Assignment 2

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) If H is a Hilbert space and $T \in \mathcal{B}(H)$ is self-adjoint, then it is necessary that $T \geq 0$ or $T \leq 0$.
(b) If H is a Hilbert space and $T \in \mathcal{B}(H)$ is self-adjoint such that range (T) is dense in H, then T must be one-one.
(c) If H is a Hilbert space and if $T \in \mathcal{B}(H)$ is self-adjoint, then there must exist $\alpha \in \mathbb{R}$ with $\alpha>0$ such that $\alpha T \leq I$.
(d) If X is an infinite dimensional normed linear space, $p(t)$ is a polynomial in t with coefficients in \mathbb{K} and $T \in \mathcal{B}_{0}(X)$, then $p(T) \in \mathcal{B}_{0}(X)$ iff $p(0)=0$.
(e) If H is a Hilbert space and $T, S \in \mathcal{B}(H)$ such that $T S$ is compact, then at least one of T and S must be compact.
(f) Every $T \in \mathcal{B}_{0}\left(\ell^{2}\right) \backslash \mathcal{B}_{00}\left(\ell^{2}\right)$ is normal.
(g) Every bounded linear operator from $\left(c_{0},\|\cdot\|_{\infty}\right)$ to $\left(\ell^{2},\|\cdot\|_{2}\right)$ is compact.
(h) If H is a Hilbert space and $T \in \mathcal{B}_{0}(H)$, then $T\left(B_{H}\right)$ must be a compact subset of H.
(i) If $T \in \mathcal{B}_{0}(H)$ such that $T x=x$ for some $x \in H$ with $\|x\|=1$, then there must exist $y \in H$ such that $\|y\|=1$ and $T^{*} y=y$.
(j) If H is a Hilbert space, $T \in \mathcal{B}(H)$ and $\left(T_{n}\right)$ is a sequence in $\mathcal{B}_{0}(H)$ such that $T_{n} x \rightarrow T x$ for each $x \in H$, then T must be compact.
(k) If H is a Hilbert space and $T, S \in \mathcal{B}(H)$ such that $T T^{*}+S S^{*}=0$, then it is necessary that $T=S=0$.
(l) If H is a Hilbert space and if $T \in \mathcal{B}(H)$ is bounded below, then T cannot be compact.
(m) If H is a Hilbert space and $T \in \mathcal{B}(H)$ is normal such that T is bounded below, then T must be invertible in $\mathcal{B}(H)$.
2. Let X, Y be normed linear spaces and let $T \in \mathcal{B}(X, Y)$. Show that $T^{*}: Y^{*} \rightarrow X^{*}$ is one-one iff $T(X)$ is dense in Y.
3. Let H be a Hilbert space and let $y \in H$. If $f(x)=\langle x, y\rangle$ for all $x \in H$, then determine the adjoint operator f^{*}.
4. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be such that $\operatorname{dim}(\operatorname{range}(T))=1$. Show that there exist $y, z \in H$ such that $T x=\langle x, y\rangle z$ for all $x \in H$. Also, find T^{*}.
5. Consider $T \in \mathcal{B}\left(\ell^{2}\right)$, defined by $T\left(\left(x_{n}\right)\right)=\left(0,3 x_{1}, x_{2}, 3 x_{3}, x_{4}, \ldots\right)$ for all $\left(x_{n}\right) \in \ell^{2}$. Determine T^{*}.
6. Let $\left(\alpha_{n}\right)$ be a sequence in \mathbb{K} and let $T\left(\left(x_{n}\right)\right)=\left(\alpha_{n} x_{n}\right)$ for all $\left(x_{n}\right) \in \ell^{2}$. Prove that $T \in \mathcal{B}\left(\ell^{2}\right)$ iff $\left(\alpha_{n}\right) \in \ell^{\infty}$ and in such case determine $\|T\|$ and T^{*}. Also, prove that
(a) T is self-adjoint iff $\alpha_{n} \in \mathbb{R}$ for each $n \in \mathbb{N}$.
(b) $T \geq 0$ iff $\alpha_{n} \geq 0$ for each $n \in \mathbb{N}$.
