- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) If $(X, \|\cdot\|)$ is a normed linear space such that $\|x+y\|^2 + \|x-y\|^2 \le 2\|x\|^2 + 2\|y\|^2$ for all $x, y \in X$, then there must exist an inner product on X which induces the norm $\|\cdot\|$ on X.
 - (b) Every orthonormal set in a Hilbert space H must be closed in H.
 - (c) If a proper subspace M of a Hilbert space H contains an orthonormal basis of H, then M cannot be a Banach space in the induced norm.
 - (d) In any infinite dimensional Hilbert space, there exists a convergent series which is not absolutely convergent.
 - (e) If (x_n) is a sequence in a Hilbert space H such that $\sum_{n=1}^{\infty} ||x_n||^2 < \infty$, then the series $\sum_{n=1}^{\infty} x_n$ must converge in H.
 - (f) If (u_n) is an orthonormal sequence in a Hilbert space H and if $x \in H$, then the series $\sum_{n=1}^{\infty} \langle x, u_n \rangle u_n$ must converge in *H* but not necessarily to *x*.
 - (g) If (x_n) is an unbounded sequence in a Hilbert space H, then there must exist $x \in H$ such that the sequence $(\langle x, x_n \rangle)$ is unbounded.
 - (h) If in a Hilbert space H, every weakly convergent sequence is norm convergent, then H must be separable.
 - (i) If (x_n) is a sequence in a Hilbert space H such that $||x_n|| \leq 1$ for all $n \in \mathbb{N}$ and $x_n \xrightarrow{w} x \in H$, then it is necessary that $||x|| \leq 1$.
 - (j) Suppose X is a Banach space and $f_n \in X^*$ and $f_n \xrightarrow{w^*} 0$. Then f_n is necessarily a bounded sequence in X^* .
- 2. Let X be an inner product space and let $x, y \in X$. Prove that
 - (a) $||x + y|| ||x y|| \le ||x||^2 + ||y||^2$.

 - (b) if $\lambda > 0$, then $|\langle x, y \rangle| \le \lambda ||x||^2 + \frac{1}{4\lambda} ||y||^2$. (c) if $\delta = \inf\{||\alpha x + y|| : \alpha \in \mathbb{K}\}$, then $|\langle x, y \rangle|^2 \le (||y||^2 \delta^2) ||x||^2$. (d) |||x|| ||y||| = ||x y|| iff tx = sy for some $t, s \ge 0$ with $(t, s) \ne (0, 0)$.
- 3. Let X be an inner product space and let $v, w \in X$ such that ||v|| ||w|| < 1. Show that for each $y \in X$, there exists a unique $x \in X$ such that $y = x + \langle x, v \rangle w$.
- 4. Show that it is impossible to define an inner product on X which induces the norm $\|\cdot\|$ on X, where $(X, \|\cdot\|)$ is (b) $(C[a,b], \|\cdot\|_{\infty})$ (c) $\mathcal{B}((\ell^2, \|\cdot\|_2))$ with the usual norm (a) $(c_{00}, \|\cdot\|_{\infty})$
- 5. Let X be a normed linear space such that every two dimensional subspace of X is an inner product space. Show that X is an inner product space.
- 6. Consider the following three conditions regarding the points x, y in an inner product space.
 - (a) $||x + \alpha y|| = ||x \alpha y||$ for all $\alpha \in \mathbb{K}$
 - (b) $||x + \alpha y|| \ge ||x||$ for all $\alpha \in \mathbb{K}$
 - (c) $||x + y||^2 = ||x||^2 + ||y||^2$

Prove that each of (a) and (b) is a necessary and sufficient condition for $x \perp y$. Do you have a similar statement for (c)?

