DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA550: Measure Theory Instructor: Rajesh Srivastava Time duration: Two hours

Mid Semester Exam September 26, 2014 Maximum Marks: 30

1

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Give an example of almost everywhere vanishing Lebesgue measurable function which is not continuous.
 - (b) Whether the Lebesgue measure of $\{x \in \mathbb{R} : \inf_{x-1 \le y \le x} |y| = 1\}$ is zero?
- 2. Let $\{E_n\}$ be a sequence of Lebesgue measurable subsets of \mathbb{R} such that $\sum_{n=1}^{\infty} m(E_n) < \infty$. Show that $m\left(\bigcap_{n=1}^{\infty} E_n\right) = 0.$ 3
- 3. Let $A \subset \mathbb{R}$ be a closed set with m(A) = 0. Show that A is nowhere dense in \mathbb{R} . But does this conclusion hold true when A is not closed? 2+1
- 4. Let $[-1, 1] \cap \mathbb{Q} = \{r_1, r_2, \ldots\}$. For a Lebesgue measurable set $E \subset [0, 1]$ with m(E) > 0, define $E_n = E + r_n$; $n \in \mathbb{N}$. Show that all of E_n 's can not be pairwise disjoint. 3
- 5. Let *E* be a Lebesgue measurable subset of \mathbb{R} with $m(E) < \infty$. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = m\{E \cap (-\infty, x^2)\}$. Show that *f* is differentiable at 0 and f'(0) = 0. 3
- 6. Let *E* be a Lebesgue measurable subsets of \mathbb{R} with $m(E) = \infty$. Show that there exists a sequence $\{E_n\}$ of pairwise disjoint measurable subsets of *E* such that $m(E_n) < \infty$, for all *n* and $E = \bigcup_{n=1}^{\infty} E_n$.
- 7. Let $O \subset \mathbb{R}$ be an open set with $m(O) < \infty$. Show that for each $\epsilon > 0$ there exists a pair of disjoint open sets O_1 and O_2 such that $O = O_1 \cup O_2$ and $m(O_2) < \epsilon$. 3
- 8. Let \mathbb{Q} denotes set of rationals. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x, y) = \begin{cases} 1 & \text{if } x + y \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{cases}$ Show that f is Lebesgue measurable.
- 9. Let $f : \mathbb{R} \to \mathbb{R}$ be Lebesgue measurable. Show that $\{x \in \mathbb{R} : f \text{ is continuous at } x\}$ is Lebesgue measurable. 3

10. Let C be the Cantor's ternary set. Define $f : [0,1] \to \mathbb{R}$ by $f(x) = \begin{cases} \frac{1}{x} & \text{if } x \in C \setminus \{0\}, \\ 0 & \text{otherwise.} \end{cases}$ Show that f is Lebesgue measurable. By letting C has a non-Borel measurable subset, construct a Lebesgue measurable function which is not Borel measurable. 2+2