DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA547: Complex Analysis Instructor: Rajesh Srivastava Time duration: Two hours MidSem February 24, 2025 Maximum Marks: 30

2

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does there exist a non-constant entire function f such that \bar{f} is also entire? **1**
 - (b) Suppose u is a non-constant harmonic function on \mathbb{R}^2 and T(x,y) = (2x, y + 1). Does it necessarily imply that $u \circ T$ is harmonic?
 - (c) Suppose R is the radius of convergence of power series $\sum a_n z^n$. Does it necessary imply that $f(z) = \sum a_n z^n$ is analytic on |z| = R?
- 2. Is it true that $|\sin z| \le |z|$ for each $z \in \mathbb{C}$? Show that there exists a small neighbourhood N of 0 and k > 0 such that $|\sin z| \le k|z|$ for all $z \in N$.
- 3. Let $D = \{z \in \mathbb{C} : |z| = R \text{ and } \operatorname{Im} z \ge 0.\}$ For R > 1, show that the inequality $\left|\frac{e^{iz}}{z^2 + z + 1}\right| \le \frac{1}{(R-1)^2}$ holds for each $z \in D$.
- 4. Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Show that the series $\sum \{1 \cos(z^n)\}$ converges absolutely on \mathbb{D} . Does it converge uniformly on \mathbb{D} ?
- 5. Find all the possible analytic functions $f = u + iv : \mathbb{C} \to \mathbb{C}$ satisfying $u(x, y) v(x, y) = x^2 y^2$ on \mathbb{C} . Is it possible that v could be a constant?
- 6. Find all possible analytic functions $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ such that $z^2 f'(z) + f(z) = 0$ and $\lim_{|z| \to \infty} f(z) = 1.$ 4
- 7. Find the radius of convergence of the power series $\sum 2^{n^2} z^{n(n+1)}$.
- 8. Let α and $1+\alpha$ represent the reciprocal of radius of converge of power series $\sum a_n z^n$ and $\sum b_n z^n$ respectively. Prove that the radius of converge R of power series $\sum (a_n + b_n) z^n$ satisfies $\frac{1}{R} = 1 + \alpha$.
- 9. Let $a, b \in \mathbb{C}$. Define $T(z) = az + b\overline{z}$. Show that $T : \mathbb{C} \to \mathbb{C}$ is bijective if and only if $|a| \neq |b|$.