DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA550: Measure Theory Instructor: Rajesh Srivastava Time duration: Two hours Quiz I September 8, 2018 Maximum Marks: 10

N.B. Answer without proper justification will attract zero mark.

- 1. (a) If A and $A \cup B$ are Lebesgue measurable subsets of \mathbb{R} . Is it necessary that B is Lebesgue measurable in \mathbb{R} ?
 - (b) Let $O = \bigcup_{n=1}^{\infty} I_n$, where $\{I_n\}$ is a sequence of pairwise disjoint non-empty open intervals in \mathbb{R} and m(O) > 1. Does there exist some $N \in \mathbb{N}$ such that $\sum_{n=1}^{N} l(I_n) > 1$?
- 2. Let $\mathcal{B}_o(\mathbb{R})$ be the σ -algebra generated by all bounded open intervals in \mathbb{R} . Let $\mathcal{B}_1(\mathbb{R})$ be the σ -algebra generated by all compact sets in \mathbb{R} . Show that $\mathcal{B}_o(\mathbb{R}) = \mathcal{B}_1(\mathbb{R})$.
- 3. Let A be a closed subset of [0, 1] that satisfies $A \cap (\alpha, \beta) \neq \emptyset$ for all $\alpha, \beta \in [0, 1]$ with $\alpha < \beta$. Show that $m(A \smallsetminus A^2) = 0$.
- 4. Let A be a subset of \mathbb{R} with $0 < m^*(A) < \infty$. Show that for each $\epsilon > 0$ there exist an open set O containing A and a compact set $K \subset \mathbb{R}$ such that $m(O \smallsetminus K) < \epsilon$.
- 5. Prove that there does not exist a non-zero finite measure μ on the measurable space $(\mathbb{R}, M(\mathbb{R}))$ which is constant on all bounded open interval (a, b) in \mathbb{R} with a < b.

END