- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) If H is a Hilbert space and $T \in \mathcal{B}(H)$ is self-adjoint, then it is necessary that $T \ge 0$ or $T \le 0$.
 - (b) If H is a Hilbert space and $T \in \mathcal{B}(H)$ is self-adjoint such that range(T) is dense in H, then T must be one-one.
 - (c) If H is a Hilbert space and if $T \in \mathcal{B}(H)$ is self-adjoint, then there must exist $\alpha \in \mathbb{R}$ with $\alpha > 0$ such that $\alpha T \leq I$.
 - (d) If X is an infinite dimensional normed linear space, p(t) is a polynomial in t with coefficients in K and $T \in \mathcal{B}_0(X)$, then $p(T) \in \mathcal{B}_0(X)$ iff p(0) = 0.
 - (e) If H is a Hilbert space and $T, S \in \mathcal{B}(H)$ such that TS is compact, then at least one of T and S must be compact.
 - (f) Every $T \in \mathcal{B}_0(\ell^2) \setminus \mathcal{B}_{00}(\ell^2)$ is normal.
 - (g) Every bounded linear operator from $(c_0, \|\cdot\|_{\infty})$ to $(\ell^2, \|\cdot\|_2)$ is compact.
 - (h) If H is a Hilbert space and $T \in \mathcal{B}_0(H)$, then $T(B_H)$ must be a compact subset of H.
 - (i) If $T \in \mathcal{B}_0(H)$ such that Tx = x for some $x \in H$ with ||x|| = 1, then there must exist $y \in H$ such that ||y|| = 1 and $T^*y = y$.
 - (j) If H is a Hilbert space, $T \in \mathcal{B}(H)$ and (T_n) is a sequence in $\mathcal{B}_0(H)$ such that $T_n x \to T x$ for each $x \in H$, then T must be compact.
 - (k) If H is a Hilbert space and $T, S \in \mathcal{B}(H)$ such that $TT^* + SS^* = 0$, then it is necessary that T = S = 0.
 - (1) If H is a Hilbert space and if $T \in \mathcal{B}(H)$ is bounded below, then T cannot be compact.
 - (m) If H is a Hilbert space and $T \in \mathcal{B}(H)$ is normal such that T is bounded below, then T must be invertible in $\mathcal{B}(H)$.
- 2. Let X, Y be normed linear spaces and let $T \in \mathcal{B}(X, Y)$. Show that $T^* : Y^* \to X^*$ is one-one iff T(X) is dense in Y.
- 3. Let H be a Hilbert space and let $y \in H$. If $f(x) = \langle x, y \rangle$ for all $x \in H$, then determine the adjoint operator f^* .
- 4. Let *H* be a Hilbert space and let $T \in \mathcal{B}(H)$ be such that dim(range(*T*)) = 1. Show that there exist $y, z \in H$ such that $Tx = \langle x, y \rangle z$ for all $x \in H$. Also, find T^* .
- 5. Consider $T \in \mathcal{B}(\ell^2)$, defined by $T((x_n)) = (0, 3x_1, x_2, 3x_3, x_4, ...)$ for all $(x_n) \in \ell^2$. Determine T^* .
- 6. Let (α_n) be a sequence in \mathbb{K} and let $T((x_n)) = (\alpha_n x_n)$ for all $(x_n) \in \ell^2$. Prove that $T \in \mathcal{B}(\ell^2)$ iff $(\alpha_n) \in \ell^\infty$ and in such case determine ||T|| and T^* . Also, prove that
 - (a) T is self-adjoint iff $\alpha_n \in \mathbb{R}$ for each $n \in \mathbb{N}$.
 - (b) $T \ge 0$ iff $\alpha_n \ge 0$ for each $n \in \mathbb{N}$.
 - (c) T is unitary iff $|\alpha_n| = 1$ for all $n \in \mathbb{N}$.
- 7. Let $\{u_n : n \in \mathbb{N}\}$ be an (countably infinite) orthonormal basis of a Hilbert space H. Consider the bounded linear operator $T : \ell^2 \to H$, defined by $T((\alpha_n)) = \sum_{n=1}^{\infty} \alpha_n u_n$ for all $(\alpha_n) \in \ell^2$.

Determine the adjoint operator T^* .

- 8. Let H be a Hilbert space and let $T \in B(H)$. Prove that (a) $\ker(T) = (\operatorname{range}(T^*))^{\perp} = \ker(T^*T)$.
 - (b) $\ker(T^*) = (\operatorname{range}(T))^{\perp} = \ker(TT^*).$
 - (c) $(\ker(T))^{\perp} = \overline{\operatorname{range}(T^*)} = \overline{\operatorname{range}(T^*T)}.$
 - (d) $(\ker(T^*))^{\perp} = \overline{\operatorname{range}(T)} = \overline{\operatorname{range}(T^*)}.$
- 9. Let *H* be a Hilbert space and let $T, S \in \mathcal{B}(H)$. Show that $(\operatorname{range}(T) + \operatorname{range}(S))^{\perp} = \ker(T^*) \cap \ker(S^*)$.
