Assignment 3

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) If H is a complex Hilbert space, then for each $T \in \mathcal{B}(H)$, there exist $A, B \in \mathcal{B}(H)$ such that A and B are invertible in $\mathcal{B}(H)$ and $T=A+B$.
(b) If H is a complex Hilbert space and $T \in \mathcal{B}(H)$ such that $3 T^{3}+4 I=2 T^{2}$, then $\sigma(T)$ must be a finite set.
(c) If H is a complex Hilbert space and $T \in \mathcal{B}(H)$ such that $r_{\sigma}(T)=\|T\|$, then it is necessary that $\left\|T^{n}\right\|=\|T\|^{n}$ for all $n \in \mathbb{N}$.
(d) If H is a complex Hilbert space and if $T \in \mathcal{B}(H)$ is self-adjoint, then $I+i T$ must be invertible in $\mathcal{B}(H)$.
(e) If H is an infinite dimensional complex Hilbert space and $T \in \mathcal{B}(H)$ such that T^{2} is compact, then it is necessary that $0 \in \sigma(T)$.
(f) If X is a nonzero Banach space over \mathbb{C} and $T \in \mathcal{B}_{0}(X)$, then it is necessary that $\sigma(T)=$ $\sigma_{a p}(T)$.
(g) There does not exist any nonzero proper reducing subspace in the Hilbert space \mathbb{C}^{2} for $T \in \mathcal{B}\left(\mathbb{C}^{2}\right)$, where $T(x, y)=(y, 0)$ for all $(x, y) \in \mathbb{C}^{2}$.
(h) If H is an infinite dimensional separable Hilbert space over \mathbb{C} and $T \in \mathcal{B}(H)$ is normal, then $\sigma_{p}(T)$ must be countable.
(i) If H is a complex Hilbert space and $T \in \mathcal{B}_{0}(H)$ such that $I+T$ is one-one, then $I+T$ must be invertible in $\mathcal{B}(H)$.
2. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be normal. If $\lambda \in \mathbb{K}$, then show that $\operatorname{ker}(T-\lambda I)$ is a reducing subspace in H for T.
3. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be normal. Show that $\{x \in H:\|T x\|=\|T\|\|x\|\}$ is a reducing subspace in H for T.
4. Let H be an infinite dimensional Hilbert space and let $T, S \in \mathcal{B}(H)$ such that $S \neq 0, I$ and $S T S=T S$. Show that there exists a nonzero proper invariant subspace in H under T.
5. Let H be a Hilbert space and $T \in \mathcal{B}_{0}(H)$. If M is a closed subspace of H which is invariant under T and if $S(x+M)=T x+M$ for all $x \in H$, then show that $S \in \mathcal{B}_{0}(H / M)$.
6. If H is a non-separable Hilbert space and if $T \in \mathcal{B}(H)$, then show that H contains a nonzero proper invariant subspace for T.
7. Show that there is no nonzero proper reducing subspace of the right shift operator on ℓ^{2}.
8. Let X be a Banach space and let $T \in \mathcal{B}(X)$ such that $\left\|T^{m}\right\|<1$ for some $m \in \mathbb{N}$. Show that $I-T$ is invertible in $\mathcal{B}(X)$ and that $(I-T)^{-1}=\sum_{n=0}^{\infty} T^{n}$.
9. Let X be a Banach space and $T \in B(X)$. Prove that $\exp (T)=\sum_{0}^{\infty} \frac{T^{n}}{n!}$ is invertible and $\sigma(\exp T)=\exp (\sigma(T))$.
10. Let H be a Hilbert space. Let $\left(T_{n}\right)$ and $\left(S_{n}\right)$ be sequences in $\mathcal{B}(H)$ and let $T, S \in \mathcal{B}(H)$. If $T_{n} \rightarrow T$ (in norm) and $S_{n} \xrightarrow{W O T} S$, then show that $T_{n} S_{n} \xrightarrow{W O T} T S$.
11. Let H be a Hilbert space. Let $\left(T_{n}\right)$ be a sequence in $\mathcal{B}(H)$ and let $T \in \mathcal{B}(H)$. If for each $x \in H$, $\left\|T_{n} x\right\| \rightarrow\|T x\|$ and $\left\langle T_{n} x, x\right\rangle \rightarrow\langle T x, x\rangle$ as $n \rightarrow \infty$, then show that $T_{n} \xrightarrow{S O T} T$.
