DEPARTMENT OF MATHEMATICS

Indian Institute of Technology Guwahati

MA550: Measure Theory
Instructor: Rajesh Srivastava
Quiz II
Time duration: 01.5 hours
November 7, 2014
Maximum Marks: 12
N.B. Answer without proper justification will attract zero mark.

1. Let f be a non-negative function in $L^{1}(\mathbb{R}, M, m)$. Define $g(x)=\sum_{n=1}^{\infty} f\left(2^{n} x+\frac{1}{n}\right)$. Show that $g \in L^{1}(\mathbb{R}, M, m)$ and $\int_{\mathbb{R}} g d m=\int_{\mathbb{R}} f d m$.
2. Let $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ be defined by $f_{n}(x)=\frac{n^{2} x e^{-x^{2}}}{n^{2}+x^{2}}$. Show that $f_{n} \in L^{1}([0, \infty))$, for each $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} \int_{[0, \infty)} f_{n} d m=\frac{1}{2}$.
3. Let $f:(X, S, \mu) \rightarrow \overline{\mathbb{R}}$ be an integrable function. Define a set function $\nu: S \rightarrow \mathbb{R}$ by $\nu(E)=\int_{E} f d \mu$. Show that ν is countably additive on S. (Hint: Use $f=f^{+}-f^{-}$.) $\mathbf{2}$
4. Let $f:(X, S, \mu) \rightarrow[0, \infty]$ be such that $\|f\|_{1}=1$. Show that there exists at leat one $n \in \mathbb{N}$ such that $\mu\{x \in \mathbb{X}:|f(x)|<n\}>0$.
5. Let $f_{n}: X \rightarrow[0, \infty]$ be a sequence of measurable functions and $f_{n} \rightarrow f$ point wise. Suppose there exists $M>0$ such that $\sup _{n \geq 1} \int_{X} f_{n} \leq M$. Show that $f \in L^{1}(X, S, \mu)$.
(Hint: Use Fatou's lemma.)
