $\lambda \in W(T)$ such that $|\lambda| = ||T||$, then show that $\lambda \in \sigma_p(T)$.
- 49. Let *H* be an infinite dimensional Hilbert space over \mathbb{C} and let $T \in \mathcal{B}(H)$. If $T^n \xrightarrow{WOT} 0$, then show that $\sigma_p(T) \subset \{\lambda \in \mathbb{C} : |\lambda| < 1\}$.
- 50. Let H be a complex Hilbert space. If $T \in \mathcal{B}(H)$ is normal and $\sigma(T) = \{0, 1\}$, then show that $T^2 = T$.