DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA550: Measure Theory
Instructor: Rajesh Srivastava
Time duration: Three hours
End Semester Make-up Exam
December 7, 2014
Maximum Marks: 45
N.B. Answer without proper justification will attract zero mark.

1. (a) Does there exist an unbounded closed set having finite Lebesgue measure ? 1
(b) Give an example of a set $A \subset \mathbb{R}$ such that $m\{\operatorname{Interior}(A)\}=0$ but $m(\bar{A})=1.1$
(c) Let $\mathcal{S}(\mathbb{R})$ denotes the space of all continuous functions on \mathbb{R} such that $|x|^{\alpha} f(x)$ is bounded, for any $\alpha \in \mathbb{N}$. Whether $\mathcal{S}(\mathbb{R})$ is a dense subspace of $L^{2}(\mathbb{R})$? 1
(d) Give an example of non-zero function in $\mathcal{S}(\mathbb{R})$.
(e) Let $C_{c}(\mathbb{R})$ denotes the space of all compactly supported continuous functions on \mathbb{R}. Give an example of non-zero function in $C_{c}(\mathbb{R})$.
2. Let $m^{*}(A)>0$. Then show that there exists at least one closed set $F \subset \mathbb{R}$ with $m(F)<\infty$ such that $A \cap F \neq \emptyset$.
3. Let μ be a finite measure on $M(\mathbb{R})$. Suppose for each closed set $F \subset \mathbb{R}$ with $m(F)<\infty$, implies $\mu(F)=0$. Then show that $\mu=0$.
4. Let E be a measurable subset of \mathbb{R} with $m(E)<\infty$ and $m\{E \cap(n, n+1)\}<\frac{1}{2^{|n|+2}} m(E)$, for all $n \in \mathbb{Z}$. Show that $m(E)=0 . \quad 2$
5. Let K be a compact subset of \mathbb{R}. Show that $\{x \in \mathbb{R}: d(x, K)<1\}$ is Lebesgue measurable and $m\{x \in \mathbb{R}: d(x, K)<1\} \geq 2$.
6. Let (X, S, μ) be a measurable space and $f: X \rightarrow[0,1]$. Then show that f is measurable if and only if $\left\{x \in X: f(x)>\frac{k}{2^{n}}\right\}$ is measurable $\forall k=0,1,2,3, \ldots, 2^{n}$ and $\forall n \in \mathbb{N}$. 3
7. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that $f(x,$.$) is measurable and f(., y)$ is continous. Show that f is Lebesgue measurable.
8. Let $f_{n}=\chi_{\left[\frac{1}{n}, \frac{1}{n+1}\right]}$. Construct an increasing sequence g_{n} of measurable functions in terms of f_{n} such that $\lim _{n \rightarrow \infty} \int_{\mathbb{R}} g_{n}(x) d m(x)<\infty$.
9. Let $f(x)=\frac{1}{\sqrt[3]{x}} \chi_{(0,1]}(x)$ and $f_{n}(x)=f(|x-n|)$. Write $g(x)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} f_{n}(x)$. Show that $g \in L^{2}(\mathbb{R}, M, m)$ but $g \notin L^{p}(\mathbb{R}, M, m)$, for any $p \geq 3$.
10. Let $1 \leq p<\infty$. If $L^{\infty}(X, S, \mu) \subset L^{p}(X, S, \mu)$. Show that μ is a finite measure.
11. Let T be a bounded linear functional on $C_{c}(\mathbb{R})$. Construct a bounded linear functional on $L^{1}(\mathbb{R})$ such that \widetilde{T} restricted to $C_{c}(\mathbb{R})$ is T and $\|\widetilde{T}\|=\|T\|$.
12. Let $\mathbb{D}=\left\{(x, y) \in \mathbb{R}^{2}: y \geq x^{2}\right.$ and $\left.y \leq 1\right\}$. Show that \mathbb{D} is $M(\mathbb{R}) \otimes M(\mathbb{R})$ - measurable. Compute $m \times m(\mathbb{D})$, using product measure technique.
13. Let $P(x, y)$ be a polynomial on \mathbb{R}^{2}. Show that the set $G_{P}=\left\{(x, y) \in \mathbb{R}^{2}: P(x, y)=1\right\}$ is $M(\mathbb{R}) \otimes M(\mathbb{R})$ - measurable. Compute $m \times m\left(G_{P}\right)$.
14. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\frac{x^{2}}{1+(x-y)^{2}} \chi_{[-1,1]}(x)$. Then show that f is $M(\mathbb{R}) \otimes M(\mathbb{R})$ - measurable. Compute $\int_{\mathbb{R}^{2}} f(x, y) d(m \times m)(x, y)$.
