DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA550: Measure Theory Instructor: Rajesh Srivastava Time duration: Three hours End Semester Make-up Exam December 7, 2014 Maximum Marks: 45

1

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does there exist an unbounded closed set having finite Lebesgue measure ? 1
 - (b) Give an example of a set $A \subset \mathbb{R}$ such that $m\{\text{Interior}(A)\} = 0$ but $m(\overline{A}) = 1$. $|\mathbf{1}|$
 - (c) Let $\mathcal{S}(\mathbb{R})$ denotes the space of all continuous functions on \mathbb{R} such that $|x|^{\alpha}f(x)$ is bounded, for any $\alpha \in \mathbb{N}$. Whether $\mathcal{S}(\mathbb{R})$ is a dense subspace of $L^2(\mathbb{R})$?
 - (d) Give an example of non-zero function in $\mathcal{S}(\mathbb{R})$.
 - (e) Let $C_c(\mathbb{R})$ denotes the space of all compactly supported continuous functions on \mathbb{R} . Give an example of non-zero function in $C_c(\mathbb{R})$.
- 2. Let $m^*(A) > 0$. Then show that there exists at least one closed set $F \subset \mathbb{R}$ with $m(F) < \infty$ such that $A \cap F \neq \emptyset$.
- 3. Let μ be a finite measure on $M(\mathbb{R})$. Suppose for each closed set $F \subset \mathbb{R}$ with $m(F) < \infty$, implies $\mu(F) = 0$. Then show that $\mu = 0$.
- 4. Let *E* be a measurable subset of \mathbb{R} with $m(E) < \infty$ and $m\{E \cap (n, n+1)\} < \frac{1}{2^{|n|+2}}m(E)$, for all $n \in \mathbb{Z}$. Show that m(E) = 0.
- 5. Let K be a compact subset of \mathbb{R} . Show that $\{x \in \mathbb{R} : d(x, K) < 1\}$ is Lebesgue measurable and $m\{x \in \mathbb{R} : d(x, K) < 1\} \ge 2$.
- 6. Let (X, S, μ) be a measurable space and $f: X \to [0, 1]$. Then show that f is measurable if and only if $\{x \in X : f(x) > \frac{k}{2^n}\}$ is measurable $\forall k = 0, 1, 2, 3, \dots, 2^n$ and $\forall n \in \mathbb{N}$. **3**
- 7. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be such that f(x, .) is measurable and f(., y) is continuous. Show that f is Lebesgue measurable.
- 8. Let $f_n = \chi_{\left[\frac{1}{n}, \frac{1}{n+1}\right]}$. Construct an increasing sequence g_n of measurable functions in terms of f_n such that $\lim_{n \to \infty} \int_{\mathbb{R}} g_n(x) dm(x) < \infty$. 4
- 9. Let $f(x) = \frac{1}{\sqrt[3]{x}} \chi_{(0,1]}(x)$ and $f_n(x) = f(|x-n|)$. Write $g(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} f_n(x)$. Show that $g \in L^2(\mathbb{R}, M, m)$ but $g \notin L^p(\mathbb{R}, M, m)$, for any $p \ge 3$.
- 10. Let $1 \le p < \infty$. If $L^{\infty}(X, S, \mu) \subset L^{p}(X, S, \mu)$. Show that μ is a finite measure. 2
- 11. Let T be a bounded linear functional on $C_c(\mathbb{R})$. Construct a bounded linear functional on $L^1(\mathbb{R})$ such that \widetilde{T} restricted to $C_c(\mathbb{R})$ is T and $\|\widetilde{T}\| = \|T\|$.

P.T.O

- 12. Let $\mathbb{D} = \{(x, y) \in \mathbb{R}^2 : y \ge x^2 \text{ and } y \le 1\}$. Show that \mathbb{D} is $M(\mathbb{R}) \otimes M(\mathbb{R})$ measurable. Compute $m \times m(\mathbb{D})$, using product measure technique.
- 13. Let P(x, y) be a polynomial on \mathbb{R}^2 . Show that the set $G_P = \{(x, y) \in \mathbb{R}^2 : P(x, y) = 1\}$ is $M(\mathbb{R}) \otimes M(\mathbb{R})$ measurable. Compute $m \times m(G_P)$.
- 14. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \frac{x^2}{1+(x-y)^2}\chi_{[-1,1]}(x)$. Then show that f is $M(\mathbb{R}) \otimes M(\mathbb{R})$ measurable. Compute $\int_{\mathbb{R}^2} f(x,y)d(m \times m)(x,y)$.

END