DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA550: Measure Theory Instructor: Rajesh Srivastava Time duration: **01.5 hours** Quiz II November 7, 2014 Maximum Marks: 12

N.B. Answer without proper justification will attract zero mark.

- 1. Let f be a non-negative function in $L^1(\mathbb{R}, M, m)$. Define $g(x) = \sum_{n=1}^{\infty} f(2^n x + \frac{1}{n})$. Show that $g \in L^1(\mathbb{R}, M, m)$ and $\int_{\mathbb{R}} g dm = \int_{\mathbb{R}} f dm$. 2
- 2. Let $f_n : [0, \infty) \to \mathbb{R}$ be defined by $f_n(x) = \frac{n^2 x e^{-x^2}}{n^2 + x^2}$. Show that $f_n \in L^1([0, \infty))$, for each $n \in \mathbb{N}$ and $\lim_{n \to \infty} \int_{[0,\infty)} f_n dm = \frac{1}{2}$. 3
- 3. Let $f: (X, S, \mu) \to \overline{\mathbb{R}}$ be an integrable function. Define a set function $\nu: S \to \mathbb{R}$ by $\nu(E) = \int_{E} f \, d\mu$. Show that ν is countably additive on S. (Hint: Use $f = f^{+} f^{-}$.) 2
- 4. Let $f: (X, S, \mu) \to [0, \infty]$ be such that $||f||_1 = 1$. Show that there exists at leat one $n \in \mathbb{N}$ such that $\mu\{x \in \mathbb{X} : |f(x)| < n\} > 0$.
- 5. Let $f_n : X \to [0, \infty]$ be a sequence of measurable functions and $f_n \to f$ point wise. Suppose there exists M > 0 such that $\sup_{n \ge 1} \int_X f_n \le M$. Show that $f \in L^1(X, S, \mu)$. (Hint: Use Fatou's lemma.)

END