- 10. Let H be a Hilbert space. Show that $T \in \mathcal{B}(H)$ is invertible in $\mathcal{B}(H)$ iff both T and T^* are bounded below.
- 11. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ with ||T|| = 1. If $x \in H$ such that Tx = x, then show that $T^*x = x$.
- 12. Let H be a Hilbert space and let $x \in H$, $T \in \mathcal{B}(H)$. Show that $T^*Tx = ||T||^2 x$ iff ||Tx|| = ||T|| ||x||.
- 13. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ such that $T \ge 0$. If $x \in H$ such that $\langle Tx, x \rangle = 0$, then show that $x \in \ker(T)$.
- 14. Let M, N be closed subspaces of a Hilbert space H and let $T \in \mathcal{B}(H)$. Show that $T(M) \subset N$ iff $T^*(N^{\perp}) \subset M^{\perp}$.
- 15. Let $\{u_n : n \in \mathbb{N}\}$ be an orthonormal basis of a Hilbert space H and let $T \in \mathcal{B}(H)$. Show that $\left\|\sum_{n=1}^{\infty} \langle Tx, u_n \rangle Tu_n\right\|^2 = \sum_{n=1}^{\infty} |\langle Tx, T^*u_n \rangle|^2.$
- 16. Let H be a Hilbert space and let $T, S \in \mathcal{B}(H)$ such that T is self-adjoint. Show that TS = 0 iff range $(T) \perp \operatorname{range}(S)$.
- 17. Let *H* be a Hilbert space. If $T \in \mathcal{B}(H)$ is self-adjoint and if $T \neq 0$, then show that $T^n \neq 0$ for each $n \in \mathbb{N}$.
- 18. Let (T_n) be a sequence of (bounded) self-adjoint operators on a Hilbert space H and let $T \in \mathcal{B}(H)$. If $T_n x \xrightarrow{w} T x$ for each $x \in H$, then show that T is self-adjoint.
- 19. Let *H* be a Hilbert space and let $T \in \mathcal{B}(H)$ be self-adjoint. If $||x|| = d(x, \operatorname{range}(T))$ for all $x \in \ker(T)$, then show that $|| \cdot ||$ is a norm on $\ker(T)$.
- 20. If *H* is a Hilbert space and if $T \in \mathcal{B}(H)$ is positive, then show that (a) $|\langle Tx, y \rangle|^2 \leq \langle Tx, x \rangle \langle Ty, y \rangle$ for all $x, y \in H$. (b) $||Tx||^2 \leq ||T|| \langle Tx, x \rangle$ for all $x \in H$.

- 21. If H is a Hilbert space and if $T \in \mathcal{B}(H)$ is positive, then show that $I + T : H \to H$ is invertible.
- 22. If H is a Hilbert space and if $T \in \mathcal{B}(H)$, then show that both $I + T^*T : H \to H$ and $I + TT^* : H \to H$ are invertible.
- 23. Let H be a Hilbert space. If $T, S \in \mathcal{B}(H)$ are self-adjoint and satisfy $T \geq S$, is it necessary that $T^2 \geq S^2$?
- 24. If H is a Hilbert space and if $T \in \mathcal{B}(H)$ such that $||T|| \leq 1$, then show that $I T^*T \geq 0$.
- 25. Let H be a Hilbert space. If $T \in \mathcal{B}(H)$ is positive and invertible, then show that $T^{-1} \ge 0$.
- 26. Let H be a Hilbert space. If $T \in \mathcal{B}(H)$ such that $0 \leq T \leq I$, then show that $T^2 \leq T$.
- 27. Let H be a Hilbert space and let (T_n) be a sequence in $\mathcal{B}(H)$ such that $T_n \geq 0$ for all $n \in \mathbb{N}$. If $T_n \xrightarrow{WOT} 0$, then show that $T_n \xrightarrow{SOT} 0$.
- 28. Let *H* be a Hilbert space. If $T \in \mathcal{B}(H)$ and if $\alpha, \beta \in \mathbb{K}$ such that $|\alpha| = |\beta|$, then show that $\alpha T + \beta T^*$ is normal.
- 29. Let *H* be a Hilbert space. Show that $T \in \mathcal{B}(H)$ is normal iff $\langle Tx, Ty \rangle = \langle T^*x, T^*y \rangle$ for all $x, y \in H$.
- 30. If H is a Hilbert space and $T \in \mathcal{B}(H)$ is normal, then show that $\ker(T^2) = \ker(T)$.