(c) T is unitary iff $\left|\alpha_{n}\right|=1$ for all $n \in \mathbb{N}$.
7. Let $\left\{u_{n}: n \in \mathbb{N}\right\}$ be an (countably infinite) orthonormal basis of a Hilbert space H. Consider the bounded linear operator $T: \ell^{2} \rightarrow H$, defined by $T\left(\left(\alpha_{n}\right)\right)=\sum_{n=1}^{\infty} \alpha_{n} u_{n}$ for all $\left(\alpha_{n}\right) \in \ell^{2}$.

Determine the adjoint operator T^{*}.
8. Let H be a Hilbert space and let $T \in B(H)$. Prove that
(a) $\operatorname{ker}(T)=\left(\operatorname{range}\left(T^{*}\right)\right)^{\perp}=\operatorname{ker}\left(T^{*} T\right)$.
(b) $\operatorname{ker}\left(T^{*}\right)=(\text { range }(T))^{\perp}=\operatorname{ker}\left(T T^{*}\right)$.
(c) $(\operatorname{ker}(T))^{\perp}=\overline{\operatorname{range}\left(T^{*}\right)}=\overline{\operatorname{range}\left(T^{*} T\right)}$.
(d) $\left(\operatorname{ker}\left(T^{*}\right)\right)^{\perp}=\overline{\operatorname{range}(T)}=\overline{\operatorname{range}\left(T T^{*}\right)}$.
9. Let H be a Hilbert space and let $T, S \in \mathcal{B}(H)$. Show that $(\operatorname{range}(T)+\operatorname{range}(S))^{\perp}=\operatorname{ker}\left(T^{*}\right) \cap \operatorname{ker}\left(S^{*}\right)$.
10. Let H be a Hilbert space. Show that $T \in \mathcal{B}(H)$ is invertible in $\mathcal{B}(H)$ iff both T and T^{*} are bounded below.
11. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ with $\|T\|=1$. If $x \in H$ such that $T x=x$, then show that $T^{*} x=x$.
12. Let H be a Hilbert space and let $x \in H, T \in \mathcal{B}(H)$. Show that $T^{*} T x=\|T\|^{2} x$ iff $\|T x\|=$ $\|T\|\|x\|$.
13. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ such that $T \geq 0$. If $x \in H$ such that $\langle T x, x\rangle=0$, then show that $x \in \operatorname{ker}(T)$.
14. Let M, N be closed subspaces of a Hilbert space H and let $T \in \mathcal{B}(H)$. Show that $T(M) \subset N$ iff $T^{*}\left(N^{\perp}\right) \subset M^{\perp}$.
15. Let $\left\{u_{n}: n \in \mathbb{N}\right\}$ be an orthonormal basis of a Hilbert space H and let $T \in \mathcal{B}(H)$. Show that $\left\|\sum_{n=1}^{\infty}\left\langle T x, u_{n}\right\rangle T u_{n}\right\|^{2}=\sum_{n=1}^{\infty}\left|\left\langle T x, T^{*} u_{n}\right\rangle\right|^{2}$.
16. Let H be a Hilbert space and let $T, S \in \mathcal{B}(H)$ such that T is self-adjoint. Show that $T S=0$ iff range $(T) \perp \operatorname{range}(S)$.
17. Let H be a Hilbert space. If $T \in \mathcal{B}(H)$ is self-adjoint and if $T \neq 0$, then show that $T^{n} \neq 0$ for each $n \in \mathbb{N}$.
18. Let $\left(T_{n}\right)$ be a sequence of (bounded) self-adjoint operators on a Hilbert space H and let $T \in \mathcal{B}(H)$. If $T_{n} x \xrightarrow{w} T x$ for each $x \in H$, then show that T is self-adjoint.
19. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be self-adjoint. If $\|x\|=d(x$, range $(T))$ for all $x \in \operatorname{ker}(T)$, then show that $\|\cdot\|$ is a norm on $\operatorname{ker}(T)$.
20. If H is a Hilbert space and if $T \in \mathcal{B}(H)$ is positive, then show that
(a) $|\langle T x, y\rangle|^{2} \leq\langle T x, x\rangle\langle T y, y\rangle$ for all $x, y \in H$.
