MA547: Complex Analysis

(Assignment 5: Open mapping theorem, Schwarz lemma, Laurent series, singularity, residue theorem) January - April, 2025

1. State TRUE or FALSE with justification:

(a) There exists an entire function f such that $f(z)^2 = \sin z$ for all $z \in \mathbb{C}$.

- 2. Let $f : \mathbb{D} \to \mathbb{D}$ be a bijective holomorphic function such that f(0) = 0. If $f^{-1} : \mathbb{D} \to \mathbb{D}$ is holomorphic, then show that there exists $\alpha \in \mathbb{C}$ such that $|\alpha| = 1$ and $f(z) = \alpha z$ for all $z \in \mathbb{D}$.
- 3. Let $f : \mathbb{D} \to \mathbb{C}$ be a non-constant analytic function such that f(0) = 1. Show that there exist infinitely many $z \in \mathbb{D}$ such that |f(z)| = 1.
- 4. If $f : \mathbb{D} \to \mathbb{C}$ is analytic such that $\operatorname{Re} f'(z) < 0$ for all $z \in \mathbb{D}$, then f is injective on \mathbb{D} .
- 5. Let $f: G \to \mathbb{C}$ be continuous, where G is an open set in \mathbb{C} . If the function $f^2: G \to \mathbb{C}$, defined by $f^2(z) = f(z)^2$ for all $z \in G$, is analytic, then show that f is analytic.
- 6. Let G be an open set in \mathbb{C} and let $f : G \to \mathbb{C}$ be such that both the functions $f^2 : G \to \mathbb{C}$ and $f^3 : G \to \mathbb{C}$ are analytic, where $f^2(z) = f(z)^2$ and $f^3(z) = f(z)^3$ for all $z \in G$. Show that f is analytic.
- 7. Let f and g be entire functions such that $|f(z)| \leq |g(z)|$ for all $z \in \mathbb{C}$. Show that there exists $\alpha \in \mathbb{C}$ such that $f(z) = \alpha g(z)$ for all $z \in \mathbb{C}$.
- 8. determine all entire function f such that $f(2z) = (f(z))^2$ for all $z \in \mathbb{C}$.
- 9. Determine all the singularities and their nature for
 - (a) $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$, defined by $f(z) = \frac{\sin^2 z}{z^3}$ for all $z \in \mathbb{C} \setminus \{0\}$.
 - (b) $f: \mathbb{C} \setminus S \to \mathbb{C}$, defined by $f(z) = \frac{e^z}{z(1-e^{-z})}$ for all $z \in \mathbb{C} \setminus S$, where $S = \{z \in \mathbb{C} : e^{-z} \neq 1\}$.
 - (c) $f : \mathbb{C} \setminus S \to \mathbb{C}$, defined by $f(z) = \tan \frac{1}{z}$ for all $z \in \mathbb{C} \setminus S$, where $S = \{z \in \mathbb{C} \setminus \{0\} : \cos \frac{1}{z} \neq 0\}$.
- 10. State TRUE or FALSE with justification: There exists a non-constant bounded analytic function $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$.
- 11. Find the order of zero at z = 0 for $f : \mathbb{C} \to \mathbb{C}$, where for each $z \in \mathbb{C}$, (a) $f(z) = z^2(e^{z^2} - 1)$ (b) $f(z) = 6 \sin z^3 + z^3(z^6 - 6)$.
- 12. Find all the zeros together with their orders for
 - (a) $f : \mathbb{C} \to \mathbb{C}$, defined by $f(z) = (1 e^z)(z^2 4)^3$ for all $z \in \mathbb{C}$. $z^2 + 9$
 - (b) $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$, defined by $f(z) = \frac{z^2 + 9}{z^4}$ for all $z \in \mathbb{C} \setminus \{0\}$.
- 13. Let $f: G \to \mathbb{C}$ and $g: G \to \mathbb{C}$ be analytic, where G is an open set in \mathbb{C} . If $z_0 \in G$ is a zero of both f and g of orders m and n respectively, then show that z_0 is a zero of $fg: G \to \mathbb{C}$ of order m + n.

- 14. Let $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ be analytic such that $|f(z)| \le 1$ for all $z \in \mathbb{C} \setminus \{0\}$ with |z| < 1. If r > 0 and $\gamma(t) = re^{it}$ for all $t \in [0, 2\pi]$, then determine (with justification) $\int_{\mathbb{C}} f$.
- 15. If $f(z) = \frac{1}{z(z-1)(z-2)}$ for all $z \in \mathbb{C} \setminus \{0,1,2\}$, then determine the Laurent series expansion of f in (a) ann(0;0,1), (b) ann(0;1,2), and (c) ann(0;2,\infty).
- 16. If $f(z) = \frac{1}{z(z^2 1)}$ for all $z \in \mathbb{C} \setminus \{0, 1, -1\}$, then find the residue of $f : \mathbb{C} \setminus \{0, 1, -1\} \to \mathbb{C}$ at 1 using Laurent series expansion of f.
- 17. Let f be an entire function such that f(n) = 0 for all $n \in \mathbb{Z}$. If $g(z) = \frac{f(z)}{\sin(\pi z)}$ for all $z \in \mathbb{C} \setminus \mathbb{Z}$, then show that each $n \in \mathbb{Z}$ is a removable singularity of $g : \mathbb{C} \setminus \mathbb{Z} \to \mathbb{C}$.
- 18. Let G be an open set in \mathbb{C} and let $z_0 \in G$ be a zero of order $m \in \mathbb{N}$ of an analytic function $f: G \to \mathbb{C}$. Determine $\operatorname{Res}\left(\frac{f'}{f}; z_0\right)$.
- 19. If $u: \mathbb{R}^2 \to \mathbb{R}$ is a bounded harmonic function, then show that u is a constant function.
- 20. Evaluate $\int \tan z \, dz$, where $\gamma(t) = 2e^{it}$ for all $t \in [0, 2\pi]$.
- 21. Determine all possible values of $\int_{\gamma} \frac{dz}{z(z^2+1)}$, where γ is any closed rectifiable path in $\mathbb{C} \setminus \{0, i, -i\}$.
- 22. Let $f : G \to \mathbb{C}$ be analytic and one-one, where G is an open set in \mathbb{C} . Show that $f'(z) \neq 0$ for all $z \in G$.
- 23. Show that all the roots of the equation $z^7 5z^3 + 12 = 0$ lie in $\{z \in \mathbb{C} : 1 < |z| < 2\}$.
- 24. If $\lambda \in \mathbb{R}$ such that $\lambda > 1$, then show that the equation $ze^{\lambda z} = 1$ has exactly one root in \mathbb{D} and that this root is real and positive.
- 25. If $a \in \mathbb{R}$ such that a > 1, then show that $\int_0^{\pi} \frac{d\theta}{a + \cos \theta} = \frac{\pi}{\sqrt{a^2 1}}$. 26. Show that $\int_{-\infty}^{\infty} \frac{x^2}{1 + x^4} dx = \frac{\pi}{\sqrt{2}}$. 27. Show that $\int_{\gamma} \frac{e^{az}}{z^2 + 1} dz = 2\pi i \sin a$, where $\gamma(t) = 2e^{it}$, $t \in [0, 2\pi]$.