# DEPARTMENT OF MATHEMATICS <br> Indian Institute of Technology Guwahati 

MA550: Measure Theory
End Semester Exam
Instructor: Rajesh Srivastava
Time duration: Three hours
November 26, 2014
Maximum Marks: 45
N.B. Answer without proper justification will attract zero mark.

1. (a) Does there exist an unbounded open set having finite Lebesgue measure ? 1
(b) Whether $L^{1}(X, S, \mu)$ has an almost non-zero function for every $(X, S, \mu)$ ? 1
(c) Does $L^{\infty}(X, S, \mu)$ contain an almost non-zero function for every $(X, S, \mu)$ ? $\mathbf{1}$
(d) Let $C_{c}^{\infty}(\mathbb{R})$ denotes the space of all compactly supported infinitely differentiable functions on $\mathbb{R}$. Whether $C_{c}^{\infty}(\mathbb{R})$ is a dense subspace of $L^{1}(\mathbb{R})$ ?
2. Let $m^{*}(A)>0$. Then show that there exists at least one open interval $I \subset \mathbb{R}$ with $m(I)<\infty$ such that $A \cap I \neq \emptyset$.
3. Let $F$ be a closed subset of $\mathbb{R}$ with $m(F)=0$. Then for any $A \subset F$, show that $m^{*}\{x \in \mathbb{R}: d(x, A)=0\}=0$.
4. Let $A$ be a bounded subset of $\mathbb{R}$. Then show that $m(\bar{A})<\infty$.
5. Let $K$ be a compact subset of $\mathbb{R}$ and $O_{n}=\left\{x \in \mathbb{R}: d(x, K)<\frac{1}{n}\right\}$. Then show that $\lim _{n \rightarrow \infty} m\left(O_{n}\right)=m(K)$.
6. Let $f: X \rightarrow \mathbb{R}$ and $D \subset \mathbb{R}$ be such that $\bar{D}=\mathbb{R}$. Then show that $f$ is measurable if and only if $\{x \in X: f(x)>r\}$ is measurable for all $r \in D$.
7. Let $f, g: X \rightarrow \mathbb{R}$. Define $\varphi(x)=(f(x), g(x))$. Then show that $f$ and $g$ are measurable if and only if $\varphi$ is measurable.
8. Let $1 \leq p<\infty$ and $f \in L^{+}(X, S, \mu) \cap L^{p}(X, S, \mu)$. Define $f_{n}(x)=\min \{n, f(x)\}$. Then show that $f_{n}$ increases to $f$ point wise a.e. and $\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right|^{p} d \mu=0$.
9. Let $\left\{E_{n}\right\}$ be a sequence of disjoint measurable subsets of $X$ such that $\mu\left(E_{n}\right)=\frac{1}{n^{3}}$. Let $f=\sum_{n=1}^{\infty} n \chi_{E_{n}}$. Then show that $f \notin L^{p}(X, S, \mu)$, for any $p \geq 2$.
10. Let $f \in L^{p}(X, S, \mu)$ and $g \in L^{\infty}(X, S, \mu)$. Then show that the inequality $\|f g\|_{p} \leq\|f\|_{p}\|g\|_{\infty}$, holds for each $p$ with $1 \leq p<\infty$.
11. Let $(X, S, \mu)$ be a $\sigma$-finite measure space. Then show that $\|f\|_{\infty}=\sup _{\|g\|_{1}=1}\left|\int_{X} f g d \mu\right| \cdot 4$
12. Let $\mathbb{D}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$. Show that $\mathbb{D}$ is $M(\mathbb{R}) \otimes M(\mathbb{R})$ - measurable. Compute $m \times m(\mathbb{D})$, using product measure technique.
13. Let $(X, S, \mu)$ be a finite measure space and $f: X \rightarrow[1, \infty]$ be a measurable function. Compute $\mu \times m\{(x, y) \in X \times \mathbb{R}: y<f(x)\}$.
14. Let $E, F \in M(\mathbb{R})$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\chi_{E}(x) \chi_{F}(x-y)$. Then show that $f$ is $M(\mathbb{R}) \otimes M(\mathbb{R})$ - measurable and $\int_{\mathbb{R}^{2}} f(x, y) d(m \times m)(x, y)=m(E) m(F) .4$
