DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA550: Measure Theory Instructor: Rajesh Srivastava Time duration: Two hours Mid Semester Exam September 20, 2018 Maximum Marks: 30

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does there exist a Lebesgue measurable set $A \subset \mathbb{R}$ such that m(A) = 0 and $m(\text{boundary}(A)) = \infty$?
 - (b) Let C be the Cantor set in [0, 1] and $a, b \in \mathbb{R}$ with a < b. Whether the set C + (a, b) is Borel measurable?
 - (c) Let $f(x) = \frac{1}{x}$ if $x \neq 0$ and f(0) = 1. Does it imply that the function f is Borel measurable on \mathbb{R} ?
 - (d) Let A be subset of \mathbb{R} with $m^*(A) < \infty$. Does it imply that $m^*(A^2) < \infty$?
- 2. M be the class of all Lebesgue measurable subset of [0, 1]. If $N \notin \tilde{M}$. Prove/disprove $N \cap (\mathbb{R} \setminus \mathbb{Q}) \in \tilde{M}$.
- 3. Let $E \subset [0,1]$ be Lebesgue measurable and m(E) > 0. For $r_n \in [-1,1] \cap \mathbb{Q}$, let $E_n = E + r_n$. Show that all of E_n 's cannot be pairwise disjoint. Further, deduce that there exist $x, y \in E$ such that $x y \in \mathbb{Q}$.
- 4. Let A and B be subsets of [0, 1] which satisfy $m^*(A \cup B) = m^*(A) + m^*(B)$. If $A \triangle B$ is Lebesgure measurable then prove that A and B are Lebesgure measurable.
- 5. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous function such that f = 0 except on set of Lebesgue measure zero. Show that f is identically zero on \mathbb{R} .
- 6. Let (X, S, μ) be a finite measure space and $f : X \to \mathbb{R}$ be an almost finite Smeasurable function. Prove that for each $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $\mu\{x \in X : |f(x)| > n_0\} < \epsilon$. 3
- 7. Let $f : (\mathbb{R}, M, m) \to [0, \infty]$ be such that for each $\epsilon > 0$ there exists a Lebesgue measurable set $E \subset \mathbb{R}$ with $m(E) < \epsilon$ and f is continuous on $\mathbb{R} \setminus E$. Show that f is a Lebesgue mesurable function.
- 8. Let $E \subset \mathbb{R}$ be Lebesgue measurable and $m(E) = \infty$. Define a function $f : \mathbb{R} \to \overline{\mathbb{R}}$ by $f(x) = m(E \cap (-\infty, x))$. Show that f is a Borel measurable function.
- 9. Let $g : [0,1] \to [0,2]$ be a bijection with m(g(C)) = 1, where C is the Cantor set. Construct a Lebesgue measurable function f on [0,1] such that $f \circ g^{-1}$ is not Lebesgue measurable.