DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA550: Measure Theory Instructor: Rajesh Srivastava Time duration: Three hours End Semester Exam November 26, 2014 Maximum Marks: 45

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does there exist an unbounded open set having finite Lebesgue measure ?
 - (b) Whether $L^1(X, S, \mu)$ has an almost non-zero function for every (X, S, μ) ? 1
 - (c) Does $L^{\infty}(X, S, \mu)$ contain an almost non-zero function for every (X, S, μ) ? 1
 - (d) Let $C_c^{\infty}(\mathbb{R})$ denotes the space of all compactly supported infinitely differentiable functions on \mathbb{R} . Whether $C_c^{\infty}(\mathbb{R})$ is a dense subspace of $L^1(\mathbb{R})$?
- 2. Let $m^*(A) > 0$. Then show that there exists at least one open interval $I \subset \mathbb{R}$ with $m(I) < \infty$ such that $A \cap I \neq \emptyset$.
- 3. Let F be a closed subset of \mathbb{R} with m(F) = 0. Then for any $A \subset F$, show that $m^*\{x \in \mathbb{R} : d(x, A) = 0\} = 0$.
- 4. Let A be a bounded subset of \mathbb{R} . Then show that $m(\overline{A}) < \infty$.
- 5. Let K be a compact subset of \mathbb{R} and $O_n = \left\{ x \in \mathbb{R} : d(x, K) < \frac{1}{n} \right\}$. Then show that $\lim_{n \to \infty} m(O_n) = m(K)$.
- 6. Let $f: X \to \mathbb{R}$ and $D \subset \mathbb{R}$ be such that $\overline{D} = \mathbb{R}$. Then show that f is measurable if and only if $\{x \in X : f(x) > r\}$ is measurable for all $r \in D$. 3
- 7. Let $f, g: X \to \mathbb{R}$. Define $\varphi(x) = (f(x), g(x))$. Then show that f and g are measurable if and only if φ is measurable.
- 8. Let $1 \le p < \infty$ and $f \in L^+(X, S, \mu) \cap L^p(X, S, \mu)$. Define $f_n(x) = \min\{n, f(x)\}$. Then show that f_n increases to f point wise a.e. and $\lim_{n \to \infty} \int_{Y} |f_n f|^p d\mu = 0$.
- 9. Let $\{E_n\}$ be a sequence of disjoint measurable subsets of X such that $\mu(E_n) = \frac{1}{n^3}$. Let $f = \sum_{n=1}^{\infty} n \ \chi_{E_n}$. Then show that $f \notin L^p(X, S, \mu)$, for any $p \ge 2$.
- 10. Let $f \in L^p(X, S, \mu)$ and $g \in L^{\infty}(X, S, \mu)$. Then show that the inequality $\|fg\|_p \leq \|f\|_p \|g\|_{\infty}$, holds for each p with $1 \leq p < \infty$.

11. Let (X, S, μ) be a σ -finite measure space. Then show that $||f||_{\infty} = \sup_{||g||_1=1} \left| \int_X fg d\mu \right|$.

P.T.O

- 12. Let $\mathbb{D} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$. Show that \mathbb{D} is $M(\mathbb{R}) \otimes M(\mathbb{R})$ measurable. Compute $m \times m(\mathbb{D})$, using product measure technique.
- 13. Let (X, S, μ) be a finite measure space and $f : X \to [1, \infty]$ be a measurable function. Compute $\mu \times m\{(x, y) \in X \times \mathbb{R} : y < f(x)\}$.
- 14. Let $E, F \in M(\mathbb{R})$ and $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \chi_E(x)\chi_F(x-y)$. Then show that f is $M(\mathbb{R}) \otimes M(\mathbb{R})$ - measurable and $\int_{\mathbb{R}^2} f(x, y)d(m \times m)(x, y) = m(E)m(F)$. 4

END