(b) $\|T x\|^{2} \leq\|T\|\langle T x, x\rangle$ for all $x \in H$.
21. If H is a Hilbert space and if $T \in \mathcal{B}(H)$ is positive, then show that $I+T: H \rightarrow H$ is invertible.
22. If H is a Hilbert space and if $T \in \mathcal{B}(H)$, then show that both $I+T^{*} T: H \rightarrow H$ and $I+T T^{*}: H \rightarrow H$ are invertible.
23. Let H be a Hilbert space. If $T, S \in \mathcal{B}(H)$ are self-adjoint and satisfy $T \geq S$, is it necessary that $T^{2} \geq S^{2}$?
24. If H is a Hilbert space and if $T \in \mathcal{B}(H)$ such that $\|T\| \leq 1$, then show that $I-T^{*} T \geq 0$.
25. Let H be a Hilbert space. If $T \in \mathcal{B}(H)$ is positive and invertible, then show that $T^{-1} \geq 0$.
26. Let H be a Hilbert space. If $T \in \mathcal{B}(H)$ such that $0 \leq T \leq I$, then show that $T^{2} \leq T$.
27. Let H be a Hilbert space and let $\left(T_{n}\right)$ be a sequence in $\mathcal{B}(H)$ such that $T_{n} \geq 0$ for all $n \in \mathbb{N}$. If $T_{n} \xrightarrow{W O T} 0$, then show that $T_{n} \xrightarrow{S O T} 0$.
28. Let H be a Hilbert space. If $T \in \mathcal{B}(H)$ and if $\alpha, \beta \in \mathbb{K}$ such that $|\alpha|=|\beta|$, then show that $\alpha T+\beta T^{*}$ is normal.
29. Let H be a Hilbert space. Show that $T \in \mathcal{B}(H)$ is normal iff $\langle T x, T y\rangle=\left\langle T^{*} x, T^{*} y\right\rangle$ for all $x, y \in H$.
30. If H is a Hilbert space and $T \in \mathcal{B}(H)$ is normal, then show that $\operatorname{ker}\left(T^{2}\right)=\operatorname{ker}(T)$.
31. If H is a Hilbert space and if $T \in \mathcal{B}(H)$ is normal, then show that $\left\|T^{n}\right\|=\|T\|^{n}$ for each $n \in \mathbb{N}$.
32. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$. If $T T^{*} \leq T^{*} T$, then show that $\left\|T^{n}\right\|^{2} \leq\left\|T^{n+1}\right\|\left\|T^{n-1}\right\|$ for all $n \in \mathbb{N}$.
33. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be normal. If $T^{2}=T$, then show that T is an orthogonal projection.
34. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be self-adjoint such that $T^{3}=T^{2}$. Show that T is an orthogonal projection.
35. If H is a Hilbert space, then show that every orthogonal projection $P \in \mathcal{B}(H)$ must satisfy $0 \leq P \leq I$.
36. Let H be a Hilbert space and let $P \in \mathcal{B}(H)$ such that $P \neq 0$ and $P^{2}=P$. Show that P is an orthogonal projection iff $\|P\|=1$.
37. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$. If $T^{2}=T, M=\operatorname{range}(T)$ and $N=\operatorname{ker}(T)$, then show that $P_{M}-P_{N}$ is invertible in $\mathcal{B}(H)$ and that $\left(P_{M}-P_{N}\right)^{-1}=T+T^{*}-I$.
38. If M, N are closed subspaces of a Hilbert space H, then show that $\left\|P_{M}-P_{N}\right\| \leq 1$, where P_{M} and P_{N} are the orthogonal projection operators on M and N respectively.
39. If H is a Hilbert space and if $P, Q \in \mathcal{B}(H)$ are orthogonal projections, then prove that the following statements are equivalent.