- 31. If H is a Hilbert space and if $T \in \mathcal{B}(H)$ is normal, then show that $||T^n|| = ||T||^n$ for each $n \in \mathbb{N}$.
- 32. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$. If $TT^* \leq T^*T$, then show that $\|T^n\|^2 \leq \|T^{n+1}\| \|T^{n-1}\|$ for all $n \in \mathbb{N}$.
- 33. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be normal. If $T^2 = T$, then show that T is an orthogonal projection.
- 34. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be self-adjoint such that $T^3 = T^2$. Show that T is an orthogonal projection.
- 35. If H is a Hilbert space, then show that every orthogonal projection $P \in \mathcal{B}(H)$ must satisfy $0 \le P \le I$.
- 36. Let *H* be a Hilbert space and let $P \in \mathcal{B}(H)$ such that $P \neq 0$ and $P^2 = P$. Show that *P* is an orthogonal projection iff ||P|| = 1.
- 37. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$. If $T^2 = T$, $M = \operatorname{range}(T)$ and $N = \ker(T)$, then show that $P_M P_N$ is invertible in $\mathcal{B}(H)$ and that $(P_M P_N)^{-1} = T + T^* I$.

- 38. If M, N are closed subspaces of a Hilbert space H, then show that $||P_M P_N|| \le 1$, where P_M and P_N are the orthogonal projection operators on M and N respectively.
- 39. If H is a Hilbert space and if $P, Q \in \mathcal{B}(H)$ are orthogonal projections, then prove that the following statements are equivalent.
 - (a) $P \leq Q$
 - (b) $||Px|| \le ||Qx||$ for all $x \in H$
 - (c) $\ker(Q) \subset \ker(P)$
 - (d) $\operatorname{range}(P) \subset \operatorname{range}(Q)$
 - (e) QP = P
 - (f) PQ = P
 - (g) QPQ = P
 - (h) Q P is an orthogonal projection with $\operatorname{range}(Q P) = \operatorname{range}(Q) \cap (\operatorname{range}(P))^{\perp}$.
- 40. If H is a Hilbert space and if $P, Q \in \mathcal{B}(H)$ are orthogonal projections, then show that PQ is an orthogonal projection iff PQ = QP and in such case range $(PQ) = \operatorname{range}(P) \cap \operatorname{range}(Q)$.
- 41. If H is a Hilbert space and if $P, Q \in \mathcal{B}(H)$ are orthogonal projections such that PQ = QP, then show that P + Q - PQ is an orthogonal projection with $\operatorname{range}(P + Q - PQ) = \operatorname{range}(P) + \operatorname{range}(Q)$.
- 42. Let *H* be a Hilbert space. Show that $T \in \mathcal{B}(H)$ is self-adjoint and unitary iff T = 2P I for some orthogonal projection $P \in \mathcal{B}(H)$.
- 43. Let *H* be a Hilbert space and let $T \in \mathcal{B}(H)$ such that $T^*(T I) = 0$. Show that *T* is an orthogonal projection.
- 44. Let *H* be a Hilbert space and let $A \neq \emptyset \subset H$. If $T \in \mathcal{B}(H)$ is unitary, then show that $T(A^{\perp}) = T(A)^{\perp}$.
- 45. Let $T((x_n)) = (x_1, x_1+x_2, x_1+x_2+x_3, ...)$ for all $(x_n) \in \ell^1$. Prove that $T : (\ell^1, \|\cdot\|_1) \to (\ell^\infty, \|\cdot\|_\infty)$ is linear and bounded but not compact.
- 46. If Tx = x for all $x \in \ell^1$, then examine whether $T : (\ell^1, \|\cdot\|_1) \to (\ell^2, \|\cdot\|_2)$ is a compact linear operator.
- 47. Let $T((x_n)) = (x_2, x_1, \frac{1}{2}x_4, \frac{1}{2}x_3, \dots, \frac{1}{n}x_{2n}, \frac{1}{n}x_{2n-1}, \dots)$ for all $(x_n) \in \ell^2$. Show that $T \in \mathcal{B}_0((\ell^2, \|\cdot\|_2)).$
- 48. Show that every bounded linear operator from $(\ell^2, \|\cdot\|_2)$ to $(\ell^1, \|\cdot\|_1)$ is compact.
- 49. Let $(Tx)(t) = x(t^2)$ for all $x \in C[0, 1]$ and for all $t \in [0, 1]$. Show that $T: (C[0, 1], \|\cdot\|_{\infty}) \to (C[0, 1], \|\cdot\|_{\infty})$ is linear and bounded but not compact.

- 50. Let X, Y be normed linear spaces and let $y \in Y$, $f \in X^*$. If Tx = f(x)y for all $x \in X$, then show that $T \in \mathcal{B}_0(X, Y)$.
