DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA550: Measure Theory Instructor: Rajesh Srivastava Time duration: Three hours End Semester Exam November 28, 2018 Maximum Marks: 45

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Let (X, S, μ) be a σ finite measure space with $\mu(\{x\}) = 0$ for all $x \in X$. Is it possible that $(\mu \times \mu)(\{(x, y) \in X \times X : x = y\}) > 0$?
 - (b) Does there exist a Lebesgue measurable function f on (\mathbb{R}, M, m) such that $\int_{E} f$ is finite for every $E \in M$ but $f \notin L^{1}(\mathbb{R}, M, m)$?
 - (c) Does there exist $f \in L^{\infty}(X, S, \mu)$ such that $\mu(\{x \in X : |f(x)| = ||f||_{\infty}\}) = 0$? 1
- 2. Let \mathcal{A} be the monotone class generated by all closed sets in \mathbb{R} . If E and F are closed subsets \mathbb{R} , then show that E + F belongs to \mathcal{A} . 3
- 3. Let (X, S, μ) be a finite measure space. If for each $n \in \mathbb{N}$, the function $\frac{e^n f}{e^n + |f|}$ is *S*-measurable, then show that $\int_X |f| = \lim_X \int_X \frac{e^n f}{e^n + |f|}$. Does *f* belong to $L^1(X, S, \mu)$? **2+1**
- 4. Let $f: (X, S, \mu) \to (0, \infty)$ be a measurable function. If $\int_E f d\mu = 0$ for some $E \in S$, then prove that $\mu(E) = 0$.
- 5. Let (X, S, μ) be a finite measure space. For a fix $E \in S$, define a sequence f_n of functions on X by $f_n = \begin{cases} \chi_E & \text{if } n \text{ is odd,} \\ 1 \chi_E & \text{if } n \text{ is even.} \end{cases}$ If $\mu(E)\mu(E^c) > 0$, then show that $\int_X \underline{\lim} f_n d\mu < \underline{\lim} \int_X f_n d\mu$. 3
- 6. Let $1 \le p < \infty$ and $f, f_n \in L^p(X, S, \mu)$ be such that $||f_n f||_p \to 0$. For each $\epsilon > 0$, show that $\mu\{x \in X : |f_n(x) f(x)| > \epsilon\} \to 0$.
- 7. Let $1 and <math>f \in L^p(X, S, \mu)$. Show that the series $\sum_{n=1}^{\infty} \mu\{x \in X : |f(x)| \ge n\}$ is convergent.
- 8. Let (X, S, μ) be a σ finite measure space. Suppose for each $\epsilon > 0$ there exists some p > 1 such that $||f||_p < \epsilon$ for every $f \in L^p(X, S, \mu)$. Show that $\mu = 0$.
- 9. Let (X, S, μ) be a finite measure space. Show that $L^{\infty}(X, S, \mu)$ is a dense subspace of $L^{p}(X, S, \mu)$ for any $p \geq 1$.

10. Find the
$$\lim_{n \to \infty} \int_{0}^{1} \frac{nx \sin x}{1 + (nx)^{3}} dx.$$
 3

- 11. Define a linear functional on $L^1(\mathbb{R}, M, m)$ by $T(f) = \int_{\mathbb{R}} \frac{f(x)}{1+|x|}$. Show that T is bounded and ||T|| = 1. 1+3
- 12. For $f \in L^1(\mathbb{R}, M, m,)$ define $F(x) = \int_0^x f(t)dt$. Show that $F \in L^1([0, 1], M, m)$ and it satisfies $||F||_1 \le ||f||_1$. **1+3**
- 13. Let $D = \{(x, y) : \in \mathbb{R}^2 : 0 \le x \le y \le 1\}$ and $f(x, y) = y^2 \sin xy$. Show that $f\chi_D \in L^1(\mathbb{R}^2, M \otimes M, m \times m)$ Further, deduce that $\int_D f d(m \times m) = \int_{[0,1]} g dm$, where $g(y) = y(1 \cos y^2)$. **3+2**
- 14. Let $f: (X, S, \mu) \to [0, 1]$ be a measurable function on the finite measure space (X, S, μ) . Show that $A_f = \{(x, y) \in X \times [0, 1] : f(x) \le y\}$ is $S \otimes \mathcal{B}(\mathbb{R})$ - measurable. Further derive that $(\mu \times m)(A_f) = \mu(X) - \int_X f(x)d\mu(x)$. **3+2**

END