DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA550: Measure Theory
Instructor: Rajesh Srivastava
Time duration: Three hours
End Semester Exam
November 28, 2018
Maximum Marks: 45
N.B. Answer without proper justification will attract zero mark.

1. (a) Let (X, S, μ) be a σ - finite measure space with $\mu(\{x\})=0$ for all $x \in X$. Is it possible that $(\mu \times \mu)(\{(x, y) \in X \times X: x=y\})>0$?
(b) Does there exist a Lebesgue measurable function f on (\mathbb{R}, M, m) such that $\int_{E} f$ is finite for every $E \in M$ but $f \notin L^{1}(\mathbb{R}, M, m)$? 1
(c) Does there exist $f \in L^{\infty}(X, S, \mu)$ such that $\mu\left(\left\{x \in X:|f(x)|=\|f\|_{\infty}\right\}\right)=0$? $\mathbf{1}$
2. Let \mathcal{A} be the monotone class generated by all closed sets in \mathbb{R}. If E and F are closed subsets \mathbb{R}, then show that $E+F$ belongs to \mathcal{A}.
3. Let (X, S, μ) be a finite measure space. If for each $n \in \mathbb{N}$, the function $\frac{e^{n} f}{e^{n}+|f|}$ is S measurable, then show that $\int_{X}|f|=\lim \int_{X} \frac{e^{n} f}{e^{n}+|f|}$. Does f belong to $L^{1}(X, S, \mu) ? \mathbf{2 + 1}$
4. Let $f:(X, S, \mu) \rightarrow(0, \infty)$ be a measurable function. If $\int_{E} f d \mu=0$ for some $E \in S$, then prove that $\mu(E)=0$.
5. Let (X, S, μ) be a finite measure space. For a fix $E \in S$, define a sequence f_{n} of functions on X by $f_{n}=\left\{\begin{array}{cl}\chi_{E} & \text { if } n \text { is odd, } \\ 1-\chi_{E} & \text { if } n \text { is even. }\end{array}\right.$
If $\mu(E) \mu\left(E^{c}\right)>0$, then show that $\int_{X} \underline{\lim } f_{n} d \mu<\underline{\lim } \int_{X} f_{n} d \mu$.
6. Let $1 \leq p<\infty$ and $f, f_{n} \in L^{p}(X, S, \mu)$ be such that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$. For each $\epsilon>0$, show that $\mu\left\{x \in X:\left|f_{n}(x)-f(x)\right|>\epsilon\right\} \rightarrow 0$.
7. Let $1<p<\infty$ and $f \in L^{p}(X, S, \mu)$. Show that the series $\sum_{n=1}^{\infty} \mu\{x \in X:|f(x)| \geq n\}$ is convergent.
8. Let (X, S, μ) be a σ - finite measure space. Suppose for each $\epsilon>0$ there exists some $p>1$ such that $\|f\|_{p}<\epsilon$ for every $f \in L^{p}(X, S, \mu)$. Show that $\mu=0$.
9. Let (X, S, μ) be a finite measure space. Show that $L^{\infty}(X, S, \mu)$ is a dense subspace of $L^{p}(X, S, \mu)$ for any $p \geq 1$.
10. Find the $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n x \sin x}{1+(n x)^{3}} d x$.
11. Define a linear functional on $L^{1}(\mathbb{R}, M, m)$ by $T(f)=\int_{\mathbb{R}} \frac{f(x)}{1+|x|}$. Show that T is bounded and $\|T\|=1$.
12. For $f \in L^{1}(\mathbb{R}, M, m$,$) define F(x)=\int_{0}^{x} f(t) d t$. Show that $F \in L^{1}([0,1], M, m)$ and it satisfies $\|F\|_{1} \leq\|f\|_{1}$.
13. Let $D=\left\{(x, y): \in \mathbb{R}^{2}: 0 \leq x \leq y \leq 1\right\}$ and $f(x, y)=y^{2} \sin x y$. Show that $f \chi_{D} \in$ $L^{1}\left(\mathbb{R}^{2}, M \otimes M, m \times m\right)$ Further, deduce that $\int_{D} f d(m \times m)=\int_{[0,1]} g d m$, where $g(y)=$ $y\left(1-\cos y^{2}\right)$.
14. Let $f:(X, S, \mu) \rightarrow[0,1]$ be a measurable function on the finite measure space (X, S, μ). Show that $A_{f}=\{(x, y) \in X \times[0,1]: f(x) \leq y\}$ is $S \otimes \mathcal{B}(\mathbb{R})$ - measurable. Further derive that $(\mu \times m)\left(A_{f}\right)=\mu(X)-\int_{X} f(x) d \mu(x)$.