- 51. Let X, Y be a normed linear spaces and let $x \neq 0 \in X$, $y \in Y$. Show that there exists $T \in \mathcal{B}_0(X, Y)$ such that Tx = y.
- 52. Let X, Y be normed linear spaces and let $T \in \mathcal{B}_0(X, Y)$. If $S(x + \ker(T)) = Tx$ for all $x \in X$, then show that $S \in \mathcal{B}_0(X/\ker(T), Y)$.
- 53. Let *H* be a Hilbert space and let $T \in \mathcal{B}_0(H)$. Show that there exists $x_0 \in H$ such that $||x_0|| \le 1$ and $||Tx_0|| = ||T||$.
- 54. Let X be a Banach space and let $T \in \mathcal{B}_0(X) \setminus \mathcal{B}_{00}(X)$. If $S = \{x \in X : ||x|| = 1\}$, then show that $0 \in \overline{T(S)}$.
- 55. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$. If T^*T is compact, then show that T is compact.
- 56. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be normal. If T^2 is compact, then show that T is compact.
- 57. Let X be a normed linear space and let $T \in \mathcal{B}_0(X)$ such that $T^2 = T$. Show that T is a finite rank operator.
- 58. Let X, Y be Banach spaces and let $T \in \mathcal{B}_0(X, Y)$. If Y is infinite dimensional, then show that T is not onto.
- 59. Let X, Y be Banach spaces and let $T \in \mathcal{B}_0(X, Y)$. If range(T) is infinite dimensional, then show that range(T) cannot be closed in Y.
- 60. Let X be a Banach space and let (T_n) be a sequence in $\mathcal{B}(X)$ such that for each $x \in X$, $T_n x \to 0$. If $S \in \mathcal{B}_0(X)$, then show that $||T_n S|| \to 0$.
- 61. Let X and Y be Banach spaces. Show that the class of all completely continuous linear maps from X to Y is closed in $\mathcal{B}(X, Y)$.
- 62. Let $X \neq \{0\}$, Y be normed linear spaces such that $\mathcal{B}_0(X, Y)$ is a Banach spaces. Prove that Y is a Banach space.
- 63. Let H be a Hilbert space and let (T_n) , (S_n) be sequences in $\mathcal{B}(H)$ such that $T_n \xrightarrow{SOT} T$ and $S_n \xrightarrow{SOT} S$, where $T, S \in \mathcal{B}(H)$. Show that $T_n S_n \xrightarrow{SOT} TS$.
- 64. Let *H* be a Hilbert space and let $T \in \mathcal{B}(H)$ be normal. If $\lambda \in \mathbb{K}$, then show that ker $(T \lambda I)$ is a reducing subspace in *H* for *T*.

- 65. Let *H* be a Hilbert space and let $T \in \mathcal{B}(H)$ be normal. Show that $\{x \in H : ||Tx|| = ||T|| ||x||\}$ is a reducing subspace in *H* for *T*.
- 66. Let H be an infinite dimensional Hilbert space and let $T, S \in \mathcal{B}(H)$ such that $S \neq 0, I$ and STS = TS. Show that there exists a nonzero proper invariant subspace in H under T.
- 67. Let *H* be a Hilbert space and $T \in \mathcal{B}_0(H)$. If *M* is a closed subspace of *H* which is invariant under *T* and if S(x+M) = Tx + M for all $x \in H$, then show that $S \in \mathcal{B}_0(H/M)$.
- 68. If H is a non-separable Hilbert space and if $T \in \mathcal{B}(H)$, then show that H contains a nonzero proper invariant subspace for T.
- 69. Show that there is no nonzero proper reducing subspace of the right shift operator on ℓ^2 .
- 70. Let H be a Hilbert space. Let (T_n) and (S_n) be sequences in $\mathcal{B}(H)$ and let $T, S \in \mathcal{B}(H)$. If $T_n \to T$ (in norm) and $S_n \xrightarrow{WOT} S$, then show that $T_n S_n \xrightarrow{WOT} TS$.
- 71. Let H be a Hilbert space. Let (T_n) be a sequence in $\mathcal{B}(H)$ and let $T \in \mathcal{B}(H)$. If for each $x \in H$, $||T_n x|| \to ||Tx||$ and $\langle T_n x, x \rangle \to \langle Tx, x \rangle$ as $n \to \infty$, then show that $T_n \xrightarrow{SOT} T$.
- 72. Let H be a Hilbert space. Let $T_n \in \mathcal{B}(H)$ be normal for each $n \in \mathbb{N}$ and let $T \in \mathcal{B}(H)$ be normal. If $T_n \xrightarrow{SOT} T$, then show that $T_n^* \xrightarrow{SOT} T^*$.