- 7. Let Y be a closed subspace of an inner product space X. Show that there exists an inner product on the quotient space X/Y which induces the quotient norm on X/Y.
- 8. Let M be a closed subspace of a Hilbert space $(H, \langle \cdot, \cdot \rangle)$. If $\langle x_1 + M, x_2 + M \rangle_0 = \langle x_1 - P_M x_1, x_2 - P_M x_2 \rangle$ for all $x_1, x_2 \in H$, then show that $\langle \cdot, \cdot \rangle_0$ is an inner product on the quotient space H/M which induces the quotient norm on H/M.
- 9. If M and N are closed subspaces of a Hilbert space, then show that $(M \cap N)^{\perp} = \overline{M^{\perp} + N^{\perp}}$.
- 10. Let X be an inner product space and let $x \in X$. If $M = \{z \in X : \langle x, z \rangle = 0\}$, then determine M^{\perp} and $M^{\perp \perp}$.
- 11. Let S be a nonempty subset of a Hilbert space H. Show that $S^{\perp \perp} = \overline{\text{span}(S)}$. Hence deduce that span(S) is dense in H iff $S^{\perp} = \{0\}$.
- 12. Let M be a subspace of an inner product space X and let $x \in X$. Prove that $x \perp M$ iff $||x|| \leq ||x+y||$ for all $y \in M$.
- 13. Let M be a closed subspace of a Hilbert space H and let $x \in H \setminus M$. Prove that $d(x, M) = \sup\{|\langle x, y \rangle| : y \in M^{\perp}, \|y\| \le 1\}.$
- 14. Let H be a Hilbert space. Let $M \subset H$ and let $T : H \to H$ be linear such that $Tx \in M$ and $x Tx \in M^{\perp}$ for each $x \in H$. Show that M is a closed subspace of H.
- 15. Let M be a nonempty subset of a Hilbert space H and let $z \in H$. Show that there exists $u \in M^{\perp}$ such that $\langle x, z \rangle = \langle x, u \rangle$ for all $x \in M^{\perp}$.
- 16. If $\omega = e^{2\pi i/3}$, then which point in the subspace span $\{(1, \omega, \omega^2), (1, \omega^2, \omega)\}$ of the Hilbert space \mathbb{C}^3 is nearest to the point (1, -1, 1)?
- 17. Let C be a nonempty convex subset of an inner product space X and let $x \in X$. Prove that for $y \in C$, d(x, C) = ||x y|| iff $\operatorname{Re}\langle x y, z y \rangle \leq 0$ for all $z \in C$.
- 18. Let C be a nonempty convex set in an inner product space X and let (x_n) be a sequence in C such that $\lim_{n\to\infty} ||x_n|| = \inf_{x\in C} ||x||$. Show that (x_n) is a Cauchy sequence in X.
- 19. Let M be a closed subspace of a Hilbert space H. If $x \in M$ and if (x_n) is a sequence in M, then show that $x_n \xrightarrow{w} x$ in H iff $x_n \xrightarrow{w} x$ in M.
- 20. Let (x_n) be a sequence in a Hilbert space H such that for each $x \in H$, the sequence $(\langle x_n, x \rangle)$ converges in \mathbb{K} . Show that there exists $y \in H$ such that $x_n \xrightarrow{w} y$ in H.