12. Let H be a Hilbert space. Let $T_{n} \in \mathcal{B}(H)$ be normal for each $n \in \mathbb{N}$ and let $T \in \mathcal{B}(H)$ be normal. If $T_{n} \xrightarrow{S O T} T$, then show that $T_{n}^{*} \xrightarrow{S O T} T^{*}$.
13. Let X be a nonzero Banach space over \mathbb{C} and let $T \in \mathcal{B}(X)$. If E is the set of all eigenvectors of T and if $E^{0} \neq \emptyset$, then show that there exists $\lambda \in \mathbb{C}$ such that $T=\lambda I$.
14. Let S be the left shift operator on ℓ^{2}. Show that there does not exist any $T \in \mathcal{B}\left(\ell^{2}\right)$ such that $T^{2}=S$.
15. Let R be the right shift operator on l^{2}. Prove that
(a) resolvent set $\rho(R)=\{\lambda \in \mathbb{C}:|\lambda|>1\}$,
(b) point spectrum set $\sigma_{p}(R)=\emptyset$,
(c) continuous spectrum set $\sigma_{c}(R)=\{\lambda \in \mathbb{C}:|\lambda|=1\}$,
(d) residual spectrum set $\sigma_{r}(R)=\{\lambda \in \mathbb{C}:|\lambda|<1\}$.
16. Let $T:\left(C[0,1],\|\cdot\|_{\infty}\right) \rightarrow\left(C[0,1],\|\cdot\|_{\infty}\right)$ be a linear map defined by $T f(t)=f\left(\frac{t}{3}\right)$. Find the spectral radius of T and show that $0 \in \sigma(T)$. Is T compact?
17. Let $T: L^{2}[0,1] \rightarrow L^{2}[0,1]$ be a linear map defined by $T(f)(x)=\int_{0}^{x} f(t) d t$. Show that spectral radius $r(T)=0$ and $0 \in \sigma_{c}(T)$, continuous spectrum.
18. Let $g \in C[0,1]$ and $T: L^{2}[0,1] \rightarrow L^{2}[0,1]$ be a linear map defined by $T(f)(t)=g(t) f(t)$. Find the spectrum $\sigma(T)$ and deduce that T is not compact.
19. Let $T: l^{2}(\mathbb{Z}) \rightarrow l^{2}(\mathbb{Z})$. For $x=\left(x_{k}\right)_{-\infty}^{\infty} \in l^{2}(\mathbb{Z})$, define $T(x)=\left(x_{k-1}\right)_{-\infty}^{\infty}$ (right shift operator). Show that
(a) the point spectrum $\sigma_{p}(T)=\emptyset$,
(b) $\operatorname{Im}(\lambda I-T)=l^{2}(\mathbb{Z})$ if $|\lambda| \neq 1$,
(c) spectrum $\sigma(T)=\{\lambda$: $|\lambda|=1\}$.
20. Let $T: l^{2}(\mathbb{N}) \rightarrow l^{2}(\mathbb{N})$. For $x \in l^{2}(\mathbb{N})$, define $T(x)=\left(x_{2}, x_{3}, \ldots\right)$. Prove that
(a) $\rho(T)=\{\lambda \in \mathbb{C}:|\lambda|>1\}$.
(b) $\sigma_{c}((T)=\{\lambda \in \mathbb{C}:|\lambda|=1\}$.
(c) $\sigma_{p}((T)=\{\lambda \in \mathbb{C}:|\lambda|<1\}$.
(d) $\sigma_{r}(T)=\emptyset$.
21. Let g be a continuous and bounded function on \mathbb{R}. Let $T: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be linear map defined by $T(f)(t)=g(t) f(t)$. Show that T is bounded and spectrum $\sigma(T)=\overline{\{g(x): x \in \mathbb{R}\}}$.
22. Let P be an orthogonal projection on a Hilbert space H. Show that $\sigma(P)=\sigma_{p}(P)=\{0,1\}$. Further, derive that the resolvent function for P is given by $R_{P}(\lambda)=(\lambda I-P)^{-1}=\frac{I}{\lambda}+\frac{1}{\lambda(1-\lambda)} P$.
