DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA550: Measure Theory
Instructor: Rajesh Srivastava
Time duration: Three hours

EndSem
May 5, 2024
Maximum Marks: 50

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Whether $\{(x,y) \in \mathbb{R}^2 : x < y\}$ belongs to $B(\mathbb{R}) \otimes B(\mathbb{R})$?
 - (b) Let $E \in M(\mathbb{R}) \otimes M(\mathbb{R})$ and $m \times m(E) = 0$. Does it imply that $m(E_x) = 0$ for a.e. x in \mathbb{R} ?
 - (c) Let (X, S, μ) be a measure space. If $\int_E f d\mu > 0$ for every $E \in S$, does it imply f(x) > 0 for a.e. x in X?
 - (d) Let $f \in L^+ \cap L^1(X, S, \mu)$ and $E_n = \{x \in X : \frac{1}{n} \leq f(x) \leq n\}$. Does it imply $\int_{E_n} f d\mu \to \int_X f d\mu$?
 - (e) Whether $L^{\infty}([0,1], M, m) = \bigcap_{p \ge 1} L^p([0,1], M, m)$?
- 2. Suppose $f \in L^2(X, S, \mu)$. Show that $\lim_{n \to \infty} n^2 \mu \{x \in X : |f(x)| \ge n\} = 0$.
- 3. Let $f, f_n \in L^1(X, S, \mu)$ and $\int_X |f_n f| d\mu \to 0$. Show that for each $\epsilon > 0$, there exist $\delta > 0$, $n_o \in \mathbb{N}$ and $E \in S$ such that $\left| \int_E f_n d\mu \right| < \epsilon$, whenever $\mu(E) < \delta$ and $n \geq n_o$
- 4. Let $f(x,y) = \sin x \chi_{\{(x,y): y < x < y + 2\pi\}}$. Show that $\int_{\mathbb{R}} \int_{\mathbb{R}} (f(x,y) dx dy \neq \int_{\mathbb{R}} \int_{\mathbb{R}} (f(x,y) dy dx) dx = \boxed{4}$
- 5. Let $f:(X,S,\mu)\to([0,\infty),B(\mathbb{R}),m)$ and $A=\{(x,y):0\leq y\leq f(x),x\in X\}$. Show that f is S-measurable if and only if $A\in S\otimes \mathbb{B}(\mathbb{R})$.
- 6. Let $f, f_n : (X, S, \mu) \to [0, \infty]$ be such that $f_n \to f$ pointwise and $\sup_{n \ge 1} \int_X f_n d\mu < \infty$. Show that $\int_X |f_n - f| d\mu \to 0$ if and only if $\int_X f_n d\mu \to \int_X f d\mu$. (Fatou's lemma may be helpful.)
- 7. Let $f:(X,S,\mu)\to [1,\infty)$ be a measurable function. If $f\in L^1(X,S,\mu)$, then show that the series $\sum_{n=1}^{\infty}\mu\{x\in X:f(x)>n\}$ is convergent.
- 8. Let $T: L^2(\mathbb{R}, M, m) \to L^1(\mathbb{R}, M, m)$ be defined by $(Tf)(x) = \int_{\mathbb{R}} \frac{f(x+y)}{(1+y^2)\sqrt{1+x^2}} dy$. Show that T is a bounded linear map and $||T|| \le (\pi)^{3/2}$.
- 9. Let $f \in L^1(\mathbb{R}, M, m)$. Show that $\frac{f(nx)}{n} \to 0$ a.e. x in \mathbb{R} . (Beppo-Levi theorem may be helpful.)
- 10. If $f \notin L^{\infty}(\mathbb{R}, M, m)$, then show that $\lim_{p \to \infty} ||f||_p = \infty$.
- 11. Let $f \in L^+ \cap L^1(X, S, \mu)$. Show that $\int_X f d\mu = \int_0^\infty \mu\{x \in X : f(x) > t\} dt$. (Fubini's theorem may be helpful)