(a) $P \leq Q$
(b) $\|P x\| \leq\|Q x\|$ for all $x \in H$
(c) $\operatorname{ker}(Q) \subset \operatorname{ker}(P)$
(d) $\operatorname{range}(P) \subset \operatorname{range}(Q)$
(e) $Q P=P$
(f) $P Q=P$
(g) $Q P Q=P$
(h) $Q-P$ is an orthogonal projection with range $(Q-P)=\operatorname{range}(Q) \cap(\operatorname{range}(P))^{\perp}$.
40. If H is a Hilbert space and if $P, Q \in \mathcal{B}(H)$ are orthogonal projections, then show that $P Q$ is an orthogonal projection iff $P Q=Q P$ and in such case range $(P Q)=\operatorname{range}(P) \cap \operatorname{range}(Q)$.
41. If H is a Hilbert space and if $P, Q \in \mathcal{B}(H)$ are orthogonal projections such that $P Q=Q P$, then show that $P+Q-P Q$ is an orthogonal projection with $\operatorname{range}(P+Q-P Q)=\operatorname{range}(P)+\operatorname{range}(Q)$.
42. Let H be a Hilbert space. Show that $T \in \mathcal{B}(H)$ is self-adjoint and unitary iff $T=2 P-I$ for some orthogonal projection $P \in \mathcal{B}(H)$.
43. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ such that $T^{*}(T-I)=0$. Show that T is an orthogonal projection.
44. Let H be a Hilbert space and let $A(\neq \emptyset) \subset H$. If $T \in \mathcal{B}(H)$ is unitary, then show that $T\left(A^{\perp}\right)=T(A)^{\perp}$.
45. Let $T\left(\left(x_{n}\right)\right)=\left(x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3}, \ldots\right)$ for all $\left(x_{n}\right) \in \ell^{1}$. Prove that $T:\left(\ell^{1},\|\cdot\|_{1}\right) \rightarrow\left(\ell^{\infty},\|\cdot\|_{\infty}\right)$ is linear and bounded but not compact.
46. If $T x=x$ for all $x \in \ell^{1}$, then examine whether $T:\left(\ell^{1},\|\cdot\|_{1}\right) \rightarrow\left(\ell^{2},\|\cdot\|_{2}\right)$ is a compact linear operator.
47. Let $T\left(\left(x_{n}\right)\right)=\left(x_{2}, x_{1}, \frac{1}{2} x_{4}, \frac{1}{2} x_{3}, \ldots, \frac{1}{n} x_{2 n}, \frac{1}{n} x_{2 n-1}, \ldots\right)$ for all $\left(x_{n}\right) \in \ell^{2}$. Show that $T \in \mathcal{B}_{0}\left(\left(\ell^{2},\|\cdot\|_{2}\right)\right)$.
48. Show that every bounded linear operator from $\left(\ell^{2},\|\cdot\|_{2}\right)$ to $\left(\ell^{1},\|\cdot\|_{1}\right)$ is compact.
49. Let $(T x)(t)=x\left(t^{2}\right)$ for all $x \in C[0,1]$ and for all $t \in[0,1]$. Show that $T:\left(C[0,1],\|\cdot\|_{\infty}\right) \rightarrow\left(C[0,1],\|\cdot\|_{\infty}\right)$ is linear and bounded but not compact.
50. Let X, Y be normed linear spaces and let $y \in Y, f \in X^{*}$. If $T x=f(x) y$ for all $x \in X$, then show that $T \in \mathcal{B}_{0}(X, Y)$.
51. Let X, Y be a normed linear spaces and let $x(\neq 0) \in X, y \in Y$. Show that there exists $T \in \mathcal{B}_{0}(X, Y)$ such that $T x=y$.
52. Let X, Y be normed linear spaces and let $T \in \mathcal{B}_{0}(X, Y)$. If $S(x+\operatorname{ker}(T))=T x$ for all $x \in X$, then show that $S \in \mathcal{B}_{0}(X / \operatorname{ker}(T), Y)$.
53. Let H be a Hilbert space and let $T \in \mathcal{B}_{0}(H)$. Show that there exists $x_{0} \in H$ such that $\left\|x_{0}\right\| \leq 1$ and $\left\|T x_{0}\right\|=\|T\|$.