23. A bounded linear operator T on a separable Hilbert space H is called Hilbert-Schmidt operator if there exists an orthonormal basis $\left\{e_{n}: n \in \mathbb{N}\right\}$ such that $\sum\left\|T e_{n}\right\|^{2}<\infty$. Write $\|T\|_{\text {H.S. }}=$ $\left(\sum\left\|T e_{n}\right\|^{2}\right)^{1 / 2}$. Show that
(a) T is a compact operator.
(b) $\left\|T^{*}\right\|_{\text {H.S. }}=\|T\|_{\text {H.S. }}$.
(c) Hilbert-Schmidt norm is independent of choice of orthonormal basis.
24. Let $y \in C([0,1], \mathbb{R})$ and let $T:\left(C([0,1], \mathbb{R}),\|\cdot\|_{\infty}\right) \rightarrow\left(C([0,1], \mathbb{R}),\|\cdot\|_{\infty}\right)$ be defined by $T x(t)=x(t) y(t)$ for all $t \in[0,1]$. Determine $\sigma(T)$.
25. If X is a complex Banach space and if $T \in \mathcal{B}(X)$ such that $T^{n}=0$ for some $n \in \mathbb{N}$, then show that $\sigma(T)=\{0\}$.
26. If X is a complex Banach space and if $T \in \mathcal{B}(X)$ is invertible in $\mathcal{B}(X)$, then show that $\sigma\left(T^{-1}\right)=\left\{\lambda^{-1}: \lambda \in \sigma(T)\right\}$.
27. If X is a complex Banach space and if $T, S \in \mathcal{B}(X)$, then show that $\sigma(T S) \cup\{0\}=\sigma(S T) \cup\{0\}$, although it is not necessary that $\sigma(T S)=\sigma(S T)$.
28. Let X be a nonzero Banach space over \mathbb{C} and let $T, S \in \mathcal{B}(X)$. If T is invertible in $\mathcal{B}(X)$, then show that $\sigma(T S)=\sigma(S T)$.
29. Let $T:\left(\ell^{\infty},\|\cdot\|_{\infty}\right) \rightarrow\left(\ell^{\infty},\|\cdot\|_{\infty}\right)$ be defined by $T\left(\left(x_{n}\right)\right)=\left(x_{2}, x_{3}, \ldots\right)$ for all $\left(x_{n}\right) \in \ell^{\infty}$. Deter$\operatorname{mine} \sigma_{p}(T), \sigma_{c}(T)$ and $\sigma_{r}(T)$.
30. Let $T: \ell^{2} \rightarrow \ell^{2}$ be defined by $T\left(\left(x_{n}\right)\right)=\left(\frac{n}{n+1} x_{n}\right)$ for all $\left(x_{n}\right) \in \ell^{2}$. Determine $\sigma(T), \sigma_{p}(T)$, $\sigma_{c}(T), \sigma_{r}(T), \sigma_{a p}(T)$ and $\sigma_{c p}(T)$.
31. Let $T\left(\left(x_{n}\right)\right)=\left(0, x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right)$ and $S\left(\left(x_{n}\right)\right)=\left(x_{2}, \frac{x_{3}}{2}, \frac{x_{4}}{3}, \ldots\right)$ for all $\left(x_{n}\right) \in \ell^{2}$. Prove the following:
(a) $T, S \in \mathcal{B}_{0}\left(\ell^{2}\right)$.
(b) $\sigma(T)=\{0\}, \sigma_{p}(T)=\emptyset$ and $\sigma(S)=\sigma_{p}(S)=\{0\}$.
(c) $\overline{\operatorname{range}(T)} \neq \ell^{2}$ and $\overline{\operatorname{range}(S)}=\ell^{2}$.
32. Let H be a complex Hilbert space and let $T \in \mathcal{B}(H)$ such that $|\langle T x, x\rangle| \geq\langle x, x\rangle$ for all $x \in H$. Show that $0 \notin \sigma(T)$.