- 21. Using Riesz representation theorem, show that $\left\{ (x_n) \in \ell^2 : \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} x_n = 0 \right\}$ is not a closed subset of the Hilbert space ℓ^2 .
- 22. Let $\{u_1, ..., u_n\}$ be an orthonormal set in a Hilbert space H. Prove that $||x \sum_{i=1}^n \alpha_i u_i|| \ge ||x \sum_{i=1}^n \langle x, u_i \rangle u_i||$ for all $x \in H$ and for all $(\alpha_1, ..., \alpha_n) \in \mathbb{K}^n$.
- 23. Let (T_n) be a Cauchy sequence in $\mathcal{B}(X)$, where X is an inner product space. Let $y \in X$ and let $f_n(x) = \langle T_n x, y \rangle$ for all $x \in X$. Show that (f_n) is a convergent sequence in X^* .
- 24. Let (u_n) be an orthonormal sequence in an inner product space X and let (α_n) be a sequence in K. If $s_n = \sum_{i=1}^n \alpha_i u_i$ for all $n \in \mathbb{N}$, then show that (s_n) is a Cauchy sequence in X iff $(\alpha_n) \in \ell^2$.
- 25. Let H be an infinite dimensional Hilbert space. Show that no orthonormal basis of H can be a Hamel basis of H.
- 26. Let $f(x) = \int_{0}^{1} tx(t) dt$ for all $x \in C[0, 1]$. Show that $f \in (C[0, 1], \|\cdot\|_2)^*$ and find $\|f\|$.
- 27. Let $\{u_n : n \in \mathbb{N}\}$ be an orthonormal basis of a Hilbert space H and let $f \in H^*$. Prove that $y = \sum_{n=1}^{\infty} \overline{f(u_n)}u_n$ is the unique element in H such that $f(x) = \langle x, y \rangle$ for all $x \in H$ and that $\|f\|^2 = \sum_{n=1}^{\infty} |f(u_n)|^2$.
- 28. Let $(H, \|\cdot\|)$ be a separable Hilbert space with an orthonormal basis $\{u_n : n \in \mathbb{N}\}$. If $\|x\|_0 = \sum_{n=1}^{\infty} \frac{1}{2^n} |\langle x, u_n \rangle|$ for all $x \in H$, then show that $\|\cdot\|_0$ is a norm on H which is not equivalent to $\|\cdot\|$.
- 29. Let $\{u_n : n \in \mathbb{N}\}$ be an orthonormal basis of a Hilbert space H and let $\{v_n : n \in \mathbb{N}\}$ be an orthonormal set in H such that $\sum_{n=1}^{\infty} ||u_n v_n||^2 < 1$. Show that $\{v_n : n \in \mathbb{N}\}$ is an orthonormal basis of H.
- 30. Find $\min_{a,b,c \in \mathbb{R}} \int_{-1}^{1} |x^3 a bx cx^2|^2 dx.$
- 31. Give an example to show that the range of an one-one continuous linear map from a Hilbert space H to itself need not be closed in H.
- 32. If $\{u_n : n \in \mathbb{N}\}\$ is an (countably infinite) orthonormal basis of a Hilbert space H, then show that there exists a discontinuous linear map $T : H \to H$ such that $Tu_n = 0$ for all $n \in \mathbb{N}$.
- 33. Let *H* be a Hilbert space and let (T_n) be a sequence in $\mathcal{B}(H)$ such that for each $x, y \in H$, $\lim_{n \to \infty} \langle T_n x, y \rangle$ exists in \mathbb{K} . Show that $\sup\{\|T_n\| : n \in \mathbb{N}\} < \infty$.

- 34. If H is a non-zero Hilbert space, then show that there cannot exist $T, S \in \mathcal{B}(H)$ such that TS ST = I, where I denotes the identity operator on H.
- 35. Let X and Y be two normed linear spaces. Suppose $T : X \to Y$ is a linear map that sends every weakly convergence sequence a weakly convenance sequence. Show that T is bounded.
- 36. Suppose X is a Banach space and $x, x_n \in X$. Prove that $x_n \xrightarrow{w} x$ if and only if $\{||x_n||\}$ is bounded and $f(x_n) \to f(x)$ for each $f \in S$, where $\overline{\text{Span } S} = X^*$.
- 37. A sequence $\{f_n\}$ in X^* is weak^{*} convergent if and only if $\{||f_n||\}$ is bounded and $\{f_n(x)\}$ is a Cauchy sequence for each $x \in S$, where $\overline{\text{Span } S} = X$.
- 38. Suppose X is a Banach space and $x, x_n \in X$. Prove that $x_n \xrightarrow{w} x$ if and only if $\{||x_n||\}$ is bounded and $f(x_n) \to f(x)$ for each $f \in S$, where $\overline{\text{Span } S} = X^*$.
- 39. A sequence $\{f_n\}$ in X^* is weak^{*} convergent if and only if $\{||f_n||\}$ is bounded and $\{f_n(x)\}$ is a Cauchy sequence for each $x \in S$, where $\overline{\text{Span } S} = X$.