54. Let X be a Banach space and let $T \in \mathcal{B}_{0}(X) \backslash \mathcal{B}_{00}(X)$. If $S=\{x \in X:\|x\|=1\}$, then show that $0 \in \overline{T(S)}$.
55. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$. If $T^{*} T$ is compact, then show that T is compact.
56. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be normal. If T^{2} is compact, then show that T is compact.
57. Let X be a normed linear space and let $T \in \mathcal{B}_{0}(X)$ such that $T^{2}=T$. Show that T is a finite rank operator.
58. Let X, Y be Banach spaces and let $T \in \mathcal{B}_{0}(X, Y)$. If Y is infinite dimensional, then show that T is not onto.
59. Let X, Y be Banach spaces and let $T \in \mathcal{B}_{0}(X, Y)$. If range (T) is infinite dimensional, then show that range (T) cannot be closed in Y.
60. Let X be a Banach space and let $\left(T_{n}\right)$ be a sequence in $\mathcal{B}(X)$ such that for each $x \in X$, $T_{n} x \rightarrow 0$. If $S \in \mathcal{B}_{0}(X)$, then show that $\left\|T_{n} S\right\| \rightarrow 0$.
61. Let X and Y be Banach spaces. Show that the class of all completely continuous linear maps from X to Y is closed in $\mathcal{B}(X, Y)$.
62. Let $X \neq\{0\}, Y$ be normed linear spaces such that $\mathcal{B}_{0}(X, Y)$ is a Banach spaces. Prove that Y is a Banach space.
63. Let H be a Hilbert space and let $\left(T_{n}\right),\left(S_{n}\right)$ be sequences in $\mathcal{B}(H)$ such that $T_{n} \xrightarrow{\text { SOT }} T$ and $S_{n} \xrightarrow{S O T} S$, where $T, S \in \mathcal{B}(H)$. Show that $T_{n} S_{n} \xrightarrow{S O T} T S$.
64. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be normal. If $\lambda \in \mathbb{K}$, then show that $\operatorname{ker}(T-\lambda I)$ is a reducing subspace in H for T.
65. Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be normal. Show that $\{x \in H:\|T x\|=\|T\|\|x\|\}$ is a reducing subspace in H for T.
66. Let H be an infinite dimensional Hilbert space and let $T, S \in \mathcal{B}(H)$ such that $S \neq 0, I$ and $S T S=T S$. Show that there exists a nonzero proper invariant subspace in H under T.
67. Let H be a Hilbert space and $T \in \mathcal{B}_{0}(H)$. If M is a closed subspace of H which is invariant under T and if $S(x+M)=T x+M$ for all $x \in H$, then show that $S \in \mathcal{B}_{0}(H / M)$.
68. If H is a non-separable Hilbert space and if $T \in \mathcal{B}(H)$, then show that H contains a nonzero proper invariant subspace for T.
69. Show that there is no nonzero proper reducing subspace of the right shift operator on ℓ^{2}.
70. Let H be a Hilbert space. Let $\left(T_{n}\right)$ and $\left(S_{n}\right)$ be sequences in $\mathcal{B}(H)$ and let $T, S \in \mathcal{B}(H)$. If $T_{n} \rightarrow T$ (in norm) and $S_{n} \xrightarrow{W O T} S$, then show that $T_{n} S_{n} \xrightarrow{W O T} T S$.
71. Let H be a Hilbert space. Let $\left(T_{n}\right)$ be a sequence in $\mathcal{B}(H)$ and let $T \in \mathcal{B}(H)$. If for each $x \in H$, $\left\|T_{n} x\right\| \rightarrow\|T x\|$ and $\left\langle T_{n} x, x\right\rangle \rightarrow\langle T x, x\rangle$ as $n \rightarrow \infty$, then show that $T_{n} \xrightarrow{S O T} T$.
72. Let H be a Hilbert space. Let $T_{n} \in \mathcal{B}(H)$ be normal for each $n \in \mathbb{N}$ and let $T \in \mathcal{B}(H)$ be normal. If $T_{n} \xrightarrow{S O T} T$, then show that $T_{n}^{*} \xrightarrow{S O T} T^{*}$.