33. Let H be a nonzero Hilbert space over \mathbb{C} and let $T \in \mathcal{B}(H)$. Show that $\sigma\left(T^{*}\right)=\sigma_{a p}\left(T^{*}\right) \cup\left\{\bar{\lambda}: \lambda \in \sigma_{a p}(T)\right\}$.
34. Let H be a complex Hilbert space and let $T \in \mathcal{B}(H)$. Show that $\left\{\lambda^{n}: \lambda \in \sigma_{a p}(T)\right\} \subset \sigma_{a p}\left(T^{n}\right)$ for all $n \in \mathbb{N}$.
35. If X is a complex Banach space and if $T \in \mathcal{B}(X)$, then show that $\sigma_{a p}(T)$ is a compact subset of \mathbb{C}.
36. Let X be a nonzero Banach space over \mathbb{C}. If $\left(T_{n}\right)$ is a sequence in $\mathcal{G}(X)$ such that $T_{n} \xrightarrow{\|\cdot\|} T \in \mathcal{B}(X) \backslash \mathcal{G}(X)$, then show that $0 \in \sigma_{a p}(T)$.
37. If X is a complex Banach space and if $T \in \mathcal{B}(X)$, then show that $\partial \sigma(T) \subset \sigma_{a p}(T)$.
38. Let H be a complex Hilbert space and $y, z \in H$. If $T x=\langle x, y\rangle z$ for all $x \in H$, then show that $\sigma(T)=\{0,\langle z, y\rangle\}$.
39. If H is a complex Hilbert space and if $T \in \mathcal{B}(H)$ is normal, then show that $\sigma_{r}(T)=\emptyset$, $\sigma_{a p}(T)=\sigma(T)$ and $r_{\sigma}(T)=\|T\|$.
40. If H is a complex Hilbert space and $T \in \mathcal{B}(H)$, then show that $\sigma_{r}(T) \subset\{\lambda \in \mathbb{C}:|\lambda|<\|T\|\}$.
41. Let H be a complex Hilbert space and let $T \in \mathcal{B}(H)$. If there is no nonzero proper invariant subspace in H under T, then show that $\sigma(T)=\sigma_{c}(T)$.
42. Let X be a complex Banach space and let $T(\neq 0, I) \in \mathcal{B}(X)$ such that $T^{2}=T$. Show that $\sigma(T)=\sigma_{p}(T)=\{0,1\}$.
43. Let H be a complex Hilbert space and let $T(\neq-I, I) \in \mathcal{B}(H)$ such that $T^{2}=I$. Show that $\sigma(T)=\{-1,1\}$.
44. Let X be a complex Banach space and let $T, T_{n} \in \mathcal{B}(X)$ for all $n \in \mathbb{N}$ such that $T_{n} \rightarrow T$. If $\lambda_{n} \in \sigma\left(T_{n}\right)$ for all $n \in \mathbb{N}$ and if $\lambda_{n} \rightarrow \lambda \in \mathbb{C}$, then show that $\lambda \in \sigma(T)$.
45. If H is a complex Hilbert space and if $T \in \mathcal{B}(H)$, then show that $\sigma_{c}\left(T^{*}\right)=\left\{\bar{\lambda}: \lambda \in \sigma_{c}(T)\right\}$.
46. If H is a non-separable Hilbert space and if $T \in \mathcal{B}_{0}(H)$, then show that $0 \in \sigma_{p}(T)$.
47. Let K be a nonempty compact subset of \mathbb{C}. Show that there exists $T \in \mathcal{B}\left(\left(\ell^{2},\|\cdot\|_{2}\right)\right)$ such that $\sigma(T)=K$.
48. Let H be a complex Hilbert space. If $T \in \mathcal{B}(H)$ and $\lambda \in W(T)$ such that $|\lambda|=\|T\|$, then show that $\lambda \in \sigma_{p}(T)$.
49. Let H be an infinite dimensional Hilbert space over \mathbb{C} and let $T \in \mathcal{B}(H)$. If $T^{n} \xrightarrow{\text { WOT }} 0$, then show that $\sigma_{p}(T) \subset\{\lambda \in \mathbb{C}:|\lambda|<1\}$.
50. Let H be a complex Hilbert space. If $T \in \mathcal{B}(H)$ is normal and $\sigma(T)=\{0,1\}$, then show that $T^{2}=T$.
